首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
To study yield and yield traits of maize, two experiments were conducted in 2006 as spring and summer crops and repeated in 2007. Three plant populations (43, 53, and 67 thousands ha-1) and three nitrogen (N) rates (90, 120 and 150 kg N ha-1) were compared in a completely randomized block design with split plot arrangement. The treatments plant population was assigned to the main and N to sub plots in three replications. Sowing of spring crop was done in March and harvested in July and likewise the summer crop in July and harvested in November. Each experimental unit comprised of 5 × 6 m area having eight rows spaced 0.75 m. Experimental results revealed that grain yield (GY) of summer was higher than spring season. Higher GY was associated with increases in the plant population and nitrogen rate. The treatment plant population of 53,000 and 67,000 ha-1 did not differ. However, each increase in the N rate significantly increased GY. This increase in the GY by increasing N was due to increases in the ear length (EL), ear diameter (ED), grain number (GN) and thousand grain weight (TGW). Increasing plant population of maize did not show any remarkable changes in the yield traits. The study revealed that differences in GY due to seasonal climate cannot be rewarded with increase in either plant population or nitrogen rates. Moreover, spring and summer season maize crops can economically be planted with 150 and 120 kg N ha?1 at 53,000 and 67,000 ha?1 populations, respectively, to save environment and production cost.  相似文献   

2.
Abstract

As part of a project to stimulate Norwegian seed production of common bent (syn. browntop, US: colonial bentgrass, Agrostis capillaris L. syn. A.tenuis Sibth.) field trials comparing sowing rates of 2.5, 5.0, 7.5 or 10 kg ha?1 were conducted at Landvik, south-east Norway, (58°N) from 1989 to 1994. Three trials were laid out of the forage cultivar ‘Leikvin’ and three trials of the lawn cultivar ‘Nor’, each trial being harvested for three consecutive years. While the average per cent ground cover in spring increased from 87% at 2.5 kg ha?1 to 94–96% at 7.5 kg ha?1, seed yields decreased with increasing sowing rate in both cultivars. On average for all harvests, quadrupling the sowing rate from 2.5 to 10 kg ha?1 reduced seed yield by 9% in ‘Leikvin’ and 15% in ‘Nor’, the stronger effect probably being associated with a greater competition between tillers in the lawn cultivar. Seed yield reductions with increasing sowing rate showed no relationship with crop age, but were less accentuated for crops undersown in spring wheat in a dry year than for crops established without cover crop in years with ample rainfall in early summer. Increasing sowing rates reduced plant height and panicle number in ‘Nor’, but had no effect on seed weight or germination in any of the cultivars. It is concluded that seed crops of common bent should be established with a sowing rate of 2–5 kg ha?1, with the lowest rate in lawn cultivars, under ideal seedbed conditions and when seed crops are sown without cover crop.  相似文献   

3.
Abstract

A field experiment was conducted in 2004–2006 to investigate the effect of green manure treatments on the yield of oats and spring barley. In the experiment, different green manure crops with undersowing and pure sowing were compared for amounts of N, C, and organic matter driven into soil and their effect on cereal yield. The spring barley field had a total of 41.7–62.4 kg N ha?1 and 1.75–2.81 Mg C ha?1 added to the soil with straw, weed, and roots, depending on the level of fertilisation; with red clover, and both common and hybrid lucerne undersowing, with barley straw and roots, the values were 3.45–3.96 Mg C ha?1 and 139.9–184.9 kg N ha?1. Pure sowings of these three leguminous green manure crops had total applications of 3.37–4.14 Mg C ha?1 and 219.7–236.8 kg N ha?1. The mixed and pure sowing of bird's-foot trefoil provided considerably less nitrogen and carbon to the soil with the biomass than with the other leguminous crops. Application of biomass with a high C/N ratio reduced the yield of the succeeding spring cereals. Of the green manures, the most effective were red clover and both common and hybrid lucerne, either as undersowing or as pure sowing. Undersowings with barley significantly increased the N supply for the succeeding crop without yield loss of the main crop compared with the unfertilised variant. Compared with ploughing-in of green manure in autumn, spring ploughing gave a 0.2–0.57 Mg ha?1 larger grain yield.  相似文献   

4.
《Journal of plant nutrition》2013,36(7):1183-1197
Abstract

Nitrogen (N) fertilization continues to be of primary importance in the economically successful production of cotton (Gossypium hirsutum L.). Profit margins of producers might be expanded by increasing the uptake efficiency of applied N. Recently, N fertilization of crops grown in the Mississippi River Delta has been suspected to impact water quality in the Gulf of Mexico. Improving efficiency of N uptake could alleviate some environmental concerns by increasing the retention of N at the site of application. The objective of this study was to determine the impact of replacing preplant N applications with postemergent N applications on the growth and yield characteristics of cotton. Delayed applications of the recommended rate of N fertilizer (112 kg N ha?1) were tested for four years under irrigated and dry land production conditions. The N rate was applied either preplant, after crop emergence, or at first square. Further, 112 kg N ha?1 was split applied evenly at preplant + first square, and after emergence + first square. The five 112 kg ha?1 N treatments were compared to an unfertilized control. Yield tended to be maximized with N treatments that included a first square application. Yields were usually lowest in the unfertilized control and the 112 kg N ha?1 preplant treatments. Not surprisingly, both yield and plant growth was influenced more by irrigation than N fertilization. Years when drought conditions caused water stress and limited plant growth, dry land cotton had only limited response to the N fertilization treatments. Irrigated cotton responded to N treatments all years with increased growth and yield. Optimizing agronomic considerations, the best N fertilization timing was an after emergence + first square split application.

  相似文献   

5.
Field observations have shown that a substantial portion of peanut leaves abscise in windrows during pod curing, leading to an uneven distribution of leaves and stems when intact residues are spread during harvest. Possible differences in nitrogen (N) mineralization rates between peanut leaf and stem residues may lead to spatial and temporal variability in available N during subsequent crops. The objective of this study was to quantify N mineralization in soil amended with different peanut residue components under simulated conventional and conservation tillage practices. A 252-day microlysimeter incubation was conducted in which peanut leaves, stems and a 1:1 mixture of leaves:stems from three varieties were incorporated or placed on the soil surface to simulate conventional or conservation tillage, respectively. Soils were periodically leached to assess N mineralization compared with a soil-only control. Nitrogen mineralization was only affected by residue component. Averaged over variety and residue placement, soil amended with leaves mineralized 10% more N relative to the control or soil containing stems. It was estimated that leaves supplied 25 kg N ha−1 over 252 days at 0–15 cm soil depth, which would likely be insufficient to induce a yield response by a subsequent crop. This study suggests that uneven distribution of peanut leaf and stem residues following harvest causes only minor spatial and temporal variability in available N during subsequent crop growth. These results support the growing body of evidence indicating that peanut residue N contributions to subsequent crops are negligible in the peanut basin of the south-eastern USA.  相似文献   

6.
Soil fertility is declining in most agro‐ecosystems in sub‐Saharan Africa, and incorporation of forage legumes into production systems to utilize the nitrogen fixed by the legumes could alleviate the problem, if efficient nitrogen‐fixing legumes are used. The amounts of nitrogen fixed by Lablab, Medicago, Trifolium, and Vicia species and their contribution to the following wheat crop were estimated in field experiments on an Alfisol at Debre Zeit in the Ethiopian highlands. The amounts of nitrogen (N) fixed ranged from 40 kg N ha‐1 for T. steudneri to 215 kg N ha‐1 for L. purpureus. The increase in grain yields of wheat following the legumes ranged from 16% for T. steudneri to 71% for M. tranculata where no N fertilizer was applied to the wheat. Additional N fertilizer applied to wheat at 60 kg N ha‐1 had no significant effects on wheat grain or straw DM andN yields. In another experiment, eight lablab treatments consisting of factorial combinations of two cultivars (Rongai and Highworth), two Rhizobium inoculation treatments (inoculated and uninoculated) and two times of harvest (for hay at 50% flowering and for seed at seed maturity), were compared on lablab forage production and N yield, and residual effects on two succeeding wheat crops. Inoculation had no significant effects on nodulation, shoot DM or N yields. Rongai had significantly higher shoot DM and N yields than Highworth. Lablab harvested at flowering had significantly higher shoot DM and N yields than lablab harvested at seed maturity. Grain yields of the first wheat crop following the various lablab crops were 93–125% higher than grain yields of the wheat following wheat (continuous wheat) where no N fertilizer was applied. Therefore, lablab is a potential forage crop for incorporation into cereal production systems to improve feed quality and to reduce dependence on N fertilizers for cereal production.  相似文献   

7.
A five-year cotton–wheat rotation field experiment was conducted on two alkaline-calcareous soils, i.e., Awagat (coarse loamy) and Shahpur (fine silty), to investigate the impact of integrated nutrient and crop residue management on soil and crop productivity. Apparent nitrogen (N) balances were developed. Minimum five-year mean yield (Mg ha?1), obtained with Farmers’ Fertilizer Use (FFU) treatment was: cotton – Awagat, 2.19; Shahpur, 2.45; wheat – Awagat, 3.03; Shahpur, 3.94. With Balance Nutrient Management (BNM), yields increased (P ≤ 0.05) for cotton, 24% in Awagat and 18% in Shahpur soil; and wheat, 37% in Awagat and 24% in Shahpur soil. Maximum crop yields were obtained with Integrated Nutrient Management (INM), i.e., 3–5% higher than with BNM. Crop residue recycling increased the yields further, cotton by 2?7% and wheat by 2–10%. All nutrient management treatments, except for FFU without crop residue recycling, resulted in positive apparent N balances. INM improved SOM and NO3-N, contents.  相似文献   

8.
Understanding cover crop influences on N availability is important for developing N management strategies in conservation tillage systems. Two cover crops, cereal rye (Secale cereale L.) and crimson clover (Trifolium incarnatum L.), were evaluated for effects on N availability to cotton (Gossypium hirsutum L.) in a Typic Kanhapludult soil at Watkinsville, Ga. Seed cotton yields following clover and rye were 882 kg ha–1 and 1,205 kg ha–1, respectively, in 1997 and were 1,561 kg ha–1 and 2,352 kg ha–1, respectively, in 1998. In 1997, cotton biomass, leaf area index, and N were greater on some dates following crimson clover than following rye but not in 1998. During 1997, net soil N mineralized increased with time in both systems, but a similar response was not observed in 1998. Net soil N mineralization rates following crimson clover and rye averaged, respectively, 0.58 kg and 0.34 kg N ha–1 day–1 in 1997 and 0.58 kg and 0.23 kg N ha–1 day–1 in 1998. Total soil N mineralized during the cotton growing season ranged from 60 kg ha–1 to 80 kg ha–1 following crimson clover and from 30 kg ha–1 to 50 kg ha–1 following rye. Soil N mineralization correlated positively with heat units and cumulative heat units. Net soil N mineralization rates were 0.023 kg ha–1 heat unit–1 once net mineralization began. Soil heat units appeared to be a useful tool for evaluating N mineralization potential. Nearly 40% of the rye and 60% of the clover biomass decomposed during the 6 weeks prior to cotton planting, with nearly 35 kg N ha–1 mineralized from clover.  相似文献   

9.
ABSTRACT

The incorporation of previous crop residues in agricultural management benefits soil fertility, crop production, and environment. However, there is no enough information about maximum residue application level without negative effect over next crop yield. To evaluate maize (Zea mays L.) yield under short-time conservation management with incorporation and/or importation of different residue levels, a biannual rotation experiment was conducted in ash volcanic soil in south-central Chile. The experiment consisted of two previous crops, canola (Brassica napus L.) and bean (Phaseolus vulgaris L.), and four levels of residue incorporation (0%, 50%, 100%, and 200% of generated residue; from 0 to 21.4?Mg?ha?1 for canola and from 0 to 19.0?Mg?ha?1 for bean). Previous crop species and residue level affected some nutrients concentrations in grain and plant and some soil chemical properties, without effect in maize yield, which averaged 16.6?Mg?ha?1. Bean residue increased Ca and reduced S in maize plant, increasing soil P, Ca, Mg and K (P?<?0.05). Maize grain Ca content was positively and proportionally affected by canola residue level and negatively and proportionally affected by bean residue level. All canola residue levels increased soil pH and Mg, but the highest level reduced soil S; soil P concentration increased proportionally with bean residue level. The highest bean residue level increased soil S. Different crop and levels of residue did not affect maize yield but did some plant nutrient concentration, and also affected some soil chemical properties.  相似文献   

10.
Long-term effects of the different combinations of nutrient-management treatments were studied on crop yields of sorghum + cowpea in rotation with cotton + black gram. The effects of rainfall, soil temperature, and evaporation on the status of soil fertility and productivity of crops were also modeled and evaluated using a multivariate regression technique. The study was conducted on a permanent experimental site of rain-fed semi-arid Vertisol at the All-India Coordinated Research Project on Dryland Agriculture, Kovilpatti Centre, India, during 1995 to 2007 using 13 combinations of nutrient-management treatments. Application of 20 kg nitrogen (N) (urea) + 20 kg N [farmyard manure (FYM)] + 20 kg phosphorus (P) ha?1 gave the greatest mean grain yield (2146 kg ha?1) of sorghum and the fourth greatest mean yield (76 kg ha?1) of cowpea under sorghum + cowpea system. The same treatment maintained the greatest mean yield of cotton (546 kg ha?1) and black gram (236 kg ha?1) under a cotton + cowpea system. When soil fertility was monitored, this treatment maintained the greatest mean soil organic carbon (4.4 g kg?1), available soil P (10.9 kg ha?1), and available soil potassium (K) (411 kg ha?1), and the second greatest level of mean available soil N (135 kg ha?1) after the 13-year study. The treatments differed significantly from each other in influencing soil organic carbon (C); available soil N, P, and K; and yield of crops attained under sorghum + cowpea and cotton + black gram rotations. Soil temperature at different soil depths at 07:20 h and rainfall had a significant influence on the status of soil organic C. Based on the prediction models developed between long-term yield and soil fertility variables, 20 kg N (urea) + 20 kg N (FYM) + 20 kg P ha?1 could be prescribed for sorghum + cowpea, and 20 kg N (urea) + 20 kg N (FYM) could be prescribed for cotton + black gram. These combinations of treatments would provide a sustainable yield in the range of 1681 to 2146 kg ha?1 of sorghum, 74 to 76 kg ha?1 of cowpea, 486 to 546 kg ha?1 of cotton, and 180 to 236 kg ha?1 of black gram over the years. Beside assuring greater yields, these soil and nutrient management options would also help in maintaining maximum soil organic C of 3.8 to 4.4 g kg?1 soil, available N of 126 to 135 kg ha?1, available soil P of 8.9 to 10.9 kg ha?1, and available soil K of 392 to 411 kg ha?1 over the years. These prediction models for crop yields and fertility status can help us to understand the quantitative relationships between crop yields and nutrients status in soil. Because black gram is unsustainable, as an alternative, sorghum + cowpea could be rotated with cotton for attaining maximum productivity, assuring sustainability, and maintaining soil fertility on rain-fed semi-arid Vertisol soils.  相似文献   

11.
Abstract

Understanding seasonal soil nitrogen (N) availability patterns is necessary to assess corn (Zea mays L.) N needs following winter cover cropping. Therefore, a field study was initiated to track N availability for corn in conventional and no‐till systems and to determine the accuracy of several methods for assessing and predicting N availability for corn grown in cover crop systems. The experimental design was a systematic split‐split plot with fallow, hairy vetch (Vicia villosa Roth), rye (Secale cereale L.), wheat (Triticum aestivum L.), rye+hairy vetch, and wheat+hairy vetch established as main plots and managed for conventional till and no‐till corn (split plots) to provide a range of soil N availability. The split‐split plot treatment was sidedressed with fertilizer N to give five N rates ranging from 0–300 kg N ha‐1 in 75 kg N ha‐1 increments. Soil and corn were sampled throughout the growing season in the 0 kg N ha‐1 check plots and corn grain yields were determined in all plots. Plant‐available N was greater following cover crops that contained hairy vetch, but tillage had no consistent affect on N availability. Corn grain yields were higher following hairy vetch with or without supplemental fertilizer N and averaged 11.6 Mg ha‐1 and 9.9 Mg ha‐1 following cover crops with and without hairy vetch, respectively. All cover crop by tillage treatment combinations responded to fertilizer N rate both years, but the presence of hairy vetch seldom reduced predicted fertilizer N need. Instead, hairy vetch in monoculture or biculture seemed to add to corn yield potential by an average of about 1.7 Mg ha‐1 (averaged over fertilizer N rates). Cover crop N contributions to corn varied considerably, likely due to cover crop N content and C:N ratio, residue management, climate, soil type, and the method used to assess and assign an N credit. The pre‐sidedress soil nitrate test (PSNT) accurately predicted fertilizer N responsive and N nonresponsive cover crop‐corn systems, but inorganic soil N concentrations within the PSNT critical inorganic soil N concentration range were not detected in this study.  相似文献   

12.
The aim of this experiment was to investigate the growth and residual‐nitrogen (‐N) effects of different catch‐crop species on a low–N fertility coarse sandy soil. Six legumes (white clover [Trifolium repens L.], red clover [Trifolium pratense L.], Persian clover [Trifolium resupinatum L.], black medic [Medicago lupulina L.], kidney vetch [Anthyllis vulneraria L.], and lupin [Lupinus angustifolius L.]), four nonlegumes (ryegrass [Lolium perenne L.], chicory [Cichorium intybus L.], fodder radish [Raphanus sativus L.], and sorrel [Rumex Acetósa L.]), and one mixture (rye/hairy vetch [Secale cereale L./Vicia villosa L.]) were tested in a field experiment with three replicates in a randomized block design. Four reference treatments without catch crops and with N application (0, 40, 80, and 120 kg N ha–1) to a succeeding spring barley were included in the design. Due to their ability to fix N2, the legume catch crops had a significantly larger aboveground dry‐matter production and N content in the autumn than the nonlegumes. The autumn N uptake of the nonlegumes was 10–13 kg N ha–1 in shoots and approx. 9 kg ha–1 in the roots. The shoot N content of white clover, black medic, red clover, Persian clover, and kidney vetch was 55–67 kg ha–1, and the root N content in white clover and kidney vetch was approx. 25 kg ha–1. The legume catch crops, especially white and red clover, seemed to be valuable N sources for grain production on this soil type and their N fertilizer–replacement values in a following unfertilized spring barley corresponded to 120 and 103 kg N ha–1, respectively. The N fertilizer–replacement values exceeded the N content of shoots and roots.  相似文献   

13.
Abstract. Three successive crops of winter wheat were grown on a sandy loam to test the residual effect of long‐term annual incorporation of spring barley straw at rates of 0, 4, 8 and 12 t ha?1, and ryegrass catch crops with or without additions of pig slurry. Soil receiving 4, 8 and 12 t ha?1 of straw annually for 18 years contained 12, 21 and 30% more carbon (C), respectively, than soil with straw removal, and soil C and nitrogen (N) contents increased linearly with straw rate. The soil retained 14% of the straw C and 37% of the straw N. Ryegrass catch‐cropping for 10 years also increased soil C and N concentrations, whereas the effect of pig slurry was insignificant. Grain yield in the first wheat crop showed an average dry matter (DM) increase of 0.7 t ha?1 after treatment with 8 and 12 t straw ha?1. In the two subsequent wheat crops, grain yield increased by 0.2–0.3 t DM ha?1 after 8 and 12 t straw ha?1. No grain yield increases were found after 4 t straw ha?1 in any of the three years. Previous ryegrass catch crops increased yields of wheat grain, but effects in the third wheat crop were significant only where ryegrass had been combined with pig slurry. Straw incorporation increased the N offtake in the first wheat crop. In the second crop, only 8 and 12 t straw ha?1 improved wheat N offtake, while the N offtake in the third wheat crop was unaffected. Ryegrass catch crops increased N offtake in the first and second wheat crop. Again, a positive effect in the third crop was seen only when ryegrass was combined with slurry. Long‐term, annual incorporation of straw and ryegrass catch crops provided a clear and relatively persistent increase in soil organic matter levels, whereas the positive effects on the yield of subsequent wheat crops were modest and transient.  相似文献   

14.
Intercropping of cotton and legume plants offers long-term crop productivity while saving agricultural resources and improving soil health. However, the use of nitrogen (N) in cotton/legume intercropping systems requires further evaluation. In this study, three N fertilization rates (cotton/soybean: 160/20, 320/40 and 480/80 kg N ha−1) incorporating three root barrier systems (complete, semi and no root barrier between the crops) under cotton/soybean intercropping systems were conducted to assess interactions between N supply and N transfer, recovery and residue using the 15N isotope dilution method. The results show that cotton was a stronger competitor for N than soybean plants. The 320/40 kg N ha−1 treatment with no root barrier system inhibited the growth of soybean, while the growth, productivity and N uptake for cotton were maximized. The N fixation rate (%NDFA) in soybean and N transfer rate (%NTFS) from soybean to cotton decreased with the increasing N fertilizer application rate, whereas the intercropping system with no root barrier increased %NDFA and %NTFS. The higher N fertilization rate increased the N residue on the side of cotton, whereas the intercropping with no root barrier increased N utilization rate (%NUR) and reduced N residue rate (%NRR). The N transfer amount (NTA) was positively correlated with cotton yield, dry matter (DM) and N uptake, while NTA was negatively correlated with these indicators for soybean. Overall, cotton/soybean intercropping adapted to the 320/40 kg N ha−1 condition and intercropping with no root barrier system by balancing growth, changing N uptake and regulating N fixation transfer, mitigating the issue of N residue.  相似文献   

15.
It was hypothesized that the application of eucalyptus biochar enhances nutrient use efficiencies of simultaneously supplied fertilizer, as well as provides additional nutrients (i.e., Ca, P, and K), to support crop performance and residual effects on subsequent crops in a degraded sandy soil. To test this hypothesis, we conducted an on‐farm field experiment in the Khon Kaen province of Northeastern Thailand to assess the effects of different application rates of eucalyptus biochar in combination with mineral fertilizers to upland rice and a succeeding crop of sugarcane on a sandy soil. The field experiment consisted of three treatments: (1) no biochar; (2) 3.1 Mg ha?1 biochar (10.4 kg N ha?1, 3.1 kg P ha?1, 11.0 kg K ha?1, and 17.7 kg Ca ha?1); (3) 6.2 Mg ha?1 biochar (20.8 kg N ha?1, 6.2 kg P ha?1, 22.0 kg K ha?1, and 35.4 kg Ca ha?1). All treatments received the same recommended fertilizer rate (32 kg N ha?1, 14 kg P ha?1, and 16 kg K ha?1 for upland rice; 119 kg N ha?1, 21 kg P ha?1, and 39 kg K ha?1 for sugarcane). At crop harvests, yield and nutrient contents and nitrogen (N) use efficiency were determined, and soil chemical properties and pH0 monitored. The eucalyptus biochar material increased soil Ca availability (117 ± 28 and 116 ± 7 mg kg?1 with 3.1 and 6.2 Mg ha?1 biochar application, respectively) compared to 71 ± 13 mg kg?1 without biochar application, thus promoting Ca uptake and total plant biomass in upland rice. Moreover, the higher rate of eucalyptus biochar improved CEC, organic matter, available P, and exchangeable K at succeeding sugarcane harvest. Additionally, 6.2 Mg ha?1 biochar significantly increased sugarcane yield (41%) and N uptake (70%), thus enhancing N use efficiency (118%) by higher P (96%) and K (128%) uptake, although the sugar content was not increased. Hence, the application rate of 6.2 Mg ha?1 eucalyptus biochar could become a potential practice to enhance not only the nutrient status of crops and soils, but also crop productivity within an upland rice–sugarcane rotation system established on tropical low fertility sandy soils.  相似文献   

16.
Abstract

A cotton (Gossypium hirsutum)–peanut (Arachis hypogaea L.) rotation is widely practiced in the southern coastal plain following the reemergence of cotton as a major crop in the 1990s. Very few plant nutrition studies have been conducted in the coastal plain (CP) with modern cotton varieties and none with the cotton–peanut rotation. Experiments with varying rates of nitrogen (N), phosphorus (P), and potassium (K) were conducted to determine if the recommendations from soil tests provide adequate nutrition for maximizing profit when yield goals are Georgia state averages, due to other conditions. From 1996 through 1998, N, P, and K experiments were conducted in cotton crops, and P and K experiments were conducted in peanut crops on Tifton loamy sand. Initial Mehlich‐1 P was 2 to 3 mg/kg (“low”) and Mehlich‐1 K was 50 to 64 mg/kg (“medium” for cotton and “high” for peanut). Each crop was grown each year. State average yields of cotton and peanuts were produced. There was no response in cotton yield to N rates from 34 to 136 kg N/ha. Lack of response may have been due to the fact that the field had not been in production for several years prior to 1996 and there was ample soil mineral N. In 1997 and 1998, residual N provided by N fixation by the previous peanut crop appeared to be sufficient. Maximum profit from P fertilization in cotton was attained at 50 kg P/ha, the recommendation from the soil test. However, a University of Georgia Cooperative Extension Service recommendation to double the P rate for new land with a “low” Mehlich‐1 P soil test was not validated. Cotton yield did not respond to K fertilization even though an application of 55 kg K/ha/year was recommended from the soil test. Peanut yield and grade did not respond to either P or K fertilization. The recommendation from the soil test was 40 kg P/ha/year and no K. Estimates of P removal were 11 kg/ha for cotton and 8 mg/ha for peanut crops. Estimates of K removal were 25 kg/ha for cotton and 22 kg/ha for peanut crops. Over 3 years, soil P was not depleted, but soil K was depleted. Approximately 12 kg P/ha were required to raise soil test P 1 mg/kg and 18 kg K/ha were required to raise soil test K 1 mg/kg (49 lb. P2O5 to increase the P test 1 lb./acre, 38 lb. K2O to raise the K test 1 lb./acre). Additional studies are needed, but the current studies suggest that revisions in recommendations are needed for both cotton and peanut crops.  相似文献   

17.
ABSTRACT

Experiments were carried out with the objectives to reduce the yield gap of plant and subsequent ratoon crops, evaluate juice quality, as well as soil properties. A 3-year field experiment was utilized to assess the use of organic materials and inorganic fertilizers on plant and subsequent ratoon crops. The organic materials included press mud, farmyard manure (FYM), and green manure (GM) of Sunhemp (Crotalaria juncea); the fertilizers were urea, triple superphosphate (TSP), muriate of potash (MOP), gypsum, and zinc sulphate. Farm yard manure was applied at a rate of 15 t ha?1 accompanied with a chemical fertilizer (N178P53K54S26Zn2.6kg ha?1), which produced yield of 108.4, 96.8, and 73.5 t ha?1 in plant cane, first, and second ratoon crops, respectively. Cane yields in the first were recorded in plant cane first and second ratoon crops, respectively. Cane yields in the first and second ratoon crops were 89.3 and 67.8% of plant crop, respectively. Juice quality parameters viz., Brix, pol and purity percent progressively increased in ratoons crops as compared to corresponding plant cane. The organic carbon, total N, and available P, K, &; S contents of soils increased slightly due to incorporation of organic materials. The result of the study revealed that 25% reduction of inorganic fertilizer with FYM or press mud at 15 t ha?1 in plant cane and addition of 50% more N with same amount of fertilizer suggested for plant cane showed better yield and improved juice quality in first and second ratoon crops of sugarcane.  相似文献   

18.
We investigated conservation and cycling of N under oat–oat and lupine–oat rotations in disturbed and undisturbed soil, when roots or roots plus aboveground residues were retained. Crop residues were labelled with 15N in Year 1, and differential soil disturbance was imposed after harvest. In Year 2, plant growth, N transfer from residue into the various sinks of the second crop (plant, soil, and residual residues), and changes in microbial activity and numbers were determined. Oat biomass was greater after lupine than after oat due to differences in supply of N from these residues. Buried residues of both crops appeared to decompose faster than when left on the soil surface. Lupine residues decomposed faster than oat residues. Oat biomass was not affected by soil disturbance if grown after lupine but decreased when oat straw was buried in the soil. More residue N was recovered from soil than from the crop. Most 15N was recovered from disturbed soil, which also had greater dehydrogenase activity and more culturable fungi. At the end of the oat–oat rotation, 20 and 5 kg N ha−1 were derived from the roots of the first crop in undisturbed or disturbed soil, respectively. Equivalent values for the lupine–oat rotation were 18 and 44 kg N ha−1. Returning aboveground residues provided an extra 52–80 kg N ha−1 for oat and 61–63 kg N ha−1 for lupine relative to treatments where they were removed. Over a year, lupine contributed 9 to 20 kg N ha−1 more to the agroecosystem than did oat.  相似文献   

19.
Nitrogen (N) and phosphorus (P) deficiencies are key constraints in rainfed lowland rice (Oryza sativa L.) production systems of Cambodia. Only small amounts of mineral N and P or of organic amendment are annually applied to a single crop of rainfed lowland rice by smallholder farmers. The integration of leguminous crops in the pre‐rice cropping niche can contribute to diversify the production, supply of C and N, and contribute to soil fertility improvement for the subsequent crop of rice. However, the performance of leguminous crops is restricted even more than that of rice by low available soil P. An alternative strategy involves the application of mineral P that is destined to the rice crop already to the legume. This P supply is likely to stimulate legume growth and biological N2 fixation, thus enhancing C and N inputs and recycling N and P upon legume residue incorporation. Rotation experiments were conducted in farmers' fields in 2013–2014 to assess the effects of P management on biomass accumulation and N2 fixation (δ15N) by mungbean (Vigna radiata L.) and possible carry‐over effects on rice in two contrasting representative soils (highly infertile and moderately fertile sandy Fluvisol). In the traditional system (no legume), unamended lowland rice (no N, + 10 kg P ha?1) yielded 2.8 and 4.0 t ha?1, which increased to 3.5 and 4.7 t ha?1 with the application of 25 kg ha?1 of urea‐N in the infertile and the moderately fertile soil, respectively. The integration of mungbean as a green manure contributed up to 9 kg of biologically fixed N (17% Nfda), increasing rice yields only moderately to 3.5–4.6 t ha?1. However, applying P to mungbean stimulated legume growth and enhanced the BNF contribution up to 21 kg N ha?1 (36% Nfda). Rice yields resulting from legume residue incorporation (“green manure use”–all residues returned and “grain legume use”–only stover returned) increased to 4.2 and 4.9 t ha?1 in the infertile and moderately fertile soil, respectively. The “forage legume use” (all above‐ground residues removed) provided no yield effect. In general, legume residue incorporation was more beneficial in the infertile than in the moderately fertile soil. We conclude that the inclusion of mungbean into the prevailing low‐input rainfed production systems of Cambodia can increase rice yield, provided that small amounts of P are applied to the legume. Differences in the attributes of the two major soil types in the region require a site‐specific targeting of the suggested legume and P management strategies, with largest benefits likely to accrue on infertile soils.  相似文献   

20.
In organic farming systems, it has been demonstrated that grain pulses such as peas often do not enhance soil N supply to the following crops. This may be due to large N removals via harvested grains as well as N‐leaching losses during winter. In two field‐trial series, the effects of legume (common vetch, hairy vetch, peas) and nonlegume (oil radish) cover crops (CC), and mixtures of both, sown after peas, on soil nitrate content, N uptake, and yield of following potatoes or winter wheat were studied. The overall objective of these experiments was to obtain detailed information on how to influence N availability after main‐crop peas by adapting cover‐cropping strategies. Cover crops accumulated 56 to 108 kg N ha–1 in aboveground biomass, and legume CC fixed 30–70 kg N ha–1 by N2 fixation, depending on the soil N supply and the length of the growing period of the CC. Nitrogen concentration in the aboveground biomass of legume CC was much higher and the C : N ratio much lower than in the nonlegume oil radish CC. At the time of CC incorporation (wheat series) as well as at the end of the growing season (potato series), soil nitrate content did not differ between the nonlegume CC species and mixtures, whereas pure stands of legume CC showed slightly increased soil nitrate content. When the CC were incorporated in autumn (beginning of October) nitrate leaching increased, especially from leguminous CC. However, most of the N leached only into soil layers down to 1.50 m and was recovered more or less by the following winter wheat. When CC were incorporated in late winter (February) no increase in nitrate leaching was observed. In spring, N availability for winter wheat or potatoes was much greater after legumes and, after mixtures containing legumes, resulting in significantly higher N uptake and yields in both crops. In conclusion, autumn‐incorporated CC mixtures of legumes and nonlegumes accomplished both: reduced nitrate leaching and larger N availability to the succeeding crop. When the CC were incorporated in winter and a spring‐sown main crop followed even pure stands of legume CC were able to achieve both goals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号