首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 150 毫秒
1.
Optimal management of Korean pine plantations in multifunctional forestry   总被引:1,自引:0,他引:1  
Korean pine is one of the most important plantation species in northeast China.Besides timber,it produces edible nuts and plantations sequester carbon dioxide from the atmosphere.This study optimized the management of Korean pine plantations for timber production,seed production,carbon sequestration and for the joint production of multiple benefits.As the first step,models were developed for stand dynamics and seed production.These models were used in a simulation–optimization system to find optimal timing and type of thinning treatments and optimal rotation lengths.It was found that three thinnings during the rotation period were optimal.When the amount or profitability of timber production is maximized,suitable rotation lengths are 65–70 years and wood production is 5.5–6.0 m~3 ha~(-1) a~(-1).The optimal thinning regime is thinning from above.In seed production,optimal rotation lengths are over 100 years.When carbon sequestration in living biomass is maximized,stands should not be clear-cut until trees start to die due to senescence.In the joint production of multiple benefits,the optimal rotation length is 86 years if all benefits(wood,economic profits,seed,carbon sequestration) are equally important.In this management schedule,mean annual wood production is 5.5 m~2 ha~(-1) and mean annual seed yield 141 kg ha~(-1).It was concluded that it is better to produce timber and seeds in the same stands rather than assign stands to either timber production or seed production.  相似文献   

2.
Afforestation and ecological restoration have often been carried out with fast-growing exotic tree species because of their high apparent growth and yield. Moreover, fast-growing forest plantations have become an important component of mitigation measures to offset greenhouse gas emissions. However, information on the long-term performance of exotic and fast-growing species is often lacking especially with respect to their vulnerability to disturbance compared to native species. We compared carbon (C) storage and C accumulation rates in vegetation (above- and belowground) and soil in 21-year-old exotic slash pine (Pinus elliottii Engelm.) and native Masson pine (Pinus massoniana Lamb.) plantations, as well as their responses to a severe ice storm in 2008. Our results showed that mean C storage was 116.77 ± 7.49 t C ha?1 in slash pine plantation and 117.89 ± 8.27 t C ha?1 in Masson pine plantation. The aboveground C increased at a rate of 2.18 t C ha?1 year?1 in Masson pine and 2.23 t C ha?1 year?1 in slash pine plantation, and there was no significant difference in C storage accumulation between the two plantation types. However, we observed significant differences in ice storm damage with nearly 7.5 % of aboveground biomass loss in slash pine plantation compared with only 0.3 % loss in Masson pine plantation. Our findings indicated that the native pine species was more resistant to ice storm because of their adaptive biological traits (tree shape, crown structure, and leaf surface area). Overall, the native pine species might be a safer choice for both afforestation and ecological restoration in our study region.  相似文献   

3.
Semi-natural forests, which naturally regenerate after timber harvesting, provide distinct opportunities for dead wood (DW) management for biodiversity. We described DW pool and sources of its variation during the first decade after final felling in Estonia, hemiboreal Europe. Depending on forest type, the mean post-harvest volumes of above-ground DW ranged from 70 to 119 m3 ha?1. Final felling generally did not reduce downed coarse woody debris (CWD) because many sawn logs were left on-site, and soil scarification was rarely used. However, subsequent decay of downed CWD appears to be accelerated due to the increased ground contact of logs, so that even the relatively small inputs from live retention trees observed (5 m3 ha?1 per decade) can be ecologically significant. While final felling greatly reduced snag abundance, the mortality of retained live trees generally balanced their later losses. The volumes of downed fine woody debris in conventional cutover sites were roughly double that of pre-harvest forests. Slash harvest caused an approximately twofold reduction in downed DW and resulted in CWD volumes that were below mature-forest levels. The results indicate that the habitat quality of cutovers critically depends both on the retention and on the post-harvest management of biological legacies. In Estonia, the necessary improvements include more careful retention of snags in final felling, selecting larger retention trees, focusing slash harvest on the fine debris of common tree species, and providing snags of late-successional tree species.  相似文献   

4.
Despite the low timber productivity of Mediterranean Pinus halepensis Mill. forests in south-eastern Spain, they are a valuable carbon sequestration source which could be extended if young stands and understories were considered. We monitored changes in biomass storage of young Aleppo pine stands naturally regenerated after wildfires, with a diachronic approach from 5 to 16 years old, including pine and understory strata, at two different quality sites (dry and semiarid climates). At each site, we set 21 permanent plots and carried out different thinning intensities at two ages, 5 and 10 years after fires. We found similar post-fire regeneration capacity at both sites in terms of total above-ground biomass storage ~6 Mg ha?1 (3 Mg ha?1 of the above-ground pine biomass plus 3 Mg ha?1 of the above-ground understory biomass), but with a contrasting pine layer structure. Generally, across the diachronic study, the earlier thinning reduced biomass stocks at both sites, except for the best quality site (the dry site), where the earliest thinning (applied at post-fire year 5) enlarged carbon storage by 11 % as compared to non-thinned plots. We found root:shoot ratios of an average 0.37 for the pine layer and 0.45 for the understory layer. These results provided new information which not only furthers our understanding of carbon sequestration in low timber productivity Mediterranean forests, but will also help to develop new guidelines for sustainable management adapted to the high-risk terrestrial carbon losses of fire-prone areas.  相似文献   

5.
We derived a formula for estimating the relationship between stem carbon weight and stem volume, which was calculated from DBH and tree height using a combination of stem analysis and soft X-ray densitometry. The results indicate carbon weight in a 33-year-old coastal Japanese black pine (Pinus thunbergii) forest is approximately 68,186 kg ha?1 in Yamagata Prefecture and 38,253 kg ha?1in a 42-year-old black pine forest in Hokkaido Prefecture, Japan. Also, age-related changes in the stem density following oven-drying of samples of black pine trees are small: the oven-dried density (hereafter “density”) of black pine trees in the two locations mentioned above were 425.6 (kg m?3) and 523.2 (kg m?3) respectively, which is comparable to the density (converted from basic density) of black pine of Land Use, Land-Use Change and Forestry (LULUCF) (533 kg m?3). When compared with the carbon weight by the oven-dried density of LULUCF, the carbon weights calculated from each density were 27 % lower in Yamagata and 6 % lower in Hokkaido. This difference directly affects carbon weight for large-scale estimation and thus can create an error at a regional scale. This methodology can contribute to the management of forests acting as carbon sinks.  相似文献   

6.
In tropical areas of Mexico, Leucaena leucocephala is widely used in silvopastoral systems. However, little information exists on other native woody species of high forage potential, such as Guazuma ulmifolia. The aim of this study was to evaluate the components of biomass, forage yield and quality, and availability of N in fodder banks of L. leucocephala, G. ulmifolia, and a mixture of both species during dry and rainy seasons, under sub-humid tropical conditions. The experimental unit was a 5 × 10 m plot, containing three rows with 2 m between rows; each row had 20 plant positions with 0.50 m between plants. Within each plant position there was either a single plant, in the case of pure-crop, or two plants, in the case of mixed of both species. A complete randomized block design with three repetitions was used. In both seasons, there were a significantly greater proportion of leaves in the G. ulmifolia fodder banks (71 %) and in mixed fodder banks (69 %) than in L. leucocephala fodder banks (64 %). Consequently, these systems had leaf-to-stem ratios of 2.4, 2.2 and 1.9, respectively. The forage yield of fodder banks was not influenced by season. The mixed fodder bank had greater forage yield (5.1 t DM ha?1) than the L. leucocephala fodder bank (3.4 t DM ha?1) in each season. Additionally, the mixed fodder bank accumulated more forage yield during the experimental period (10.2 t DM ha?1 year?1) than G. ulmifolia (9.0 t DM ha?1 year?1) or L. leucocephala (6.9 t DM ha?1 year?1). The concentrations of CP, C and C:N were not influenced by season. Forage NDF and ADF concentrations were greater in the rainy season (476 g kg?1 DM) compared with the dry season (325 g kg?1 DM). Mixed fodder banks had the greatest N yield (185.9 kg ha?1) and consequently the greatest availability of N (371.8 kg N ha?1 year?1). We conclude that mixed fodder banks of L. leucocephala and G. ulmifolia are a better option for improving productivity and forage quality in comparison with pure fodder banks in Yucatan, Mexico.  相似文献   

7.
The effect of different planting densities (100,000 and 167,000 plants ha?1) and levels of nitrogen fertilization (0, 261, 521, and 782 kg N ha?1 year?1) on biomass production and chemical composition of Moringa oleifera was studied in a split-plot design with four randomized complete blocks over 2 years with eight cuts year?1 at the National Agrarian University farm in Managua, Nicaragua (12°09′30.65″N, 86°10′06.32″W, altitude 50 m above sea level). Density 167,000 plants ha?1 produced significantly higher total dry matter yield (TDMY) and fine fraction yield (FFDM), 21.2 and 19.2 ton ha?1 respectively, compared with 11.6 and 11 ton ha?1 for 100,000 plants ha?1. Growth rate in 167,000 plants ha?1 was higher than in 100,000 plants ha?1 (0.06 compared with 0.03 ton ha?1 day?1). Average plant height was 119 cm irrespective of planting density. Fertilization at the 521 and 782 kg N ha?1 year?1 levels produced the highest TDMY and FFDM in both years of the study and along all cuts. The interaction between cut and year was significant, with the highest TDMY and FFDM during the rainy season in the second year. Chemical composition of fractions showed no significant differences between planting densities. Significantly higher crude protein content was found in the coarse fraction at fertilizer levels 521 and 782 kg N ha?1 year?1 (87.9 and 93.7 g kg?1 DM) compared with lower levels. The results indicate that Moringa can maintain up to 27 ton ha?1 dry matter yield under dry tropical forest conditions over time at a planting density of 167,000 plants ha?1 if the soil is regularly supplied with N at a level of approximately 521 kg ha year?1 in conditions where phosphorus and potassium are not limiting.  相似文献   

8.
Altogether 82 plots (261 estimations) of Picea abies (L.) Karst, and 193 plots (360 estimations) of Pinus sylvestris (L.) stands were estimated by a vertical tube. The “crown free projection”, CFP, of stands thinned in three methods with different thinning grades was measured: unthinned, heavily and very heavily thinned, heavily thinned delayed first thinning, extra heavily thinned and thinned from the top. Basal area (m2ha?1) density (stems ha?1) and diameter sum (m ha?1) were plotted against CFP. Basal area was the best practical measure of stand in this study. Generally Scots pine stands have higher CFP and the curves are steeper than in Norway spruce stands. Depending on the grade of thinning, heavily and very heavily thinned spruce stands, delayed first thinning included, have CFP values of 10–15% and stands thinned from the top, 20–40%, compared with 30–80% and 30–60% respectively in pine stands. Extra heavily thinned stands have the highest CFP, 20–80% in spruce and 50–90% in pine stands. The CFP levels after thinning are too high in pine stands for avoidance of sucker and sprout production of aspen and birch. In dense Norway spruce stands thinned from the top or heavily and very heavily thinned, the CFP values are low enough (≤30%) to diminish the production of suckers.  相似文献   

9.
Afforestation of degraded croplands by planting N2-fixing trees in arid regions is highly recognized. However, fixation of atmospheric nitrogen gas (N2) by woody perennials is often limited on phosphorus (P) poor soils, while any factor limiting N nutrition inhibits tree growth. In a two-factorial field experiment, the effect of three P amendments was examined during 2006–2008 on N2 fixation, biomass production, and foliage feed quality of actinorhizal Elaeagnus angustifolia L. and leguminous Robinia pseudoacacia L. With the 15N natural abundance method, N2 fixation was quantified based on foliar and whole-tree sampling against three non-N2-fixing reference species: Gleditsia triacanthos L., Populus euphratica Oliv., and Ulmus pumila L. The P applications, in March 2006 and April 2007 only, included (i) high-P (90 kg P ha?1), (ii) low-P (45 kg P ha?1), and (iii) 0-P. After 3 years, the average proportion of N derived from atmosphere (Ndfa, %) increased from 78 % with 0-P to 87 % with high P when confounded over both N2-fixing species. With the used density of 5,714 trees ha?1, the total amount of N2 fixed (Ndfa, kg N ha?1) with high-P increased from 64 kg N ha?1 (year 1) to 807 kg N ha?1 (year 3) in E. angustifolia and from 9 kg N ha?1 (year 1) to 155 kg N ha?1 (year 3) in R. pseudoacacia. Total above-ground biomass increases were too variable to be significant. Leaf N content and therewith also leaf crude protein content, which is an indicator for feed quality, increased significantly (24 %) with high-P when compared to 0-P for E. angustifolia. Overall findings indicated the suitability of the two N2-fixing species for afforestating salt-affected croplands, low in soil P. With P-applications as low as 90 kg P ha?1, the production potential of E. angustifolia and R. pseudoacacia, including the supply of protein-rich feed, could be increased on salt-affected croplands.  相似文献   

10.
The growth patterns of annually resolved tree rings are good indicators of local environmental changes, making dendrochronology a valuable tool in air pollution research. In the present study, tree-ring analysis was used to assess the effects of 16 years (1991–2007) of chronic nitrogen (N) deposition, and 10 years (1991–2001) of reduced nitrogen input, on the radial growth of Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) growing in the experimental area of Lake Gårdsjön, southwest Sweden. In addition to the ambient input of c. 15 kg N ha?1 year?1, dissolved NH4NO3 was experimentally added to a 0.52-ha watershed at a rate of c. 40 kg ha?1 year?1. Atmospheric N depositions were reduced by means of a below-canopy plastic roof, which covered a 0.63-ha catchment adjacent to the fertilized site. The paired design of the experiment allowed tree growth in the N-treated sites to be compared with the growth at a reference plot receiving ambient N deposition. Nitrogen fertilization had a negative impact on pine growth, while no changes were observed in spruce. Similarly, the reduction in N and other acidifying compounds resulted in a tendency towards improved radial growth of pine, but it did not significantly affect the spruce growth. These results suggest that spruce is less susceptible to changes in the acidification and N status of the forest ecosystem than pine, at least in the Gårdsjön area.  相似文献   

11.
Thinning and fertilization are two common and important stand treatments in forest management. In terms of area treated, thinning is the single most common form of stand treatment. The extent of forest fertilization on the other hand, has varied widely in recent decades and is currently not very common. Thinning is done primarily to promote stand properties while fertilization is done to increase growth before future final felling. After thinning stands of Scots pine, overall growth decreases, while growth of residual trees increases. An experiment was established outside Vindeln in northern Sweden where the long-term growth effects after thinning and/or fertilization were evaluated after 33 years. Experimental set-up was a randomized block design including 12 replications of four treatments. Treatments were control, fertilization, thinning, and thinning and fertilization combined. Thinning decreased overall and annual volume growth ha?1, and increased green crown size and diameter growth at breast height (1.3 m, DBH) for the individual trees. No positive growth responses to fertilization could be seen after 33 years. In summary, this study showed that thinning can have long term effects on the growth of a Scots pine stand in northern Sweden. Possible reasons for the lack of positive response following fertilization are discussed.  相似文献   

12.
The effects of timing and intensity of precommercial thinning were studied in three Scots pine artificially regenerated stands on Vaccinium forest sites in southern Finland. A two-level factorial design (3×3) was used in each stand: thinning at dominant height of 3, 6 and 9 m to 1000, 1600 and 2200 stems ha?1. The effects of the treatments were analysed after a period of 23–25 yrs when the dominant height was 14–15 m. Early thinning resulted in the highest standing volume and amount of merchantable wood, and also in slightly accelerated height development. Thinning to 1000 stems ha?1 caused a considerable production loss, but there were no differences between the densities of 1600 and 2200 stems ha?1. Branches became thicker after early thinning, but the differences between the treatments were negligible for crop trees. Crown ratio was lowest as the result of early or moderate thinning (2200 stems ha?1).  相似文献   

13.
Intensification of coffee (Coffea arabica) production is associated with increases in inorganic fertilizer application and decreases in species diversity. Both the use of organic fertilizers and the incorporation of trees on farms can, in theory, reduce nutrient loss in comparison with intensified practices. To test this, we measured nutrient concentrations in leachate at 15 and 100 cm depths on working farms. We examined (1) organically managed coffee agroforests (38 kg N ha?1 year?1; n = 4), (2) conventionally managed coffee agroforests (96 kg N ha?1 year?1; n = 4), and (3) one conventionally managed monoculture coffee farm in Costa Rica (300 kg N ha?1 year?1). Concentrations of nitrate (NO3 ?-N) and phosphate (PO4 3?-P) were higher in the monoculture compared to agroforests at both depths. Nitrate concentrations were higher in conventional than organic agroforests at 15 cm only. Soil solutions collected under nitrogen (N)-fixing Erythrina poeppigiana had elevated NO3 ?-N concentrations at 15 cm compared to Musa acuminata (banana) or Coffea. Total soil N and carbon (C) were also higher under Erythrina. This research shows that both fertilizer type and species affect concentrations of N and P in leachate in coffee agroecosystems.  相似文献   

14.
Euro-American logging practices, intensive grazing, and fire suppression have increased the amount of carbon that is stored in ponderosa pine (Pinus ponderosa Dougl. Ex Laws) forests in the southwestern United States. Current stand conditions leave these forests prone to high-intensity wildfire, which releases a pulse of carbon emissions and shifts carbon storage from live trees to standing dead trees and woody debris. Thinning and prescribed burning are commonly used to reduce the risk of intense wildfire, but also reduce on-site carbon stocks and release carbon to the atmosphere. This study quantified the impact of thinning on the carbon budgets of five ponderosa pine stands in northern Arizona, including the fossil fuels consumed during logging operations. We used the pre- and post-treatment data on carbon stocks and the Fire and Fuels Extension to the Forest Vegetation Simulator (FEE-FVS) to simulate the long-term effects of intense wildfire, thinning, and repeated prescribed burning on stand carbon storage.The mean total pre-treatment carbon stock, including above-ground live and dead trees, below-ground live and dead trees, and surface fuels across five sites was 74.58 Mg C ha−1 and the post-treatment mean was 50.65 Mg C ha−1 in the first post-treatment year. The mean total carbon release from slash burning, fossil fuels, and logs removed was 21.92 Mg C ha−1. FEE-FVS simulations showed that thinning increased the mean canopy base height, decreased the mean crown bulk density, and increased the mean crowning index, and thus reduced the risk of high-intensity wildfire at all sites. Untreated stands that incurred wildfire once within the next 100 years or once within the next 50 years had greater mean net carbon storage after 100 years compared to treated stands that experienced prescribed fire every 10 years or every 20 years. Treated stands released greater amounts of carbon overall due to repeated prescribed fires, slash burning, and 100% of harvested logs being counted as carbon emissions because they were used for short-lived products. However, after 100 years treated stands stored more carbon in live trees and less carbon in dead trees and surface fuels than untreated stands burned by intense wildfire. The long-term net carbon storage of treated stands was similar or greater than untreated wildfire-burned stands only when a distinction was made between carbon stored in live and dead trees, carbon in logs was stored in long-lived products, and energy in logging slash substituted for fossil fuels.  相似文献   

15.
The present study was conducted in five forest types of subtropical zone in the Northwestern Himalaya, India. Three forest stands of 0.1 ha were laid down in each forest type to study the variation in vegetation carbon pool, stem density, and ecosystem carbon density. The stem density in the present study ranged from (483 to 417 trees ha?1) and stem biomass from (262.40 to 39.97 tha?1). Highest carbon storage (209.95 t ha?1) was recorded in dry Shiwalik sal forest followed by Himalayan chir forest > chir pine plantation > lower Shiwalik pine forest > northern mixed dry deciduous forest. Maximum tree above ground biomass is observed in dry Shiwalik sal forests (301.78 t ha?1), followed by upper Himalayan chir pine forests (194 t ha?1) and lower in Shiwalik pine forests (138.73 t ha?1). The relationship with stem volume showed the maximum adjusted r2 (0.873), followed by total density (0.55) and average DBH (0.528). The regression equation of different parameters with shrub biomass showed highest r2 (0.812) and relationship between ecosystem carbon with other parameters of different forest types, where cubic function with stem volume showed highest r2 value of 0.873 through cubic functions. Our results suggest that biomass and carbon stocks in these subtropical forests vary greatly with forest type and species density. This variation among forests can be used as a tool for carbon credit claims under ongoing international conventions and protocols.  相似文献   

16.
Abstract

An integrated simulation tool, formed by integrating the InnoSIM sawing simulation system with the RetroSTEM simulator, was used to convert available wood raw materials from final felling into sawn timber, allowing for calculation of the three-dimensional wood properties of individual stems (stem geometry, heartwood formation, knottiness) as well as the volume, quality and value of sawn timber in a Norway spruce stand with different thinning regimes (unthinned, normal and intensively thinned). Based on the input data of sawing patterns, the simulations indicate that there are relatively small differences (<8%) in the volume yield (m3ha?1) of sawn goods resulting from sawlogs available from final felling with different thinning practices. However, intensive thinning yielded the largest stem diameters and the greatest volumes (m3ha?1) of large-sized centre goods (thickness: 50, 63, 75 mm) of rather poor quality. Normal thinning yielded the largest volume of A-grade side boards and centre goods (m3ha?1), as well as the best total value ([euro]ha?1) of sawn timber. Differences observed in sawn timber quality distribution can contribute to even more significant variation in value yields, if pricing mechanisms of timber products change to favour higher grade timber products.  相似文献   

17.
Abstract

The time consumption and productivity of a single-grip harvester were studied, using a simulation model, when thinning from below and above in eight randomly selected stands. The model estimated the time required for each work element, given machine and tree positions, and tree size. A 2×5 factorial design was used with factors thinning type [from below (Tb) and above (Ta)] and tree size. Trees were subjectively selected for harvest according to thinning type. Total basal area removal was 30% plot?1. Approximately 50% more trees were harvested in Tb than in Ta Time consumption tree?1 was higher for Ta than Tb. Time consumption for machine and boom movements decreased with increasing number of harvested trees, and time for felling and processing of trees increased with harvested mean stem volume. Harvester productivity was 36% higher for Ta, since the increase in harvested mean stem volume was higher than the increase in time consumption tree?1.  相似文献   

18.
The effects of silvicultural treatments on carbon sequestration are poorly understood, particularly in areas like the Mediterranean where soil fertility is low and climatic conditions can be harsh. In order to improve our understanding of these effects, a long-term thinning experiment in a stand of Mediterranean maritime pine (Pinus pinaster Ait.) was studied to identify the effects of thinning on soil carbon (forest floor and mineral soil), above and belowground biomass and fine and coarse woody debris. The study site was a 59-year-old pinewood, where three thinnings of differing intensities were applied: unthinned (control), moderate thinning and heavy thinning. The three thinning interventions (for the managed plots) involved whole-tree harvesting. The results revealed no differences between the different thinning treatments as regards the total soil carbon pool (forest floor + mineral soil). However, differences were detected in the case of living aboveground biomass and total dead wood debris between unthinned and thinned plots; the former containing larger amounts of carbon. The total carbon present in the unthinned plots was 317 Mg ha?1; in the moderately thinned plots, it was 256 Mg ha?1 and in the case of heavily thinned plots, 234 Mg ha?1. Quantification of these carbon compartments can be used as an indicator of total carbon stocks under different forest management regimes and thus identify the most appropriate to mitigate the effects of global change. Our results indicated that thinning do not alter the total soil carbon content at medium term, suggesting the sustainability of these silvicultural treatments.  相似文献   

19.
In most temperate forest, nitrogen (N) is considered a limiting factor. This becomes important in extreme environments, as Nothofagus antarctica forests, where the antecedents are scarce. Thinning practices in N. antarctica forests for silvopastoral uses may modify the soil N dynamics. Therefore, the objective of this work was to evaluate the temporal variation of soil N in these ecosystems. The mineral extractable soil N, net nitrification and net N mineralization were evaluated under different crown cover and two site quality stands. The mineral N extractable (NH4 +–N + NO3 ?–N) was measured periodically. Net nitrification and net N mineralization were estimated through the technique of incubation of intact samples with tubes. The total mineral extractable N concentration varied between crown cover and dates, with no differences among site classes. The lowest and highest values were found in the minimal and intermediate crown cover, respectively. In the higher site quality stand, the annual net N mineralization was lower in the minimal crown cover reaching 11 kg N ha?1 year?1, and higher in the maximal crown cover (54 kg N ha?1 year?1). In the lower site quality stand there was no differences among crown cover. The same pattern was found for net nitrification. Thinning practices for silvopastoral use of these forests, keeping intermediate crown cover values, did not affect both N mineralization and nitrification. However, the results suggest that total trees removal from the ecosystem may decrease N mineralization and nitrification.  相似文献   

20.
Abstract

Simulations of the continuous felling of trees in boom-corridors have suggested that it may be possible to increase harvester productivity by a factor of 2.4 when thinning young dense stands. A prototype boom-tip mounted felling head for harvesting in this fashion was therefore built and tested in the field. Using the new head, stands with a density of 10,000 trees ha?1 and a mean diameter at breast height (dbh) of 7 cm were felled at a speed of 0.4 m s?1, with an efficiency of 3.5 s tree?1. The felling speed was limited by the speed of movement of the harvester crane's boom. However, additional tests suggested that the new head could be operated at felling speeds of up to 1.3 m s?1 when cutting trees with dbh values of up to 8 cm. The simulation that prompted this study focused on multiple felling with the crane in continuous motion at speeds of 1 m s?1; the results obtained in this work suggest that the new felling head is capable of sustaining these speeds and so further technical development of the design (e.g. to incorporate accumulating functionality) is warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号