首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
One of the fastest growing cities in India, Bangalore is facing challenges of urban microclimate change and increasing levels of air pollution. This paper assesses the impact of street trees in mitigating these issues. At twenty locations in the city, we compare segments of roads with and without trees, assessing the relationship of environmental differences with the presence or absence of street tree cover. Street segments with trees had on average lower temperature, humidity and pollution, with afternoon ambient air temperatures lower by as much as 5.6 °C, road surface temperatures lower by as much as 27.5 °C, and SO2 levels reduced by as much as 65%. Suspended Particulate Matter (SPM) levels were very high on exposed roads, with 50% of the roads showing levels approaching twice the permissible limits, while 80% of the street segments with trees had SPM levels within prescribed limits. In an era of exacerbated urbanization and climate change, tropical cities such as Bangalore will have to face some of the worst impacts including air pollution and microclimatic alterations. The information generated in this study can help appropriately assess the environmental benefits provided by urban trees, providing useful inputs for urban planners.  相似文献   

2.
Trees along footpath zones (or verges) grow on the “front-line” of urban forest ecosystems, increasingly recognised as essential to the quality of human life in cities. Growing so close to where residents live, work and travel, these street trees require careful planning and active management in order to balance their benefits against risks, liabilities, impacts and costs. Securing support and investment for urban trees is tough and robust business cases begin with accurate information about the resource. Few studies have accounted for spatial heterogeneity within a single land-use type in analyses of structure and composition of street tree populations. Remotely sensed footpath tree canopy cover data was used as a basis for stratification of random sampling across residential suburbs in the study area of Brisbane, Australia. Analysis of field survey data collected in 2010 from 80 representative sample sites in 52 suburbs revealed street tree population (432,445 ± 26,293) and stocking level (78%) estimates with low (6.08%) sampling error. Results also suggest that this population was transitioning to low risk, small-medium sized species with unproven longevity that could limit the capacity of the Brisbane’s Neighbourhood Shadeways planting program to expand from 35% footpath tree canopy cover in 2010, to a target of a 50% by 2031. This study advances the use of contemporary techniques for sampling extensive, unevenly distributed urban tree populations and the value of accurate resource knowledge to inform evidence-based planning and investment for urban forests.  相似文献   

3.
Healthy and sustainable tree populations require a high diversity of genera and species. This study examined the occurrence and contents of tree inventories in Denmark's 30 largest municipalities. 59% of the municipalities had a tree inventory for street trees, but only about half of these were complete and updated. Only one municipality had a registration for trees other than street trees. Based on data from the tree inventories, the diversity of road side trees was analyzed at genus level and species level. A total of 82,072 street trees are part of the study. 11 different genera account for 92% of the total street tree stock, and 2–6 genera account for 40–80% of the street tree stock in the individual municipalities. Tilia was the most dominating genera (26%). 12 species account for 73% of the total street tree stock. The 6 most common species account for almost 50% of the total tree population. The species representing the largest numbers were Tilia × europaea (12%), Acer platanoides (10.9%), Platanus × acerifolia (7.2%), Tilia cordata (7.2%), Fraxinus excelsior (6.2%) and Sorbus intermedia (5.9%). The four most urbanized municipalities had a surplus of non-native species, but all municipalities apart from one had most street trees belonging to native species. The concluding recommendation of this study is that tree managers need to start working more strategic with their tree stock, in order to reduce the vulnerability, due to potential attacks from pests or diseases and climate change effects. A risk spreading system for the urban tree population is proposed, suggesting that no genera should account for more than 10% and no species for more than 5% of the tree population.  相似文献   

4.
Green infrastructure approaches leverage vegetation and soil to improve environmental quality. Municipal street trees are crucial components of urban green infrastructure because they provide stormwater interception benefits and other ecosystem services. Thus, it is important to understand the patterns and drivers of structural heterogeneity in urban street tree assemblages. In this study, we compared the forest structure of street trees across nine communities along both geographic and demographic gradients in metropolitan Cincinnati, Ohio, USA. Specifically, we used a two-part statistical model to compare both the proportion of sampled street segments containing zero trees, and basal area magnitude for street segments with trees. We made community-scale comparisons based on street tree management, socioeconomics, and geographic setting. Then, using modeled stormwater interception estimates from i-Tree Streets, we investigated the implications of heterogeneity in street tree assemblages for stormwater interception benefits. The forest structure of street trees varied across communities in relation to management practices, namely participation in the Tree City USA program. As a consequence of this structural difference, we observed a stark discrepancy in estimated stormwater interception between Tree City USA participants (128.7 m3/km street length) and non-participants (59.2 m3/km street length). While street tree assemblages did not vary by community poverty status, we did find differences according to community racial composition. In contrast to previous research, basal area was greater in predominantly black (i.e., African American) and racially mixed communities than in predominantly white communities. We did not observe structural differences across geographic strata. This research underscores the importance of proactive management practices for increasing the forest structure of street trees. Our findings regarding socioeconomics and geographic setting contrast previous studies, suggesting the need for continued research into the drivers of structural heterogeneity in street tree assemblages.  相似文献   

5.
Roads destroy natural habitats. To reduce erosion, support wildlife and decorate surroundings, ornamental trees are planted near the roadside. However, it is inadequately understood how roads influence fruit production of trees and birds that consume their fruits, within urban landscapes. During the autumn and winter of 2012–2013, we studied the extent to which birds used the fruit from rowanberry trees (Sorbus aucuparia), in two cities along a 700 km latitudinal gradient in Finland. In matched pair design (total of 35 pairs), we compared roadside trees (approximately 8 m from main roads) with trees grown away from roads (control trees; approximately >80 m from the roads). During the autumn, each rowanberry tree pair was photographed, and frugivorous birds were surveyed twice per month until all of the rowanberry fruit-crop was consumed. There was no difference in fruit crop size between roadside trees and control trees. A total of eight frugivorous bird species and 960 individuals were observed foraging in roadside trees. The three most abundant species were Bohemian waxwing (Bombycilla garrulus, 56.4%), Pine Grosbeak (Pinicola enucleator, 28.9%) and Fieldfare (Turdus pilaris, 10.5%). Total abundance and species richness of frugivorous birds were lower around roadside trees than control trees during most of the study period. Fruits were consumed later from roadside trees than from control trees, probably due to human-caused disturbance. Therefore, roadside rowanberry trees extended the period when frugivorous birds stayed in urban habitats. Later consumption of fruits in northern areas than in southern areas was related to earlier peak abundance of frugivorous birds in south than in north. Our results indicated that rowanberry is a suitable ornamental tree for urban and roadside landscaping and may additionally benefit birds and other frugivorous wildlife.  相似文献   

6.
A tree diversity inventory was carried out in urban green spaces (UGSs) of Chennai metropolitan city, India. This inventory aims to study the diversity, density and richness of trees in UGSs of Chennai. A total of one hundred 10 m × 10 m (total 1 ha) plots were laid to reveal tree diversity and richness of UGSs. Trees with ≥10 cm girths at breast height (gbh) were inventoried. We recorded 45 species in 42 genera and 21 families. Caesalpiniaceae and Fabaceae each with 6 species dominated the study area followed by Arecaceae (3). Density and stand basal area of the present study were 500 stems ha?1 and 64.16 m2, respectively. Most of the inventoried trees were native (31 species) and deciduous (28 species). Fabaceae and Caesalpiniaceae dominated the present study area in terms of stand basal area and density. The Shannon diversity index and evenness of study area were 2.79 and 0.73, respectively. The most important species and families based on species important value index (IVI) and family important value index were Albizia saman, Polyalthia longifolia and Azadirachta indica; Fabaceae, Caesalpiniaceae and Annonaceae respectively. We find Chennai's urban forest is relatively superior to many urban forests of the world in terms of stand basal area and species richness. Results emphasize the importance of enhancement of urban green spaces in Chennai metropolitan city.  相似文献   

7.
Accurately measuring the biophysical dimensions of urban trees, such as crown diameter, stem diameter, height, and biomass, is essential for quantifying their collective benefits as an urban forest. However, the cost of directly measuring thousands or millions of individual trees through field surveys can be prohibitive. Supplementing field surveys with remotely sensed data can reduce costs if measurements derived from remotely sensed data are accurate. This study identifies and measures the errors incurred in estimating key tree dimensions from two types of remotely sensed data: high-resolution aerial imagery and LiDAR (Light Detection and Ranging). Using Sacramento, CA, as the study site, we obtained field-measured dimensions of 20 predominant species of street trees, including 30–60 randomly selected trees of each species. For each of the 802 trees crown diameter was estimated from the aerial photo and compared with the field-measured crown diameter. Three curve-fitting equations were tested using field measurements to derive diameter at breast height (DBH) (r2 = 0.883, RMSE = 10.32 cm) from the crown diameter. The accuracy of tree height extracted from the LiDAR-based surface model was compared with the field-measured height (RMSE = 1.64 m). We found that the DBH and tree height extracted from the remotely sensed data were lower than their respective field-measured values without adjustment. The magnitude of differences in these measures tended to be larger for smaller-stature trees than for larger stature species. Using DBH and tree height calculated from remotely sensed data, aboveground biomass (r2 = 0.881, RMSE = 799.2 kg) was calculated for individual tree and compared with results from field-measured DBH and height. We present guidelines for identifying potential errors in each step of data processing. These findings inform the development of procedures for monitoring tree growth with remote sensing and for calculating single tree level carbon storage using DBH from crown diameter and tree height in the urban forest.  相似文献   

8.
In conjunction with urbanization and its importance as a major driver of land-use change, increased efforts have been placed on understanding urban forests and the provisioning of ecosystem services. However, very little research has been conducted on private property and little is known about the structure and function of privately owned urban forests. This research examines the structure of and carbon storage services provided by private residential urban forests in a moderate-sized Midwestern city. The primary research questions are as follows: What is the structure of private urban forests, and how does it vary across parcels? How much carbon is stored in tree and soil pools of private urban forests, and how does carbon vary across parcels? Ecological inventories were conducted on 100 residential parcels within 14 Neighborhood and Homeowners Associations of varying size and development age. Tree species richness, diversity, density, and diameter distribution were determined on a per parcel basis and for the entire tree population sampled. Further, tree and soil carbon storage were determined for each parcel. Results of this research demonstrated large variability in per-parcel tree metrics. Twelve of the parcels sampled had two or fewer trees, while eleven had greater than 50 trees. Further, tree carbon storage ranged from no carbon to 11.22 kg C m?2. Alternatively, soil carbon storage was less variable and averaged 4.7 kg C m?2, approximately 1.9 times higher than the average carbon stored in trees (2.5 kg C m?2). Management efforts aimed at maintaining or enhancing carbon storage and other ecosystem services should focus on both soil protection and maximizing services in living biomass. Our results demonstrate that sustaining tree-produced ecosystem services requires maintenance of large old trees and species diversity, not only in terms of relative abundance, but also relative dominance, and in combination, species–specific size distributions.  相似文献   

9.
Greening of shopping centre parking lots is a potentially important strategy that can contribute to urban carbon mitigation efforts, improve aesthetics and the shopping experience of consumers, whilst adding to urban biodiversity. Twenty-eight shopping centre parking lots in six Eastern Cape urban centres, South Africa, were sampled to determine tree species composition, density and annual carbon sequestration potential. The best case parking lot found during the study was used as a benchmark to display the difference between current tree density and above-ground carbon stocks relative to the potential optimum. The highest tree density was 66 trees ha?1, whereas the average density across all sampled parking lots was less than half that (27.2 ± 22.6 trees ha?1). The average annual carbon sequestration potential per parking lot was 1390 ± 2503 kg ha?1. Planting density was positively related to annual sequestration rates, whilst parking lot age and the mean annual rainfall of the town had no influence. Mean tree species richness per parking lot was 2.3 ± 1.8 species, with a positive relationship to parking lot size, but not to mean annual rainfall of the site. The majority of trees (62.5%) in parking lots were alien species, although newer parking lots had significantly greater proportions of indigenous species. There was no difference in mean annual carbon sequestration rate per tree between indigenous and alien trees species. Low tree densities and small parking lot areas constrained the potential for earning carbon credits from trees in parking lots. Nonetheless, planners and designers need to be more aware of the potential contribution of trees towards urban sustainability.  相似文献   

10.
Heritage trees in a city, echoing factors conducive to outstanding performance, deserve special care and conservation. To understand their structural and health conditions in urban Hong Kong, 30 defect-disorder (DD) symptoms (physical and physiological) subsumed under four tree-position groups (soil-root, trunk, branching, and crown-foliage) and tree hazard rating were evaluated. The surveyed 352 trees included 70 species; 14 species with 233 trees were native. More trees had medium height (10–15 m), medium DBH (1–1.5 m) and large crown (>15 m). In ten habitats, public park and garden (PPG) accommodated the most trees, and roadside traffic island (RTI) and public housing estate (PH) had the least. Tree dimensions and tree habitats were significantly associated. The associations between the 2831 DD and tree-position groups, tree habitats and tree hazard rating were analyzed. Fourteen trees from Ficus microcarpa, Ficus virens and Gleditsia fera had high hazard rating, 179 trees from 22 species moderate rating, and 159 trees from 55 species low rating. RTI, roadside tree strip (RTS), roadside tree pit (RTP), roadside planter (RP) and stone wall (SW) had more moderate hazard rating, and PPG, roadside slope (RS) and government, institutional and community land (GIC) more low rating. Redundancy analysis showed that DD were positively correlated with RTS, RTP, RP and SW, but negatively correlated with PPG, RS and GIC (p < 0.05). The DD significantly increased tree hazard rating and failure potential. Future management implications for heritage-tree conservation and enhancement focusing squarely on critical tree defect-disorder in urban Hong Kong were explored, with application to other compact cities.  相似文献   

11.
The urban forest provides valuable ecosystem services for enhancing human well-being. Its structure and composition determine the quantity and quality of these services. There has been little research on the heterogeneity in structure and composition of urban forests in the Australasian region, especially in the centre of a highly dynamic and rapidly urbanizing city. This paper quantifies the structure and the composition of the urban forest of Melbourne, Australia's city centre. The effects of land tenure and land use on the heterogeneity of canopy cover, tree density and canopy size were explored. Species and family composition by land use, land ownership and street type were also analysed using the Shannon–Wiener and Jaccard similarity indices. Most of the canopy cover in the city centre is located on public land and is unevenly distributed across the municipality. The mean canopy cover (12.3%) is similar to that found for whole city studies around the world, which often include peri-urban forests. Similarly to other cities, structure varied across different land uses, and tree size, density and cover varied with land tenure and street type. The diversity index shows that the urban forest is rich in species (H = 2.9) and is dominated by native species. Improving the distribution, and increasing tree cover and variety of species will result in a more resilient urban centre, able to provide multiple ecosystem services to their residents and its large population of visitors and workers. The study of the urban centre provides further understanding of compact city morphologies, and allows inter-city comparison independent of the size.  相似文献   

12.
The implementation of trees in urban environments can mitigate outdoor thermal stress. Growing global urban population and the risk of heatwaves, compounded by development driven urban warmth (the urban heat island), means more people are at risk of heat stress in our cities. Effective planning of urban environments must minimise heat-health risks through a variety of active and passive design measures at an affordable cost. Using the Solar and Longwave Environmental Irradiance Geometry (SOLWEIG) model and working within the bounds of current urban design, this study aimed to quantify changes in mean radiant temperature (Tmrt) from increased tree cover at five different 200 × 200 m urban forms (including compact mid-rise development, residential and open grassy areas) within a suburb of Adelaide, Australia during summer. Following a successful validation of SOLWEIG, street trees were strategically distributed throughout each of the five urban forms and the model run over five warm sunny days (13–17 February 2011). Results showed spatially averaged daytime (7:30–20:00) Tmrt reduced by between 1.7 °C and 5.1 °C at each site, while under peak heating conditions (16 February, 14:00) Tmrt reduced by between 2.0 °C and 7.1 °C. The largest reduction in Tmrt under peak warming conditions was at the residential site, despite having the fewest number of trees added. Directly below clusters of trees, Tmrt could be reduced by between 14.1 °C and 18.7 °C. SOLWEIG also highlighted that more built-up sites showed higher Tmrt under peak warming conditions due to increased radiation loading from 3D urban surfaces, but over the course of the day, open sites were exposed to greater and more uniform Tmrt. This study clearly demonstrates the capacity of street trees to mitigate outdoor thermal stress and provides guidance for urban planners on strategic street tree implementation.  相似文献   

13.
Across cities worldwide, people are recognizing the value of greenspace in ameliorating the health and well-being of those living there, and are investing significant resources to improve their greenspace. Although models have been developed to allow the quantification of ecosystem services provided by urban trees, refinement and calibration of these models with more accurate site- and species-specific data can increase confidence in their outcomes. We used data from two street tree surveys in Cambridge, MA, to estimate annual tree mortality for 592 trees and diameter growth rates for 498 trees. Overall tree turnover between 2012 and 2015 was relatively low (annualized 3.6% y−1), and mortality rate varied by species. Tree growth rates also varied by species and size. We used stem diameter (DBH) and species identity to estimate CO2 sequestration rates for each of 463 trees using three different model variations: (1) i-Tree Streets, (2) Urban Tree Database (UTD) species-specific biomass allometries and growth rates, and (3) empirically measured growth rates combined with UTD biomass allometries (Empirical + UTD). For most species, the rate of CO2 sequestration varied significantly with the model used. CO2 sequestration estimates calculated using i-Tree Streets were often higher than estimates calculated with the UTD equations. CO2 sequestration estimates were often the lowest when calculated using empirical tree growth estimates and the UTD equations (Empirical + UTD). The differences among CO2 sequestration estimates were highest for large trees. When scaled up to the entire city, CO2 sequestration estimates for the Empirical + UTD model were 49.2% and 56.5% of the i-Tree Streets and UTD estimates, respectively. We suggest future derivations of ecosystem service provision models allow localities to input their own species-specific growth values. By adding capacity to easy-to-use tools, such as i-Tree Streets, we can increase confidence in the model output.  相似文献   

14.
In order to have a healthy and sustainable urban tree population, a high diversity of species and genera is needed. This study examined (1) the diversity and distribution of genera and species of urban trees in the Nordic region; (2) the diversity in different sites of the city, distinguishing between street and park environments; and (3) the presence of native versus non-native tree species in urban environments in the Nordic region. The analysis of tree diversity was based on urban tree databases comprising a total of 190 682 trees in 10 Nordic cities – Aarhus and Copenhagen in Denmark; Espoo, Helsinki, Tampere and Turku in Finland; Gothenburg, Malmo and Stockholm in Sweden; and Oslo in Norway. The tree databases for Copenhagen, Espoo, Helsinki, Stockholm and Tampere only record street trees, while the remaining databases also include park trees. Tilia was the most dominant genus in Arhus, Copenhagen, Espoo, Gothenburg, Helsinki, Oslo and Stockholm, while Sorbus was the most dominant in Malmo and Betula in Tampere and Turku. Tilia × europaea was the most common species, comprising 16.0% of the total number of tree species. There was a higher proportion of species in parks than in street environments. The number of non-native species was higher than the number of native species in both street and park environments. However, the number of individuals belonging to native species was higher than the number of non-native individuals in all cities and environments except park environments in Arhus. The concluding recommendation from this study regarding greater diversity of genera and species is to exploit local experiences of rare species from local urban tree databases. After appropriate evaluation, urban tree planners can evaluate these rare species in larger numbers for e.g. street environments, where the need is greatest.  相似文献   

15.
Decayed wood is a common issue in urban trees that deteriorates tree vitality over time, yet its effect on biomass yield therefore stored carbon has been overlooked. We mapped the occurrence and calculated the extent of decayed wood in standing Ulmus procera, Platanus × acerifolia and Corymbia maculata trees. The main stem of 43 trees was measured every metre from the ground to the top by two skilled arborists. All trees were micro-drilled in two to four axes at three points along the stem (0.3 m, 1.3 m, 2.3 m), and at the tree’s live crown. A total of 300 drilling profiles were assessed for decay. Simple linear regression analysis tested the correlation of decayed wood (cm2) against a vitality index and stem DBH. Decay was more frequent and extensive in U. procera, than P. acerifolia and least in C. maculata. Decay was found to be distributed in three different ways in the three different genera. For U. procera, decay did appear to be distributed as a column from the base to the live crown; whereas, decay was distributed as a cone-shape in P. acerifolia and was less likely to be located beyond 2.3 m. In C. maculata decay was distributed as pockets of variable shape and size. The vitality index showed a weak but not significant correlation with the proportion of decayed wood for P. acerifolia and C. maculata but not for U. procera. However, in U. procera, a strong and significant relationship was found between DBH and stem volume loss (R2 = 0.8006, P = 0.0046, n = 15). The actual volume loss ranged from 0.17 to 0.75 m3, equivalent to 5%–25% of the stem volume. The carbon loss due to decayed wood for all species ranged between 69–110 kg per tree. Based on model’s calculation, the stem volume of U. procera trees with DBH  40 cm needs to be discounted by a factor of 13% due to decayed wood regardless of the vitality index. Decayed wood reduces significantly the tree’s standing volume and needs to be considered to better assess the carbon storage potential of urban forests.  相似文献   

16.
This case study describes a method for utilizing leaf-off airborne laser scanning (ALS) data for mapping characteristics of urban trees. ALS data were utilized to detect and update all street trees in the tree inventory of the City of Helsinki, Finland. The inventory consists of roughly 20,000 street trees with mean diameter at breast height (DBH) of 24 cm and mean height of 10.6 m. The large number of trees makes the manual updating process very laborious. The automatic mapping procedure presented in this paper detected 88.8% of all trees in the inventory. Tree height was predicted with root mean square error (RMSE) of 1.27 meters and tree DBH with RMSE of 6.9 cm. The presented method provides a practical and cost–effective tool for the mapping of urban tree characteristics. The cost–efficiency was further enhanced because the used ALS data were originally collected for other urban planning purposes.  相似文献   

17.
Interactions between tree roots and sidewalks can result in damage to sidewalks and when sidewalk damage is repaired adjacent tree roots are often severed. The objective of this study was to quantify the growth response of urban trees in restricted planting spaces pre- and post-sidewalk construction. The research included four trees species commonly planted along streets in Minneapolis and Saint Paul, Minnesota, USA. Species included were: Acer platanoides, Celtis occidentalis, Gleditsia triacanthos, and Tilia spp. Two street tree populations were sampled: trees adjacent to replaced sidewalk panels (<1.75 m) and trees on streets with sidewalk construction that were greater than 3 m from replaced sidewalk sections. In total, increment core samples from 292 trees were analyzed. Annual rings from each tree were measured and converted to basal area increment (BAI) for analysis. Comparisons of BAI were conducted between the two sample populations to assess differences in tree growth patterns. Pre- and post-sidewalk construction BAI was also evaluated to determine the influence of construction on growth trajectory. Growth response was quantified using resistance, resilience, and recovery indices. Species were found to differ in their response to construction disturbance. Planting space width was also found to influence post-construction growth. Tilia spp. had the highest resilience and fastest overall growth recovery post-sidewalk construction and A. platanoides exhibited the lowest resistance, resilience, and recovery post-sidewalk construction.  相似文献   

18.
We assessed the net carbon (C) sequestration dynamics of street tree plantings based on 10 years of measurements at two case study sites each with different tree species in Helsinki, Finland. We assessed C loss from tree soils and tree C accumulation, tested the applicability of pre-existing growth and biomass equations against observations, and estimated the time point for the beginning of net C sequestration for the studied street tree plantings. The tree woody biomass C accumulation in the first 10 years after planting was 18–32 kg per tree. At the same time the C loss from the growth media was at least 170 kg per growth media volume (25 m3) per tree. If this soil C loss was accounted for, the net C sequestration would begin, at best, approximately 30 years after planting. Biomass equations developed for traditional forests predicted more stem biomass and less leaf and branch biomass than measured for the species examined, but total aboveground biomass was generally well predicted.  相似文献   

19.
Knowledge of allometric equations can enable urban forest managers to meet desired economic, social, and ecological goals. However, there remains limited regional data on young tree growth within the urban landscape. The objective of this study is to address this research gap and examine interactions between age, bole size and crown dimensions of young urban trees in New Haven, CT, USA to identify allometric relationships and generate predictive growth equations useful for the region. This study examines the 10 most common species from a census of 1474 community planted trees (ages 4–16). Regressions were applied to relate diameter at breast height (dbh), age (years since transplanting), tree height, crown diameter and crown volume. Across all ten species each allometric relationship was statistically (p < 0.001) significant at an α-level of 0.05. Consistently, shade trees demonstrated stronger relationships than ornamental trees. Crown diameter and dbh displayed the strongest fit with eight of the ten species having an R2 > 0.70. Crown volume exhibited a good fit for each of the shade tree species (R2 > 0.85), while the coefficients of determination for the ornamentals varied (0.38 < R2 < 0.73). In the model predicting height from dbh, ornamentals displayed the lowest R2 (0.33 < R2 < 0.55) while shade trees represented a much better fit (R2 > 0.66). Allometric relationships can be used to develop spacing guidelines for commonly planted urban trees. These correlations will better equip forest managers to predict the growth of urban trees, thereby improving the management and maintenance of New England's urban forests.  相似文献   

20.
This paper presents research that was undertaken to determine whether planting deciduous trees, using intensive tree planting schemes, on vacant and underutilized urban land provides significant hydrologic benefits. This work contributes to an ongoing discussion on how to use vacant and underutilized land productively, and may be important to land use decision-makers, whose policies support the use of green infrastructure for stormwater management. Tree growth parameters for four monoculture planting schemes were modeled (all trees had a 50.8 mm caliper at planting) and included (i) 450 Ginkgo biloba, (ii) 92 Platanus × acerifolia, (iii) 120 Acer saccharinum, and (iv) 434 Liquidambar styraciflua, on a 1.6-acre parcel. i-Tree Hydro (formerly UFORE-Hydro) was used to derive a simplified Microsoft Excel-based water balance model to quantify the canopy interception potential and evaporation, based on 7 years (2002–2008) of historical hourly rainfall and mean temperature data in Hamilton, Ontario, Canada. This study revealed that three of the species responded similarly, while one species (L. styraciflua) performed significantly better with respect to total canopy storage potential and evaporation, capturing and evaporating 2.9 m3/tree over the 7 years analyzed, or 1280 m3 for the total tree stand of 434 trees. The analyses presented herein demonstrate that the tree canopy layer was able to intercept and evaporate approximately 6.5%–11% of the total rainfall that falls onto the crown across the 7 years studied, for the G. biloba, P. × acerifolia and A. saccharinum tree stands and 17%–27% for the L. styraciflua tree stand. This study revealed that the rate at which a species grows, the leaf area index of the species as it matures, and the total number of trees to be planted need to be determined to truly understand the behavior and potential benefits of different planting schemes; had the mature leaf area been used as the sole indicator of the stormwater attenuating potential for each species, the A. saccharinum would have been the selected species. Also, had attenuation and evaporation per unit of tree been the only measurement reported, the P. × acerifolia stand would have been deemed the best performing tree, attenuating and evaporating 8.1 m3/tree. While the actual values presented herein may be uncertain because of a lack of locally-derived tree growth models, the approach described warrants further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号