首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
李营养累积、分布及叶片养分动态研究   总被引:9,自引:0,他引:9  
李鑫  张丽娟  刘威生  杨建民  马峙英 《土壤》2007,39(6):982-986
基于保障生态和果品安全以及合理实施果园养分管理的前提,对大石早生李树体各部位营养元素积累、分布以及各营养元素的周年变化规律进行了分析.结果表明:①营养元素在各个器官的相对含量,除K、Zn在果实中含量最高外,N、P、Ca、Mg均以叶片中含量为最高,以叶片做营养诊断是适宜的.②大石早生李树体营养元素N、P、K、Ca、Mg、Fe、Zn的元素比值为10.00:1.26:6.42:12.57:2.46:1.87:0.14.⑧100 kg鲜果的养分吸收量分别为:N 772.47g,P74.25 g,K 730.33g,Ca874.16 g,Mg 169.82 g,Fe 66.05 g,Zn 7.53 g,N:P:K的比例为1.00:0.10:0.95.④N、P、K、Ca、Mg、Fe、Zn、Mn、Cu的含量随物侯期呈规律性变化.生长季初期,N、P、K、Zn、Cu的含量迅速下降,Fe、Mn、Ca、Mg呈逐渐上升的趋势;中期这9种元素总体变化幅度较小;后期Fe,Cu.N、P、K的含量呈下降趋势,Mn、Zn、Ca,Mg依然上升.本结果既丰富了国内李营养理论,同时又为制定合理的施肥措施及建立绿色优质果品科技示范基地提供了理论依据.  相似文献   

2.
Abstract

The effect of salinity on the growth and yield of tomato plants and mineral composition of tomato leaves was studied. Five tomato (Lycopersicon esculentum Mill) cultivars, Pearson, Strain B, Montecarlo, Tropic, and Marikit, were grown in sand nutrient culture. The nutrient solutions applied consisted of a modified half‐strength Hoagland solution with 50 mM sodium chloride (NaCl), 3 mM potassium sulphate (K2SO4), 1.5 mM orthophosphoric acid (H3PO4), and 10 mM calcium sulphate (CaSO4). Stem height and number of leaves of tomato plants were not found to be significantly different but leaf and stem dry weight were reduced significantly in plants irrigated with saline nutrient solution in contrast with control plants. The total yield was reduced in plants that received saline treatments, but there was no significant difference in fruit number and fruit set percentage. The fruit electrical conductivity and total soluble solids were increased in plants irrigated with saline nutrient solution. Fruit pH was not found to be significantly different among salinity treatments. Mineral composition of tomato leaves were increased by addition of potassium (K), phosphorus (P), and calcium (Ca) to the saline nutrient solution. The addition of K to the solution resulted in an increase in sodium (Na) leaf content. The amounts of K and magnesium (Mg) were not significantly different among salinity treatments. Calcium content was increased when CaSO4 was added. Application of H3PO4 resulted in the highest amount of P in tomato leaves under saline conditions. The present study revealed that application of K, P, and Ca under saline conditions improved fruit electrical conductivity and total soluble solids. Sufficiency levels of the mineral nutrients K and P were obtained in tomato leaves when the appropriate nutrient was used in the saline solution.  相似文献   

3.
Abstract

Five tomato (Lycopersicon esculentum Mill) cultivars were grown in sand nutrient culture experiment in a greenhouse to investigate the effects of salinity on growth and yield. Nutrient solutions were made saline with 50 mM NaCl (EC = 5.5 mS/cm or supplemented with 2 mM KNO3 (EC = 6.8), 20 mM Ca(NO3)2 (EC = 7.5), and combination of potassium (K) and calcium (Ca) (EC = 8.0). Seedlings were irrigated with saline treatments commencing two weeks after transplanting. Determination of sodium (Na) and K in tomato leaves and fruits were by flame photometry. Accumulation of Na in tomato fruits was higher than in leaves under control or saline conditions for all tomato cultivars. The amount of K in the tomato leaves was higher in control than in saline‐grown plants. Addition of K and Ca to the nutrient solution resulted in a 3 to 7 fold increase in K accumulation in all cultivars tested. Stem and leaf growth were significantly reduced with salinity but growth was enhanced following irrigation when K was added to the nutrient solution. Flowering and fruit set were adversely affected by NaCl stress. Reduction of flower number was 44% relative to the control plants. Fresh fruit yield decreased by 78% when plants received 50 mM NaCl. Growth and development of tomatoes under saline conditions was enhanced in this study following the application of K to the saline nutrient solution. Amelioration in growth was also achieved when Ca was used but to a lesser extent. Our results suggest that ion accumulation and regulation of K and Ca contribute to salt tolerance and growth enhancement.  相似文献   

4.
Calcium content in fruits of paprika, bean, quince and hip during fruit growth The Ca content and the Ca translocation into the fruits during their growth was determined in paprika and bean under controlled conditions (nutrient solution, growth room) and in quince and hip (Rosa rugosa Thumb.) under field conditions. Compared to leaves the Ca content in the fruits is very low in all 4 species and declines further during their growth. The K content, however, is similar in the leaves and in the fruits of all 4 species and remains nearly constant during fruit growth. The low Ca content of the fruits cannot directly be related to the cation exchange capacity (CEC) as there are no differences in the CEC between leaves and fruits. The generally low Ca content of the fruits and its decline during fruit growth is causally related in all 4 plant species to the low rate of Ca translocation compared to the rate of dry matter translocation into the fruits. There are, however, distinct differences between the 4 plant species in the course of the ratio Ca/dry matter translocation into the fruits: In paprika the Ca translocation into the fruits strongly declines during fruit growth and in bean the Ca translocation practically ceases with the onset of seed growth. In quince under field conditions the Ca translocation into the fruits rapidly declines at later stages and finally a translocation of Ca out of the fruit takes place (decrease in the amount of Ca/fruit). Only in hip the Ca translocation into the fruits remains constant during fruit growth. There is, however, a distinctly different distribution of Ca to the various parts within the hip fruits. The decline in Ca translocation during fruit growth can be explained in paprika and bean with a shift in water influx from the xylem (rich in Ca) to the phloem at the stage of high rates of dry matter influx into the fruit. In quince and hip, however, additional mechanisms (alternating water flux in the xylem, CEC) seem to be involved in the regulation of the Ca content of these fruits.  相似文献   

5.
不同施钙措施对番茄果实钙含量和钙形态的影响   总被引:9,自引:1,他引:9  
在营养液中加钙及在花期、幼果期分别向花、叶、幼果喷施20mg.L萘乙酸(NAA)+0.5%CaCl2混合液能够显著增加果实钙含量,其中营养液高钙和喷叶处理增钙效果最好,喷幼果和喷花处理也有较明显的效果,3周大果喷钙对果实增钙效果不明显。增钙的同时,不同措施不同程度影响了果实K、Mg、P及某些微量元素的含量。果实增钙主要是增加了果胶酸钙含量,以营养液高钙、喷叶和喷幼果处理增加程度最高;各种施钙措施显著增加了果实Vc含量,降低了可滴定酸度,改善了果实品质。还探讨了不同施钙措施对植株各部位钙含量和果实钙含量的影响机理。  相似文献   

6.
【目的】旨在明确不同树龄骏枣树形成单位产量所需的各器官营养元素年吸收量的异同点,以期为骏枣生产中的科学均衡施肥提供理论依据。【方法】以新疆阿克苏地区4、 7和10年生骏枣树作为试材,从枣树地上部分各器官分别采样,测定N、 P、 K、 Ca、 Mg、 Mn、 Fe、 Zn和Cu含量。【结果】骏枣树形成地上部各器官单位生物量所需要的养分含量,不同树龄间相比差异均不显著,但其生物量在总生物量中所占的百分率有差异,4、 7、 10年生骏枣树果实占地上部年总生物量的百分率依次为72.9%、 73.7%、 75.7%,叶片依次为5.4%、 5.2%、 5.1%,花依次为1.3%、 1.5%、 1.4%,茎枝依次为20.4%、 19.5%、 17.6%,三个树龄骏枣树各器官生物量的大少顺序均为果实>茎枝>叶片>花。每形成1000 kg果实的总生物量随着树龄的增大而逐渐减少,茎枝保留和剪掉部分生物量均降低。采前落果率随树龄增加上升,叶片生物量减少,受精花生物量上升,而其掉落部分生物量表现先上升后下降。三个树龄骏枣地上部分生物量年增加量所需要的各营养元素量顺序均为K>N>Ca>Mg>P>Fe>Zn>Mn>Cu,每形成1000 kg果实所需要吸收的养分量非常接近,4年生骏枣树为N 22.8 kg、 P 1.7 kg、 K 34.0 kg、 Ca 7.4 kg、 Mg 5.0 kg、 Mn 54.5 g、 Fe 916.9 g、 Zn 202.8 g、 Cu 42.5 g; 7年生骏枣树为N 22.7 kg、 P 1.7 kg、 K 33.9 kg、 Ca 7.3 kg、 Mg 4.9 kg、 Mn 53.9 g、 Fe 907.2 g、 Zn 204.5 g、 Cu 42.0 g; 10年生骏枣树N 22.1 kg、 P 1.7 kg、 K 33.4 kg、 Ca 6.8 kg、 Mg 4.7 kg、 Mn 51.8 g、 Fe 871.3 g、 Zn 204.8 g、 Cu 40.4 g。【结论】3种树龄骏枣树地上部年总生物量中果实生物量与其余生物量的比例约为3∶1,且形成1000 kg果实所需的养分量也基本一致。由于总生物量和果实产量随树龄的增加而增加,因此,对养分的总需求量增加。但是由于果实生物量所占比例有所增加,测算单位产量所需要的各营养元素年吸收量时,也应考虑果实以外器官的年生物量所需要的养分吸收量,才能得到较准确的肥料施入量和各营养元素的比例。  相似文献   

7.
The temporal changes of nutrient concentration in leaves and their accumulation in fruit are good indicators of plant nutrient demand for each developmental stage. Seasonality of nutrients in leaves and fruits of pomegranate and their relation with fruit quality was evaluated in commercial orchards using cv. “Bhagwa.” The concentration of nitrogen (N), phosphorus (P), potassium (K), sulfur (S), iron (Fe), zinc (Zn) and boron (B) in leaves decreased while calcium (Ca), magnesium (Mg), manganese (Mn) and copper (Cu) concentration increased during fruit growth and development. Total nutrient accumulation increased gradually in fruit and translated into growth of arils, and increase in juice content and total soluble solids, however as the biomass accumulation in fruit was much faster than nutrient accumulation, concentration of majority nutrients except Mg decreased rapidly, followed by slow and continuous decrease till maturity. During fruit enlargement, demand for N, P, K, Fe, Cu and Zn was high while requirement for Ca, Mg and S was high during fruit development.  相似文献   

8.
Results of several studies show interactive effects of salinity and macronutrients on the growth of wheat plants. These effects may be associated with the nutrient status in plant tissues. The objective of this study was to investigate interactive effects of salinity and macronutrients on mineral element concentrations in leaves, stems, and grain of spring wheat (Triticum aestivum L. cv. Lona), grown in hydroponics, and the relation of these effects to yield components. Eight salinity levels were established from 0 to 150 mM NaCl, and 1, 0.2, and 0.04 strength Hoagland macronutrient solution (x HS) were used as the macronutrient levels. Sodium (Na), potassium (K), calcium (Ca), magnesium (Mg), chlorine (Cl), and phosphorus (P) in leaves, stems, and grain, NO3 in leaves and stems, and total nitrogen (N) in grain were determined. Supplemental Ca, Mg, K, and NO3 added to 0.2 x HS increased mineral concentrations in leaves and stems, but did not improve growth or yield in salinized wheat plants except moderately at 100–150 mM NaCl. In contrast, growth or yield was improved significantly when the concentration of macronutrients was increased from 0.04 to 0.2 × HS. In contrast to leaves and stems, mineral concentrations in grain increased (Na, Cl) or decreased (Ca, Mg, K) only slightly or were not affected (K) by salinity except at high salinity and low macronutrient level. Nitrogen and P concentrations in grain were not affected by salinity. Sodium and Cl concentrations in leaves and stems increased significantly, whereas K and NO3 decreased significantly, with an increase in salinity regardless of the macronutrient level. The latter was also observed for Ca and Mg in leaves. Extreme Na/Ca ratios in plant tissues negatively affected grain yield production at high salinity with medium or high macronutrient levels and at low macronutrient level together with medium salinity. Even though strong and significant correlations between mineral concentration at grain maturity in leaves, stems, and grain and various yield parameters were observed, our results are inconclusive as to whether toxicity, nutrient imbalance, nutrient deficiency, or all of these factors had a strong influence on grain yield.  相似文献   

9.
Field experiments were conducted during 1994–1995 in seven apple (Malus spp.) orchards located in the southwest of Finland (the mainland and the Åland Islands). The cultivars were ‘Transparente Blanche’, ‘Samo’, ‘Melba’, ‘Raike’, ‘Red Atlas’, ‘Åkerö’, ‘Aroma’, and ‘Lobo’. Leaf samples from branches bearing fruits (BF) and not‐bearing fruits (BNF) were collected two times during the growing seasons. Fruit samples were picked about one week before commercial maturity. Macronutrient concentrations in fruits and leaves, fruit diameter and juice pH, titratable acidity (TA) and soluble solids concentrations (SSC) were determined. Leaf nitrogen (N), phosphorus (P), and potassium (K) were higher, but calcium (Ca) and magnesium (Mg) were lower in BNF. Branch types (BF and BNF) were closely related in leaf N, P, and Ca, but not in leaf K and Mg at the first sampling time. Fruit N, P, K, and Mg were closely related to each other but not to fruit Ca. Mean fruit N and Ca and leaf P and Mg were low compared with the recommended levels. Relationships between fruit and leaf nutrient concentrations were found only in P and Mg. Fruit diameter increased and juice SSC decreased with increasing leaf N concentration. Fruit P declined with increasing fruit diameter and juice TA increased and SSC/TA decreased with increasing leaf P and Ca concentrations.  相似文献   

10.
The aim of this study was to investigate the effect of cationic proportions (K/Ca/Mg) in the nutrient solution on fruit quality (quality attributes and antioxidant content) using a high-pigment, 'Lunarossa', tomato cultivar and a standard tomato cultivar ('Corfù') grown in soilless culture. Treatments were defined by a factorial combination of three nutrient solutions having different cationic proportions and two indeterminately growing round tomato cultivars. A high proportion of K in the nutrient solution increased the quality attributes (fruit dry matter, total soluble solids content) and the lycopene content of tomato fruit, whereas a high proportion of Ca improved tomato fruit yield and reduced the incidence of blossom-end rot (BER). The highest total antioxidant activity was observed in the treatment with a high proportion of Mg in the Lunarossa cultivar. The high-pigment hybrid has provided a higher antioxidant content (lycopene and alpha-tocopherol content) than the commercial hybrid, but it was more susceptible to BER and consequently less productive.  相似文献   

11.
An hydroponic experiment was conducted to study the effects of chromium (Cr3+) on the distribution of nitrogen (N), phosphorus (P), potassium (K), sodium (Na), calcium (Ca), magnesium (Mg), and Cr in the plant, and the growth and yield of a tomato plant. Three Cr treatments were established (0, 50, and 100 mg Cr/L in a nutrient solution). In general, the nutrient element concentration in stems and branches was significantly affected by the Cr treatments. Chromium accumulated preferentially in the roots and low transport was detected to the aerial parts. Growth was diminished due to Cr presence in the nutrient solution. Total yield was not affected, however the number of fruits was diminished and the mean fresh weight of fuit increased with each increment of Cr in the nutrient solution. Chromium was not detected in the edible part (fruit) of the plant.  相似文献   

12.
The response of tomato (Lycopersicum esculentum Mill, cultivar Marmande) plants to different levels of arsenic (As) in nutrient solution was investigated—the processes of uptake, distribution and accumulation of As, and the effect of arsenite on yield and plant growth (plant height, diameter of stem, stem and root length, fresh and dry weight of root, stems, leaves, and fruit). The experiment was performed at three levels of As: 2, 5 and 10 mg/L [added as sodium arsenite (NaAsO2)] in a nutrient solution, together with the corresponding control plants. Arsenic uptake depended on the As concentration in solution and As content in the roots increased as the time of treatment increased. The most important finding was the high toxicity of arsenite to roots. The concentration in stems, leaves, and fruit was correlated with the As level in the nutrient solution. Although the As level of 10 mg/L damaged the root membranes, resulting in a significant decrease in the upward transport of As. Arsenic exposure resulted in a drastic decrease in plant growth parameters (e.g., maximum decrease of 76.8% in leaf fresh weight) and in tomato fruit yield (maximum reduction of 79.6%). However, it is important to note that the As concentration in the fruits was not toxic or harmful for human consumption.  相似文献   

13.
A standard and a high manganese (Mn) level (10 and 160 μM) were combined with a standard and a high zinc (Zn) level (4 and 64 μM) in the nutrient solution supplied to cucumber in closed‐cycle hydroponic units to compensate for nutrient uptake. The concentrations of all nutrients except Mn and Zn were identical in all treatments. The objectives of the experiment were to establish critical Zn and Mn levels in both nutrient solutions and leaves of cucumber grown hydroponically, to assess the impact of gradual Zn and/or Mn accumulation in the external solution on nutrient uptake and gas exchange, and to find whether Mn and Zn have additive effects when the levels of both ions are excessively high in the root zone. The first symptoms of Mn and Zn toxicity appeared when the concentrations of Mn and Zn in the leaves of cucumber reached 900 and 450 mg kg–1 in the dry weight, respectively. Excessively high Mn or/and Zn concentrations in the leaves reduced the fruit biomass production due to decreases in the number of fruits per plant, as well as the net assimilation rate, stomatal conductance, and transpiration rate, but increased the intercellular CO2 levels. Initially, the Mn or Zn concentrations in the recirculating nutrient solution increased rapidly but gradually stabilized to maximal levels, while the corresponding concentrations in the leaves constantly increased until the end of the experiment. The uptake of Mg, Ca, Fe, and Cu was negatively affected, while that of K and P remained unaffected by the external Mn and Zn levels. The combination of high Mn and Zn seems to have no additive effects on the parameters investigated.  相似文献   

14.
Cape gooseberry (Physalis peruviana L.) is a solanaceous plant. The growth and time-course of nutrient accumulation of the plant and its partitioning between roots, stems, leaves, and fruits were examined. The study was conducted analyzing two nutrient solutions in soilless culture under greenhouse conditions during two consecutive seasons. The macronutrient contents were analyzed. On average, the yield was 8.9 t·ha?1. Growth of the plant until 90 d after transplanting obeys an exponential function of time and the relative growth rate for this period was determined. Nitrogen (N) was the element that showed the highest concentration, corresponding to leaves (4.67%), followed by potassium (K) in stems (4.46%). The highest accumulations of N, phosphorous (P), calcium (Ca), and magnesium (Mg) were found in leaves and of K in the stems. Potassium showed the highest nutrient accumulation (29 g·plant?1) and the highest specific uptake rate.  相似文献   

15.
钙、 硼对常山胡柚叶片养分、 果实产量及品质的影响   总被引:2,自引:0,他引:2  
【目的】研究叶片矿质营养元素含量的季节性变化,对探明植物体中营养元素的丰缺状况、 调控养分代谢、 提高果实产量和改善品质具有重要意义。本研究结合常山胡柚园土壤养分状况,通过连续4年施用钙肥和硼肥,研究钙、 硼对常山胡柚叶片矿质营养元素含量的季节变化、 果实产量及品质的影响。【方法】采用田间定位试验,以13年生枳砧常山胡柚为试验材料,设4个处理,1)CK(对照); 2)Ca(每株0.5 kg生石灰粉); 3)B(每株25 g 硼砂); 4)Ca+B(每株0.5 kg生石灰粉+ 25 g 硼砂)。于试验的第4年采集常山胡柚不同生长期当年生春梢叶片及成熟期果实样品,并对常山胡柚叶片矿质营养元素含量的季节变化、 果实品质进行分析。【结果】常山胡柚叶片各矿质养分在果实逐渐成熟过程中总体呈现先增后降的变化规律,其中叶片氮(N)、 钾(K)、 镁(Mg)和锌(Zn)在果实坐果期达到最大值,磷(P)在果实膨大前中期(8月份)到达最大值,钙(Ca)、 硼(B)、 铁(Fe)、 锰(Mn)和铜(Cu)在果实膨大后期(9月份)出现最高值。钙、 硼肥施用均可提高常山胡柚果实各发育时期叶片Ca、 B、 N、 K、 Fe、 Mn和Cu含量,但明显抑制叶片Zn的吸收,其中钙、 硼配施对成熟叶片(8~9月份)Ca含量存在显著正交互效应,但对提高叶片B含量无显著交互作用。施钙、 硼肥可不同程度提高常山胡柚2年平均产量,增产率达到1.8%~21.4%,其中各处理增产率顺序为Ca+B>B≥Ca,且单施硼可显著提高2年累积产量,钙硼配施对单年产量、 2年平均产量均存在显著正交互效应。钙、 硼肥单施对果实品质无显著性影响,但钙硼配施可显著降低可滴定酸含量,显著提高固酸比。【结论】常山胡柚坐果期(4月份)为叶片N、 P、 K、 Mg和Zn吸收的关键时期,果实膨大期(8~9月份)为叶片Ca、 B、 Fe、 Mn和Cu吸收的重要时期。钙、 硼配施既可明显提高常山胡柚叶片中矿质营养元素含量(P和Zn除外),又能显著提高果实产量和品质。  相似文献   

16.
Influence on the uptake of K, Ca and Mg in sunflowers with a constant and a diminishing supply of nutrients. . In a model-test with sunflowers it was investigated how the K-, Ca- and Mg-content in the plants is reacting when (a) a nutrient solution maintained constantly at the same level is given as in a ?good soil”? with a constant supply of nutrients, compared to (b) a solution with diminishing as in a highly fertilized soil but which hardly supplies nutrients itself. It was shown that, if the offer of the nutrient was constant, the cation content in the leaves could be maintained at the same level (the relation of cations is also maintained at the same time). Contrary to this with a diminishing nutrient solution due to removal of nutrients out of the solution without replenishing nutrients and the differentiated nutrient translocation the result was a lesser and lesser content of the nutrients inside the plant and more evident changes in the relation of cations, even before the insufficient supply was noted in a decreasing crop. Only in the leaves the relation of cations was nearly constant (K:Ca:Mg = 6:3:1). From these results it can be concluded that, through a high single supply of nutrients the effect of a constant flow of nutrients from the soil to the plant concerning the mineral contents of the plant cannot be compensated.  相似文献   

17.
四季柚生育期叶片和果实中矿质元素含量变化的研究   总被引:2,自引:0,他引:2  
本研究以四季柚为试材,定期测定果实发育周期内叶片与果实的矿质元素含量,研究四季柚叶片和果实矿质养分需求特征与相关性,为树体营养科学调控,优质高效施肥提供理论依据。结果显示,叶片生长过程中N、 P元素含量呈逐渐下降趋势,K、 Ca、 Mg、 B、 Zn含量呈先增后降趋势,S含量总体保持上升趋势,Fe含量呈现先降后稳再上升趋势,Cu含量总体较稳定,Mn含量呈现出先上升后下降再上升趋势; 果实生长过程中,N、 P、 K、 Ca、 S含量呈下降趋势,Mg含量呈现先升后降的趋势,微量元素中Fe、 Mn元素含量变化幅度较小,B、 Zn、 Cu元素含量变化趋势略有不同。叶片与果实之间矿质元素协同吸收作用较弱,而果实与果皮之间作用较强。研究表明,萌芽前应适当增施氮、 磷肥,6月中旬增施钙肥,7月中旬增施钾肥和镁肥,以及重视微量元素肥料的应用。  相似文献   

18.
Abstract

The effect of treated sewage water on the vegetative and reproductive growth of date palms was assessed. Leaves and fruits samples were collected from locations irrigated with treated sewage (TSW), desalinised, and well water. Samples were analysed for their calcium (Ca), magnesium (Mg), iron (Fe), lead (Pb), copper (Cu), and zinc (Zn) content by atomic absorption spectro‐photometry and for sodium (Na) and potassium (K) by flame photometry. The Mg, Fe, and Zn content of fruits and Na in the leaves were not found to be significantly different. Treated sewage water from University campus utilities significantly increased the Na, K, and Cu and reduced Ca in leaves and Zn in fruits of date palms. But no significant effect was observed on the K, Ca, Mg, and Na contents in fruits of the same palms. The different concentrations of Ca, Mg, Fe, and Zn in the fruits of date palms grown along the same TSW line were attributed to variations in the soil; however, those in Pb content of leaves could be attributed to motor vehicle combustion. The general trend indicated that fruits contained higher K, Na, and Fe contents, but lower Ca, Mg, Cu, Zn, and Pb contents than the leaves. Furthermore, leaves of date palms irrigated with desalinised and well water contained higher Ca and Zn, but lower K, Mg, Na, Cu, Fe, and Pb contents than those of palms irrigated with treated sewage water. Desalinised water reduced the K, Ca, Na, and Zn contents, but it increased the Mg, Fe, Cu, and Pb content of leaves compared to well water. None of the examined metals were found to reach toxic level to man or plant.  相似文献   

19.
不同钾氮配比对荔枝果实矿质元素含量及其耐贮性的影响   总被引:1,自引:1,他引:0  
【目的】在广东省惠州市荔枝主产区,于2009 2012年连续3年研究不同钾氮养分比例对荔枝果实矿质元素含量的影响及其与耐贮性的关系,以期为荔枝高产优质高效栽培与耐贮增值的科学施肥技术提供理论依据。【方法】在大田栽培条件下,以1995年嫁接苗种植的国内主栽品种妃子笑为试材,设钾氮不同施用比例(K2O/N分别为0.6、0.8、1.0、1.2和1.4)5个处理,分别用K0.6N、K0.8N、K1.0N、K1.2N、K1.4N表示。在荔枝收获期测定果实矿质元素含量,并进行室温(25±1°C)自然贮藏试验,每2d采样测定相关贮藏指标。【结果】1)随着K2O/N比的提高,荔枝外果皮钾(K)、硼(B)含量呈下降趋势,内果皮K含量呈先下降后增加,果肉K、内外果皮和果肉钙(Ca)、内果皮B含量均呈现先增加后下降,果核Ca含量呈现逐渐增加的趋势。2)随着K2O/N比的提高,内外果皮K/Ca、Mg/Ca、(Mg+K)/Ca、K/B比均呈先下降后增加,外果皮Ca/B比呈增加的趋势。3)内果皮K含量与果实好果率呈极显著负相关,外果皮Ca、内果皮B含量与果实好果率呈显著或极显著正相关。内、外果皮K含量与果皮细胞膜透性呈显著正相关,外果皮Ca含量与果皮细胞膜透性呈显著负相关。内、外果皮K含量与多酚氧化酶(PPO)、过氧化物酶(POD)活性呈显著正相关,而内、外果皮Ca含量则与两种酶活性呈显著负相关。4)内、外果皮K/Ca、Mg/Ca、(Mg+K)/Ca和K/B比与果实好果率呈显著或极显著负相关,与果皮细胞膜透性、PPO和POD活性均呈显著或极显著正相关,而Ca/B比则完全相反。【结论】荔枝生产中合理调控钾、氮养分施用比例(K2O/N),不仅可以提高内、外果皮的Ca/B比值,还有利于降低内、外果皮K/Ca、Mg/Ca、(Mg+K)/Ca和K/B的比值,对提高果实耐贮性具有重要作用。本试验条件和施肥方法下,K2O/N的施用比例以1.2∶1时能最大限度地满足优良耐贮性能适宜的养分含量及比例。  相似文献   

20.
During the vegetative period of the biennial chicory plant (Cichorium intybus L., witloof type) nutrient solutions with a constant cationic content but variable proportions of potassium (K), calcium (Ca), and magnesium (Mg) were applied to the plants grown on perlite. This resulted in taproots varying in cation content: K and Mg decreased and Ca increased in the high‐Ca series compared with the control. A forcing experiment of the taproots in darkness with a standard nutrient solution resulted in a low percentage of brown axes (11%), a Ca‐deficiency symptoms in the chicons from high Ca‐treated roots as compared with 45% in the control. Analysis of the cations in chicons and roots after forcing showed a prevalence of K and Mg migration in comparison with sodium (Na) and Ca towards the chicon. During the first days of forcing, mineral nutrition of the chicon relied only on root reserves and competition between Ca and K‐Mg was reduced in the high Ca‐treated roots, therefore limiting brown axis initiation. Later on, the contribution of the external medium was greater in the high‐Ca series, notably for K, thus involving a higher water and Ca‐linked flux towards the chicon which kept it above the critical level of internal browning expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号