首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Little research has been conducted on magnesium (Mg) nutrition of taro [Colocasia esculenta (L.) Schott cv. ‘Bun Long']. In this study, we evaluated the effects of varying levels of Mg (0.0, 0.05, 0.1, 0.2, 0.4, and 0.8 mM) on taro plants grown hydroponically for 33 days. Magnesium treatment effects were evaluated for dry matter biomass, leaf area, and N, P, K, Ca, Mg, Na, Mn, Fe, Cu, Zn, and B concentrations of old and young leaves. Dry matter of leaves (young, old, and total), roots, corms, petioles, and total biomass were significantly higher in all plus‐Mg treatments than in the zero‐Mg treatment. These same biomass parameters were not different among treatments with Mg (0.05 to 0.8 mM). Leaf area (young, old, and total) did not differ significantly with varying levels of Mg. A quadratic model described the relationship between Mg levels in leaves and solution Mg (r2 = 0.99). Young and old leaf Mg concentrations did not differ. Total leaf Mg concentration ranged from 0.07% to 0.42% for the lowest and highest Mg levels in solution, respectively. Leaf Mg effects on total leaf DM was best fit using segmented regression (r2 = 0.95), with a corresponding critical leaf Mg concentration (95% of maximum predicted leaf DM) of 0.14%. No significant interactions were observed between Mg and other mineral nutrients. Critical leaf Mg concentration is based on the vegetative growth stage of taro and could be a key index for taro producers who emphasize vegetable leaf, rather than corm production.  相似文献   

2.
外源脱落酸增强甘薯幼苗耐盐性的作用   总被引:1,自引:0,他引:1  
【目的】本文系统研究了不同浓度NaCl胁迫及外源脱落酸(ABA)对NaCl胁迫下甘薯幼苗生根及一些生理生化特性的影响,探讨了外源ABA对盐胁迫下甘薯幼苗的缓解效应,为增强盐碱地甘薯耐盐性、 提高产量提供理论依据。【方法】以甘薯种植品种徐薯25为实验材料,在装有石英砂的具孔塑料盆中放入培养室自然光照/昼夜温度[(261)/(171)℃]中培养,并进行不同浓度NaCl处理以及对NaCl 300 mmol/L胁迫甘薯幼苗叶片喷施ABA溶液,连续处理7 d后,测定生根数,使用CIRAS-1型便携式光合仪测定光合作用指标、 植物效率分析仪测定叶绿素荧光参数、 采用比色法测定丙二醛、 脯氨酸、 可溶性糖含量和超氧化物歧化酶活性、 用原子吸收分光光度计测定Na+、 K+、 Ca2+含量,利用SPSS13.0和Excel软件对数据进行处理分析。【结果】低浓度 NaCl胁迫(50 mmol/L)对甘薯幼苗影响较小; 随着盐度的增加,甘薯生根不断减少,相对电导率、 丙二醛(MDA)、 脯氨酸和可溶性糖含量持续增加,甘薯叶片超氧化物歧化酶(SOD)活性呈先增加后降低趋势; 叶片净光合速率(Pn)、 蒸腾速率(Tr)、 气孔导度(Gs)、 光系统Ⅱ(PSⅡ)最大光化学效率(Fv/Fm)、 捕获的激子将电子传递到电子传递链中超过QA的其他电子受体的概率(0)、 用于电子传递的量子产额(E0)逐渐降低,放氧复合体活性(Vk)和用于热耗散的量子比率(D0)不断增加; 叶片中Na+含量增加,K+、 Ca2+和K+/Na+水平降低。高浓度(300 mmol/L)NaCl胁迫下,甘薯幼苗的正常生理代谢受到显著抑制。适当增加外源ABA浓度,能够显著缓解NaCl胁迫造成的伤害作用,以ABA浓度为70 mol/L的缓解效果最好。【结论】外源ABA可显著促进盐胁迫下甘薯幼苗生根,维持细胞膜的稳定性,降低膜脂过氧化程度,调节植物细胞的渗透和离子动态平衡,使甘薯幼苗叶片维持较高的Fv/Fm、 0、 E0和较低的Vk、 D0,缓解PSⅡ光抑制的程度,改善植物的光合作用,提高植物的耐盐性。因此,喷施70 mol/L ABA是缓解NaCl胁迫效应,提高甘薯幼苗耐盐性的一种有效方法。  相似文献   

3.
A seven days' culture of sweet potato plants under a deficient potassium application induced various metabolic disturbances in the roots (1,2) and the leaves (3). Prolonged cultures of taro (4), broad bean plants (5), and barley (5) suggested that a half level of the normal potassium content in roots might be a critical point of K -deficiency resulting in a higher respiration rate than its normal status. Such a temporary enhancement of respiration accompanied by accumulation of amino-N and reducing sugars may not necessarily contribute to the accumulation and the assimilation of salts, but accelerate the disturbance of plant metabolism to cause early death of the tissues. This work deals with supplemental data on the effects of K -deficiency on the plant growth and the respiration in roots, comparing these effects in a 15 days' culture of sweet potato plants with those in a longer term culture of other plant species (4,5).  相似文献   

4.
The mineral composition of taro ( Colocasia esculenta (L.) Schott) was analyzed to develop a method to distinguish taro produced in Japan and China. The concentrations of 15 elements (Al, Ca, Cl, Mg, Mn, Br, Co, Cr, Cs, Fe, K, Na, Rb, Sc, Zn) were assayed using instrumental neutron activation analysis. The concentrations of NO(3)(-), SO(4)(2-), H(2)PO(4)(-), Cl(-), malate, and oxalate were measured by ion chromatography. The mean concentrations of H(2)PO(4)(-), Co, Cr, and Na significantly differed (P < 0.01) between taro grown in Japan and that grown in China. Discriminant analysis was performed to identify the most efficient combination of elements and compounds to discriminate the taro geographic origin. The highest percentage of correct classification was achieved with a two-variable model including H(2)PO(4)(-) and Co (100% for Japanese, 93.75% for Chinese). Principal component analysis and cluster analysis using all of the assayed elements and compounds were also conducted to determine which elements significantly accounted for the variation of the taro mineral composition. We report on the potential of H(2)PO(4)(-) and Co concentrations to differentiate taro grown in China and Japan and discuss the sources of variability in the taro mineral composition of our samples.  相似文献   

5.
A long‐term field experiment on a Haplic Phaeozem, established 1949 with four levels of potassium (K) supply (5, 69, 133, and 261 kg K ha?1), was analyzed for the interaction between K supply and yield loss of five crop species by water shortage. The crop species were cultivated simultaneously side‐by‐side in the following rotation: potato (Solanum tuberosum L.), silage maize (Zea mays L.), spring wheat (Triticum aestivum L.), beet (Beta vulgaris L.), and spring barley (Hordeum vulgare L.). The treatment with 133 kg K ha?1 supply had a nearly balanced K budget. In the treatments with lower supply, the soil delivered K from its mineral constituents. On the low‐K plots (especially on those with only 5 kg K ha?1), crops suffered yield depressions of nearly all main harvest products (cereal grains, potato tubers, beet storage roots, silage maize) and by‐products (straw, beet leaves) by up to 40.7% of dry matter. Only wheat grains were an exception. Potassium concentrations in the harvested plant parts decreased nearly in parallel to the reduction of their dry matter yields, with the exception of cereal grains, which kept stable concentrations even in the treatment with only 5 kg K ha?1. A comparison of four year‐pairs with differing levels of precipitation in yield‐relevant periods showed an average water shortage‐induced depression of dry matter yields by 19.7% in the main harvest products. The severity of this yield depression was not mitigated by elevated K supply, with the exception of beet leaves, where the dry matter production was stabilized by high K supply. In this crop, the reduction of storage‐root yield was associated with a decrease in harvest index and was therefore obviously caused by an inhibition of assimilate translocation from the leaves into these organs, in contrast to cereals, where water shortage primarily affected dry matter production in vegetative organs. It is concluded that the physiological causes of yield reduction by drought stress and the possibility of its amelioration by K supply differ between plant species and organs.  相似文献   

6.
Ethnic vegetable crops are increasingly being grown in the United States and may accumulate heavy metals when grown on urban soils. This study evaluated accumulation of lead (Pb) and arsenic (As) in tissues of Malabar spinach (Basella alba L.) and sweet potato (Ipomoea batatas L.) grown on an urban and an orchard soil with Pb concentrations of 1,120 and 272 mg kg?1, respectively, and As concentrations of 6.92 and 90 mg kg?1, respectively. Tissue Pb was higher in both crops grown on both contaminated soils compared with an uncontaminated soil, while tissue As was higher on the orchard soil only. Malabar spinach did not accumulate Pb or As in its shoot, but concentrations of both metals were higher in sweet potato stems compared to leaves or tubers. Consumption of sweet potato stems should be avoided when sweet potato leaves are grown as a vegetable on soils with elevated levels of Pb and As.  相似文献   

7.
Abstract

White Rose potato plants (Solanum tuberosum, L.) were grown outdoors, without tuber formation, in a modified Hoagland's nutrient solution with 9 treatments of KH2PO4 ranging from 0 to 4.0 mmoles per liter. Deficiency symptoms ranged from very severe to none at harvest after 27 days of growth. Growth of the potato plants increased with increased P supply and was associated with an increased P content of the plant tissues. The critical H2PO4‐P concentration at a 10% reduction of top growth, based on a second leaf analysis, was about 1,000 ppm for the petiole and terminal bladelet and about 1,200 ppm for the lateral bladelet, dry weight basis.

Phosphorus nutrition had only a slight effect on the K, Na, Mg and NO3‐N concentrations of the root tissues but Ca increased as phosphate increased which suggests a calcium phosphate precipitation. Phosphorus stress lowered the K, Na, Ca, Mg and NO3‐N concentrations of the petiole tissues of the recently matured leaf which suggests that P increases salt accumulation. Phosphorus nutrition had only a slight effect on the concentrations of K, Na, Mg and Ca of the blade tissues of the recently matured leaf but NO3‐N increased greatly with P supply.  相似文献   

8.
Abstract

One proposed mechanism of aluminum (Al)‐tolerance involves the ability of plants to maintain uptake of essential mineral elements in the presence of Al. To examine this hypothesis, taro [Colocasia esculenta (L.) Schott] cultivars (cv.) Lehua maoli and Bun long were grown in hydroponic solution at six initial Al levels (0, 110, 220, 440, 890, and 1330 μM Al), and plant mineral concentrations were determined after 27 days. Increasing Al levels significantly increased Al concentrations in taro leaf blades, petioles, and roots. This increase in Al concentrations in the leaf blades as solution Al levels increased was greater for Al‐sensitive cv. Bun long compared to cv. Lehua maoli, resulting in significant interaction between Al and cultivar effects. However, no significant cultivar differences were found for Al concentrations in the petioles or roots. Increasing Al levels in solution significantly depressed concentrations of calcium (Ca), magnesium (Mg), manganese (Mn), and iron (Fe) in taro leaf blades, and significantly depressed concentrations of Ca, Mg, copper (Cu), and zinc (Zn) in taro roots. Aluminum‐induced Ca deficiency appeared to be one possible mechanism of Al phototoxicity in taro, becvasue Ca concentrations in the leaf blades and roots at the higher Al levels were within the critical deficiency range reported for taro. Significant cultivar differences were found, in which Al‐tolerant cv. Lehua maoli had significantly greater Ca and Cu concentrations in the roots, and significantly greater potassium (K) concentrations in the leaf blades across all Al levels. Our results show that Al‐tolerance in taro cultivars is associated with the ability to maintain uptake of essential mineral nutrients, particularly Ca and K, in the presence of Al.  相似文献   

9.
Cabbage (B. oleracea L. var. capitata L.) plants wore grown for 79 days in cuture solutions obtaining 4 levels of lithium, 0, 0.1, 1. 10 mel) sodium (0, 0.2. 2, 20, or rubidium , 0, 0.05, 0.5) combined with a low or high supply of potassium(0.2 or 2 mcf/l, and the effects of the cations supplied on the growth and ration composition of the plants were studied.

The total dry weight of the plants decreased at higher levels of the cations, especially Li in the culture solution, concurrent with an increaie in the contents of each cation in the plants. The decrease in the dry weight at higher levels was smaller in the high K supply, than in the low supply, causing a decrease in the contents of the cations. The critical contents of Li, Na, and which resulted in a 50° decrease in the dry weight or inner leaves due to excess injury were estimated to be about 0.07, 2.5, and 3.0% on a dry basis in the outer leaves and 0.05, 2.0, and 3.0% in the roots, respectively, regardless of the K supply.  相似文献   

10.
甘薯在常温环境下放置极易出现失重、腐烂、发芽等问题,较难贮藏。为明确不同1-甲基环丙烯(1-MCP)熏蒸处理对甘薯贮藏保鲜及抗氧化能力的影响,并筛选出适宜甘薯常温贮藏的保鲜技术,本试验以烟薯25号为试验材料,研究不同熏蒸浓度(0.5、1.0、2.0、4.0、8.0 μL·L-1)、不同熏蒸时间(6、12、24、36、48 h)及其交互作用对甘薯贮藏保鲜效果的影响,并通过模糊评价方法对不同1-MCP处理组在不同贮藏时间(0、7、14、22、30、60、90、120 d)的动态时间点上进行综合评判与分析。结果表明,在相同熏蒸时间条件下,高浓度1-MCP处理显著抑制甘薯发芽率、发芽指数和丙二醛(MDA)含量上升,抗氧化酶活性随着1-MCP处理浓度的增加呈降低趋势。相同熏蒸浓度条件下,12 h熏蒸处理与其他处理组相比贮藏保鲜效果更好。双因素方差分析结果显示,熏蒸浓度、熏蒸时间及其交互作用对甘薯贮藏期不同理化指标的影响随贮藏时间的延长逐渐减小,其中熏蒸浓度对甘薯发芽率、发芽指数、失重率、MDA含量及过氧化氢酶(CAT)、坏血酸过氧化酶(APX)活性的影响较大,熏蒸时间对甘薯超氧化物歧化酶(SOD)活性影响更大,熏蒸浓度与熏蒸时间的交互作用主要影响甘薯的呼吸强度。模糊综合评价模型表明, 2 μL·L-1 1-MCP密闭熏蒸12 h最接近标准物元的最优状态,贮藏保鲜效果最好。本研究结果可为延长甘薯货架期与贮藏期提供技术参考。  相似文献   

11.
Abstract

Lucerne (Medicago sativa L.) and phalaris (Phalaris aquatica L.) were grown separately and together in a pot trial on a yellow‐brown pumice soil with three rates of sodium (Na) and two rates of potassium (K) in factorial combination. Lucerne alone had a low Na concentration but growing phalaris as a companion grass produced herbage with a Na concentration adequate for stock. Na application increased the Na concentration in phalaris and the mixture of phalaris and lucerne much more than in lucerne alone; had little effect on K concentration; slightly reduced Mg concentration; and greatly reduced Ca concentration but not as much in lucerne as in phalaris or the mixture with lucerne. K application increased K concentration and reduced Na, Ca and Mg concentrations throughout. Yield of phalaris grown alone and in combination with lucerne was increased significantly by Na application when K concentration in the plants was low. Yield of lucerne was not affected by Na application and it is concluded that Na did not substitute for K in this species. It is concluded that field trials are warranted to investigate the possibility of growing a special purpose mixture of lucerne and phalaris on New Zealand yellow‐brown pumice soils to provide feed that has adequate Na for grazing animals.  相似文献   

12.
甘薯淀粉产量及相关性状的遗传多样性和关联度分析   总被引:1,自引:0,他引:1  
甘薯[Ipomoea batatas(L.)Lam.]是加工淀粉和燃料乙醇的重要原料,是目前我国最具开发前景的非粮食类新型能源作物。选育高淀粉产量的能源型甘薯新品种是甘薯育种的重要目标。为了获得准确筛选高淀粉产量育种材料的性状指标,提高甘薯高淀粉产量育种效率,缩短育种周期,本研究利用不同甘薯品种(系)的自然变异,根据淀粉产量、不同生长发育阶段的5个主要农艺性状和3个淀粉合成关键酶活性测定结果,利用相似系数和遗传距离矩阵,以类平均法对国内48份不同淀粉产量甘薯种质资源进行了遗传多样性分析,通过关联度分析研究了淀粉产量与不同时期农艺性状、淀粉合成关键酶活性的相关性。结果表明:48份甘薯种质资源材料在不同时期农艺特征差异较大;不同时期农艺性状的聚类结果中,栽后100 d的农艺性状与淀粉产量关联度最大,淀粉产量与该时期的基部分枝数呈极显著负相关(r=0.428),与干率呈极显著正相关(r=0.423),而与最长蔓长、单株结薯数和单株鲜薯重相关性不显著。48份甘薯种质材料在不同时期的酶活聚类结果差异明显。不同时期的甘薯淀粉合成关键酶活性聚类结果中,栽后50 d酶活聚类与淀粉产量聚类结果关联度最大,淀粉产量与该时期测得的ADPG焦磷酸化酶(ADPG-PPase)活性呈负相关关系(r=0.163),与蔗糖合成酶(SS)活性(r=0.101)、蔗糖磷酸合成酶(SPS)活性(r=0.016)呈正相关,但相关性均未达到显著水平。加之淀粉合成关键酶活性测定步骤繁琐,不适宜作为甘薯高淀粉产量育种早期选择的生理指标。在高淀粉产量育种材料筛选时可于栽后100 d对农艺性状进行综合考察,重点考虑干率较高及分枝数较少的品系。本研究可为甘薯高淀粉产量育种提供一定的理论依据。  相似文献   

13.
我国沿海滩涂种植能源作物甘薯有广阔的前景。为确定苏北滩涂区甘薯适宜施氮量,比较了6个施氮水平下甘薯的成活率(SR)、商品率(CR)、蔓薯比(V/T)、干物质积累(DMA)、氮素累积值(NAV)、氮利用效率(NUE)、氮收获指数(NHI)及钾钠吸收的差异。结果表明:(1)施氮量与甘薯地上部分DMA和NAV均呈极显著正相关(P<0.01,余同),对地下部分NAV影响较小(P>0.05)。(2)与不施氮比较,施氮60 kg(N)·hm-2对甘薯的V/T、SR、NUE和NHI均无显著影响。(3)甘薯的CR、地下部分和块根DMA以及理论产量(NAV×NUE×NHI)均以施氮60 kg(N)·hm-2显著高于其他处理。施氮量超过60 kg(N)·hm-2,施氮量与甘薯的V/T值呈极显著正相关,与SR、CR、NUE、NHI、地下部分和块根DMA均呈极显著负相关。(4)甘薯对钾钠的吸收量均随施氮量的增加而增加,二者呈极显著正相关。甘薯地上部分钾钠含量均在施氮量为60 kg(N)·hm-2时达到最高值。施氮量对钾钠含量比没有影响。因此,苏北滩涂区甘薯适宜施氮量为60 kg(N)·hm-2。  相似文献   

14.
Genetic Resources and Crop Evolution - Taro [Colocasia esculenta (L.) Schott] is an old crop with high genetic diversity. However, the breeding of taro is limited by the lack of well-developed...  相似文献   

15.
《Soil Use and Management》2018,34(1):147-153
As in many areas of the developing world, intensification of agriculture in Tonga, and other Pacific Islands, has put increased pressure on the soil resource. Two experiments were conducted to evaluate the effect of mulch on the growth and yield of two important food and fibre crops. The first was conducted on sloping land to evaluate the effect of guinea grass (Megathyrsus maximus ) mulch and hedgerows on taro [Colocasia esculenta (L.) Schott] yield, and in controlling soil erosion. The second compared the response of paper mulberry [Broussonetia papyrifera (L) Ventenot] to different management regimes of a grass fallow. Thick vegetative mulch increased taro corm yield by 81% and reduced soil loss by 50% compared to local farmer practice, and the soil loss from taro with mulch was comparable to the perennial cash hedgerow treatment. Mulch increased paper mulberry bark yield by 30% compared to the non‐mulch control. Comparative economic analysis showed that increased net profit in the mulched treatments compared to the non‐mulched control was T$2660/ha for taro and T$12 108/ha for paper mulberry. Considering that mulch is readily available to many farmers throughout the Pacific Islands and elsewhere in the tropics, it is recommended as a sustainable practice for crop production.  相似文献   

16.
芋对氮磷钾吸收分配规律的研究   总被引:14,自引:5,他引:14  
芋幼苗期对氮磷钾的吸收较少,发棵期和球茎膨大期吸收速率迅速增加,球茎膨大后期吸收积累速率又有所下降。总的来说,芋植株对钾的吸收最多,氮次之,磷最少,全生育期对氮磷钾的总吸收比例为1∶0.28∶1.1。幼苗期和发棵前期氮磷钾主要分布在叶片和叶柄中;其中,氮以叶片中居多,而磷和钾则以叶柄中居多。发棵后期和球茎膨大期主要分配在芋球茎中,其中氮磷的分配率为子芋大于孙芋,而钾则是孙芋中分配多于子芋。  相似文献   

17.
Abstract

Aluminum (Al) toxicity is one of the major factors limiting plant growth in acid soils. To determine the response of taro [Colocasia esculenta (L.) Schott] to Al‐toxicity, cultivars (cv.) Lehua maoli and Bun long were grown in hydroponic solution at six initial levels of Al (0, 110, 220, 440, 890, and 1330 uM Al). Increasing Al levels significantly depressed fresh and dry weights of taro leaf blades, petioles, and roots, as well as leaf areas and root lengths. No significant cultivar differences were found for plant dry weights. However, significant cultivar differences were found for expansion growth parameters, with cv. Lehua maoli exhibiting greater leaf fresh weights and root lengths in the presence of Al, compared to cv. Bun long. Apparently, differential response of taro cultivars to Al is related to the ability of the Al‐tolerant cultivar to maintain water uptake and cell expansion in the presence of Al. The initial solution Al level that resulted in the greatest separation of growth differences between taro cultivars in their response to Al was 890 μM Al.  相似文献   

18.
Many workers have revealed the possible role of glycolic acid oxidase in the photosynthesis and the respiration of plant leaves (1, 5) and in the organic acid metabolism of rice plant roots (6). There is also abundant evidence that α-hydroxysulfonates, the bisulfite addition compounds of aldehydes and ketones, are the specific and competitive inhibitors of the enzyme (7, 8). The pevious works (9, 10) showed that a deficient application of potassium increased the content of amino-N and reducing sugars and concomitantly the respiratory activity in sweet potato roots. Such a derangement in the metabolic status of plant roots would be expected to be intimately connected with any changes in the photosynthesis and the respiration of the leaves. This paper, as a preliminary, describes some results from investigations into the glycolic acid oxidase activity in leaves of rice plant- and barley seedlings, sweet potato plants, and taro plants which were grown in solution culture at varying potassium application : the effects of light and plant age on enzyme activity, the activation of the enzyme by FMN addition, the stability of the enzyme during a prolonged incubation of sap from leaves, and the inhibitory effects of specific inhibitors on the enzyme in vitro and in vivo.  相似文献   

19.
There is a scarcity of basic information on dry matter accumulation by various plant organs, nutrient uptake, and yield of taro [Colocasia esculenta (L.) Schott] grown under upland conditions. These data are essential for the development of technological packages, growth simulation models, and decision support systems designed to promote agrotechnology transfer of the crop in the tropics. Two taro cultivars were planted and harvested for biomass about every six weeks during the growing season. At each harvest, plants were separated into various plant parts and their dry matter and nutrient content were determined. There were no significant differences (P<0.05) in total and edible dry matter content between cultivars. However, cultivar ‘Lila’ absorbed significantly smaller amounts of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and zinc (Zn) than cultivar ‘Blanca’, suggesting that it had a higher nutrient‐use efficiency. Fresh corm yields were not significantly different and averaged 20,221 kg/ha for both cultivars.  相似文献   

20.
钙对NaCl胁迫下马铃薯脱毒苗离子吸收、分布的影响   总被引:3,自引:1,他引:2  
【目的】马铃薯是对盐分较敏感的农作物,土壤盐渍化会严重影响马铃薯的生长发育及其产量和品质。有关钙对Na Cl胁迫下马铃薯离子吸收、分布的研究较少。本文通过研究不同浓度Ca Cl2对Na Cl胁迫下马铃薯脱毒苗离子吸收、分布和运输的影响,探讨钙对Na Cl胁迫下马铃薯的调控机制,为盐渍土上马铃薯的生产提供理论依据与技术支持。【方法】以‘克新一号’马铃薯品种为试验材料,采用组织培养方法,将0、5、10、15和20 mmol/L Ca Cl2与0、25、50和75 mmol/L Na Cl分别添加到MS+2mg/L B9+3%蔗糖+0.9%琼脂培养基中,制成不同处理组合的培养基。将继代培养的脱毒苗按单节茎段剪切接种到培养基中进行培养。接种30天时调查脱毒苗生物量和Na+、Cl-、K+、Ca2+、Mg2+、P积累量,并分析Na+/K+、Na+/Ca2+、Na+/Mg2+比值及根系与茎叶的SK、Na、SMg、Na和SCa、Na值,探讨离子吸收、运输及分布情况。【结果】Na Cl胁迫抑制马铃薯脱毒苗的生长,随Na Cl胁迫浓度的增加,马铃薯脱毒苗鲜重、干重显著下降,各器官Na+和Cl-含量极显著增加,K+含量显著下降,Ca2+和Mg2+含量减少,茎、叶中P含量降低而根中P含量增加。Na+/K+、Na+/Ca2+、Na+/Mg2+比值随Na Cl胁迫浓度的增加而升高。随Na Cl胁迫浓度的增加,马铃薯脱毒苗根系与茎叶的SK、Na和SMg、Na值逐渐降低,SCa、Na值呈先升高后降低趋势。0、25和50 mmol/L Na Cl胁迫浓度下,以10 mmol/L Ca Cl2处理的马铃薯脱毒苗根、茎叶鲜重和干重最高,75 mmol/L Na Cl胁迫下以15 mmol/L Ca Cl2处理的马铃薯脱毒苗生物量最高。各Na Cl胁迫浓度下,添加Ca Cl2后,马铃薯脱毒苗各器官Na+含量明显降低,Cl-含量显著增加,K+、Ca2+、Mg2+含量升高,P含量先降低后升高。0、25、50和75 mmol/L Na Cl胁迫浓度下,添加适量Ca Cl2可明显降低马铃薯脱毒苗各器官Na+/K+、Na+/Ca2+、Na+/Mg2+比值,提高SK、Na、SMg、Na和SCa、Na值,增强K+、Ca2+、Mg2+向地上部的选择运输能力,抑制Na+向地上部的选择运输能力,维持细胞内离子平衡,缓解盐胁迫造成的营养亏缺。【结论】Na Cl胁迫下添加外源钙,能够有效改善马铃薯脱毒苗体内的离子平衡,促进营养吸收,Na+向叶片选择运输能力降低,K+、Ca2+、Mg2+向地上部的选择运输能力增强,离子在各器官水平上的区域化分布发生改变是钙缓解盐胁迫的重要生理机制之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号