首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glasshouse experiments to test the activity of commercial fungicides against Septoria tritici were carried out under controlled conditions. In addition to the parameter, % necrotic leaf area (NEC), used to estimate the pathogen-induced leaf damage, the number of pycnidia per leaf (PYC) was determined to quantify the pathogen itself. Curative fungicide treatments were applied 100–210 day degrees after inoculation. A high curative activity was achieved up to 170 day degrees after inoculation, whereas the treatments at 200–205 day degrees were less effective. The best curative activity was observed for epoxiconazole-based treatments, followed by slightly less active azoles in the ranking tebuconazole, cyproconazole, prochloraz and flusilazole. Greater differences between the fungicides were observed for the protectant fungicide properties, which were tested 50–350 day degrees prior to inoculation. The best persistency was observed for epoxiconazole, whereas tebuconazole, cyprocoazole, prochloraz and flusilazole showed declining activity with this ranking. Combinations of triazoles with the active ingredients kresoxim-methyl and chlorothalonil, which are known to inhibit spore germination, significantly improved the longevity of the remaining green leaf area in comparison with disease-free treatments with triazoles alone. The results obtained under glasshous conditions were compared with field studies on S. tritici development after treatments with tebuconazole to place the results in context. The comparison of the assessment parameter PYC and NEC between glasshouse and field trial showed that curative and protectant fungicide properties based on microscopic assessments of PYC in the glasshouse correlated well with results from field trials.  相似文献   

2.
ABSTRACT A set of hypothetical steps has been defined, which links fungicide dose to marketable yield, whereby (i) increasing dose decreases symptom area, according to a dose-response curve, (ii) decreased symptom area increases crop green area index (GAI), (iii) increasing GAI increases fractional interception of photosynthetically active radiation, (iv) increased fractional interception increases crop dry matter accumulation, and (v) yield increases, depending on the partitioning of dry matter to the marketable fraction. One equation represented all five steps. By integrating this equation for light interception during the yield forming period and differentiating with respect to the ratio of fungicide cost over yield value, an analytical solution was obtained for the economic optimum dose. Taking published ranges of parameter values for the Septoria tritici wheat pathosystem as an example, yield-response curves and optimum doses were biologically plausible when compared with data from four field experiments. The analytical and empirical results imply that the dose required to optimize economic return will vary substantially between sites, seasons, and cultivars. Sensitivity analyses identified parameters describing specific facets of disease severity, fungicide efficacy, and assimilate partitioning as most influential in determining the dose optimum.  相似文献   

3.
BACKGROUND: Septoria leaf blotch is the most important disease of wheat in Europe. To control this disease, fungicides of the 14α‐demethylase inhibitor group (DMIs) have been widely used for more than 20 years. However, resistance towards DMIs has increased rather quickly in recent years. The objective of this study was to evaluate, on plants and under controlled conditions, the protective and curative efficacy of the DMI fungicide prothioconazole against three current isolates of M. graminicola, chosen to belong to different DMI‐resistant phenotypes. Fungicide efficacy was assessed by visual symptoms and by quantitative real‐time polymerase chain reaction (PCR). RESULTS: With a protective fungicide application, prothioconazole was always effective against each isolate. This was in accordance with the EC50 results. However, curative efficacy differed between the isolates. It remained at a good level, between 60 and 70% against one isolate, whereas it was strongly affected by late applications from 7 days post‐inoculation with the two other isolates. CONCLUSION: A protective application of prothioconazole in wheat crops could be the best strategy to keep a high efficacy against Septoria leaf blotch. Copyright © 2011 Society of Chemical Industry  相似文献   

4.
为了探索利用气象信息指导膜下滴灌棉花科学灌溉的可行性,在南疆阿拉尔布设田间试验,根据自动气象站采集的气象信息计算作物蒸发蒸腾量(ETc),当蒸发蒸腾量与降水量的差值累计达到30 mm时即进行灌溉。试验设置3个灌水定额处理,T1:24 mm,T2:30 mm,T3:36 mm,分别为水分亏缺量的0.8,1.0和1.2倍,同时设置1个当地生产中的常规灌溉处理作为对照(T4),重复3次。试验过程中,对不同处理棉田的土壤水分动态变化、植株生理指标、籽棉及皮棉产量、灌溉水利用效率和田间水利用效率进行了监测与分析。结果表明:根据气象信息指导灌溉的处理生育期耗水量在361.8~435.2 mm,且灌水定额越大,全生育耗水量越多,但均显著低于常规灌溉处理522.1 mm的总耗水量。根据气象信息确定灌溉时间的处理,籽棉产量与灌水定额呈显著的正相关关系,T3处理籽棉产量7 072.05 kg·hm-2与T4对照处理7 245.28 kg·hm-2的籽棉产量无显著差异,但灌水量却减少了164 mm;灌溉水利用效率随着灌水定额的增加而减小,但均显著高于对照处理。综合灌水量、产量及水分利用效率等因素考虑,认为当棉田作物蒸发蒸腾量与降水量的差值累计达到30 mm灌溉+灌水定额36 mm的组合,可以在保证棉花不减产的条件下,显著提高灌溉水利用效率和田间水利用效率,适用于南疆地区根据气象信息指导膜下滴灌棉花的灌溉管理。  相似文献   

5.
For wheat, the optimum time to apply fungicide to control disease on a given leaf layer is usually at, or shortly after, full leaf emergence. Data from field experiments on barley were used to investigate whether the same relationship was applicable to control of leaf blotch on barley. Replicated plots of winter barley were sown in the autumns of 1991, 1992 and 1993 at sites in southwest England with high risk of Rhynchosporium secalis infection. Single fungicide treatments at four doses (0·25, 0·5, 0·75 or 1·0 times the label rate) were applied at one of eight different spray times, starting in mid-March in each year, with intervals of 10–11 days between spray timings. Disease was assessed every 10–11 days and area under the disease progress curve (AUDPC) values were used to construct fungicide dose by spray time response surfaces for each of the upper four leaves, for each year. Spray timings shortly before leaf emergence were found to minimize the AUDPC for each year and leaf layer, and also the effective dose (the dose required to achieve a specified level of control), similar to wheat. Fungicide treatments on barley were effective for a longer period before leaf emergence than afterwards, probably because treatments before emergence of the target leaf reduced inoculum production on leaves below. This partly explains why fungicides tend to be applied earlier in the growth of barley compared with wheat.  相似文献   

6.
Aphid honeydew on wheat leaves can affect host physiology directly and can stimulate infection by necrotrophic pathogens. The role of naturally occurring saprophytes on wheat flag leaves in removing aphid honeydew was examined in five field experiments at different locations in the Netherlands in 1987 and 1988. Aphid populations, saprophyte populations and aphid honeydew were measured weekly. Diseases were monitored at 1–4 week intervals.In the control treatment, sprayed with water, the naturally occurring saprophytes consumed the honeydew almost completely, except in one experiment in which the aphid population increased very rapidly. In the treatments in which the saprophytes were reduced by the broad-spectrum fungicide maneb in 1987 and with maneb alternated with anilazin in 1988, honeydew accumulated. The observed honeydew consumption by the naturally occurring saprophytic population is ascribed mainly to pink and white yeasts (Sporobolomyces spp. andCryptococcus spp., respectively).Additional treatments showed, that in the presence of the naturally occurring saprophytes the yield loss per aphid-infestation-day was lower than when the saprophytes were inhibited by fungicides, showing that yeasts can reduce the detrimental effect of aphid honeydew in wheat.  相似文献   

7.
The sensitivity of Septoria tritici to the sterol biosynthesis inhibiting fungicide flutriafol was assessed using a quick and objective technique based on light absorbance to measure fungal growth. Microtitre plates were inoculated with suspensions of pycnidiospores taken directly from single pycnidia on leaves, after which glucose peptone broth containing different fungicide concentrations was added. After 10 days' incubation in the dark at 17°C, growth was measured using a spectrophotometer at 405 nm. A dose-response curve fitted to the absorbance data was used to estimate the fungicide concentration reducing absorbance by one half (EC50). The method was precise, quick, reproducible and objective, with substantial advantages over conventional techniques.  相似文献   

8.
Barley spot blotch (SB), caused by Cochliobolus sativus, is an important barley disease which causes extensive grain yield losses. These losses may not always correlate directly with the amount of diseased leaf area. Two barley cultivars, Quebracho (susceptible to SB) and Carumbé (with intermediate susceptibility to SB), were compared in field experiments in 2003, 2004 and 2006. Plots of each cultivar were either inoculated with C. sativus or protected with fungicide under field conditions to generate contrasting treatments: i) diseased, and ii) free of disease, respectively. SB severity over the growing season, photosynthetic rate on leaves with no visible symptoms and grain yield were assessed for each treatment and year. There was no treatment effect on cv. Carumbé, while cv. Quebracho showed a significant yield reduction, even though SB severity during the grain filling period was <10 %. This yield reduction was associated with a reduced photosynthetic rate at the beginning of the grain filling period in cv. Quebracho. A similar experiment was conducted under greenhouse conditions, adding a treatment without inoculum or fungicide. There were no differences in photosynthetic rate or grain yield per plant among treatments. These results suggest a distinct physiological response to SB infection among cultivars affecting leaf photosynthetic rate, and SB severity may not be the best estimator of yield losses caused by SB.  相似文献   

9.
Regression equations used as empirical models to predict rice blast caused by Pyricularia grisea on cv. Jinheung at Icheon, South Korea, and on cvs. IR50 and C22 at Cavinti, Philippines, were generated, using weather factors identified by the WINDOW PANE program to be highly correlated with disease. Consecutive days with RH≥80% (CDRH80), number of days with RH≥80% (NDRH80), consecutive days with precipitation, and number of days with precipitation ≥ 84 mm day−1 were important variables predicting blast at Icheon. Total precipitation, precipitation frequency, mean maximum and minimum temperatures, number of days with wind speed above 3.5 m s−1, CDRH80, and NDRH80 were important predictors of blast at Cavinti. The Allen's predicted error sum of squares (PRESS) criterion and a cross-validation procedure were used to evaluate the models using data that were not included in model development. Validation test showed that all models developed for the two sites, except the models predicting maximum lesion number and panicle blast incidence at Icheon, and panicle blast severity on IR50 at Cavinti, predicted blast reasonably well based on low PRESS values and close to zero average prediction errors. These models can be applied in actual rice production systems, but future validation is needed to further improve their predictive ability.  相似文献   

10.
近52 a长白山苔原带生长季气候变化特征   总被引:2,自引:0,他引:2  
利用长白山苔原带天池站1959-2010年6-9月气象数据,进行生长季气候变化分析。采用距平值、小波分析、Mann Kendall检验相结合的方法,进行温度、降水周期性变化与突变点的检验;采用线性倾向估计法,分析未来气候变化的趋势;并通过气候变化指数,反映其气候变化情况。结果显示:52 a来,长白山苔原带生长季经历了暖湿-冷干-暖湿-冷干-冷湿-冷干-暖干几个主要阶段,温度变化周期为5~10 a,降水变化周期为5 a和20 a.。温度变化的突变年份发生在1998年,降水变化较之温度变化复杂,其存在多个突变年份;各气象要素的变化趋势大都表现为显著的升高,其中温度的变化最为明显,风速、日照时数的变化甚微;霜冻日数与冰点日数均显著减少,极端温度大多出现在21世纪;伴随着>0.1 mm降雨日数的显著减小,长白山苔原带降水强度不断增加;与植物生长相关的生长季≥0 ℃积温、≥3 ℃积温和≥5 ℃积温在52 a间呈显著增加趋势,积温的增加将会对生长季的延长及植物生长起到显著的促进作用。  相似文献   

11.
Yield responses to the application of foliar fungicides to wheat are highly variable. As the cost of treatment is known, some method of estimating future yield response is required if treatments are to be applied only when the value of the yield benefit will exceed the cost. Treatment decisions are often supported by disease thresholds, either formalised or developed by crop managers through practical experience. In farm practice, the proportion of yield that is due to fungicide treatment is not usually known, so the success of a spray decision is often judged by the level of disease later in the season. This paper presents data from field experiments in 1994 and 1995, showing that variation in the current level of visible disease (yellow rust and Septoria tritici) explains little of the variation in future effects of the disease on the host, and that the yield effect of a unit disease is not constant across sites and seasons. These findings suggest that traditional disease thresholds may be unreliable predictors of the need to spray and that estimating the success of a treatment decision by observing disease levels later in the season is prone to error. A ‘negative threshold’, defined as that level of disease below which an economically damaging epidemic cannot develop within a known time-period, may be more reliable. Below the negative threshold, treatment is not required. Above the negative threshold, other factors affecting the rate of epidemic development and sensitivity of the host to green leaf area loss need to be considered, in order to quantify the need for treatment. Measurements which reflect the crop's ability to intercept solar radiation may prove more reliable tools than percentage disease for judging the success of treatment decisions and, experimentally, for quantifying the effect of variation in risk determinants. © of SCI.  相似文献   

12.
During the period 1978–1992, phenylamide fungicides in co-formulation with the dithiocarbamate fungicide mancozeb were tested for the control of potato late-blight in 51 separate field experiments in England and Wales. Whilst there was a general trend over all the experiments which indicated that foliage blight was less severe where the phenylamide + dithiocarbamate mixture had been used, the benefit was more marked in some than in others. Despite the detection of phenylamide resistance, at some sites the mixture gave better control of foliage blight than the dithiocarbamate alone. At one site where continuous data were available, the additional benefit of the phenylamide compound for control of foliage infection was lost after 1986 coinciding with a rise in phenylamide resistance from 31.7% in 1986 to 81% in 1987. Where foliar blight epidemics occurred, yield responses to fungicide programmes compared with unsprayed controls ranged from 0 to +118.5% with a mean response of +30.2%. This is equivalent to 30.8 and 12.92 t/ha respectively. Standardized yield differences were calculated to allow inter-trial and inter-year comparisons and showed no benefit from the phenylamide fungicide applied at 14-day intervals in 33 out of 38 experiments where foliar blight epidemics occurred. At one site, Cusum analysis of standardized yield differences following treatment with the phenylamide + dithiocarbamate mixture and the dithiocarbamate alone showed a mean benefit from the phenylamide mixture of 2.23 t/ha during the period 1978 to 1986. From 1987 to 1992, the yield benefit dropped to a mean level of 0.68 t/ha a decrease of 69.5%. In experiments where blight was not recorded, fungicide treatments had no deleterious effect on yields. Over all the trials, there was no effect of fungicide treatment on the incidence of tuber blight at harvest.  相似文献   

13.
The spread of fungicide resistant and/or tolerant phytopathogenic fungi is an important factor affecting crop protection. However, the mechanisms of fungal response to fungicide application are not entirely characterised. In particular, the contribution of previously known resistance factors and the final influence of fungicide treatments on metabolism of surviving mycelia (e.g. mycotoxin increased release and biosynthesis potentially causing contamination of the crops) merit investigation, in order to improve future molecular diagnostics of fungicide resistant strains. The performed experiments have shown distinct expression changes for homologs of a known fungicide resistance factor Flr1 (yeast; DHA1 family of major facilitator superfamily transporters) after azole application in cultured fusaria. Two distantly related homologs of that gene were selected, based on the unsupervised clustering and phylogenetic analysis of transporter sequences. One of these (FGSG_02865), was found to occur across the Fusarium sambucinum complex (F. graminearum, F. culmorum, F. cerealis) and was upregulated starting 24 h after fungicide treatments. This delayed response may point to possible involvement of DHA1 antiporters in a generalised response to stress resulting from fungicide treatment. Additional expression profiling was conducted for the mycotoxin biosynthetic genes (trichothecene and zearalenone gene clusters) in strains of Fusarium sambucinum complex cereal pathogens. The expression changes, when subjected to treatment with the fungicides (flusilazole, carbendazim), show that even an effective treatment (in this study, the benzimidazole fungicide carbendazim) applied to the grown mycelium, can result in enhanced activation of mycotoxin biosynthetic genes in fungal cells which survive the treatment. Our results suggest that increased mycotoxin contamination can be strongly influenced not only by the amount or the type of antifungal compound, but also the timing of fungicide exposition (stage of infection).  相似文献   

14.
Disease–weather relationships influencing Septoria leaf blotch (SLB) preceding growth stage (GS) 31 were identified using data from 12 sites in the UK covering 8 years. Based on these relationships, an early-warning predictive model for SLB on winter wheat was formulated to predict the occurrence of a damaging epidemic (defined as disease severity of 5% or > 5% on the top three leaf layers). The final model was based on accumulated rain > 3 mm in the 80-day period preceding GS 31 (roughly from early-February to the end of April) and accumulated minimum temperature with a 0°C base in the 50-day period starting from 120 days preceding GS 31 (approximately January and February). The model was validated on an independent data set on which the prediction accuracy was influenced by cultivar resistance. Over all observations, the model had a true positive proportion of 0.61, a true negative proportion of 0.73, a sensitivity of 0.83, and a specificity of 0.18. True negative proportion increased to 0.85 for resistant cultivars and decreased to 0.50 for susceptible cultivars. Potential fungicide savings are most likely to be made with resistant cultivars, but such benefits would need to be identified with an in-depth evaluation.  相似文献   

15.
Jørgensen  L. N.  Matzen  N.  Heick  T. M.  Havis  N.  Holdgate  S.  Clark  B.  Blake  J.  Glazek  M.  Korbas  M.  Danielewicz  J.  Maumene  C.  Rodemann  B.  Weigand  S.  Kildea  S.  Bataille  C.  Brauna-Morževska  E.  Gulbis  K.  Ban  R.  Berg  G.  Semaskiene  R.  Stammler  G. 《植物病害和植物保护杂志》2021,128(1):287-301
Journal of Plant Diseases and Protection - Septoria tritici blotch (STB; Zymoseptoria tritici) is the most important leaf disease of wheat in Northern and Western Europe. The problem of fungicide...  相似文献   

16.
The effects of Septoria tritici blotch on spring wheat were incorporated into a crop growth simulator and the model was then used to evaluate the interrelationships between moisture and disease stresses on wheat yields under semi-arid conditions. Simulation experiments revealed that moisture availability plays a role in determining the relationship between disease and yield. In a season when precipitation was distributed evenly, a non-diseased crop yielded more than diseased crops. Yield reductions in diseased crops were related to the severity of epidemics; the relationship between disease and yield was inverse and linear. In a season when water was scarce during the stage of kernel-filling, crops with mild or moderate disease epidemics (apparent infection rate of a logistic model,r, of 0.025 or 0.05 per unit) yielded more than the non-diseased crop. The yield of the crop with a severe epidemic (r of 0.1 per unit) was reduced substantially and the relationship between disease and yield was parabolic. The parabolic relationship was linearized when additional precipitation was simulated in the model.  相似文献   

17.
Mixtures of the plant growth regulators (PGRs) gibberellins A4 and A7 (GA 4/7) and ethephon (2-chloroethylphosphonic acid), applied as soak treatments at 20° C for 24 h, were toxic to pycnidiospores of Septoria apiicola on agar, apparently as a result of low pH of their solutions. Ultraviolet spectroscopy showed that the aqueous solubility of the fungicides benomyl and carbendazim increased significantly when buffered at low pH or mixed with aqueous solutions of GA 4/7 and ethephon. This resulted in greater quantities of 14C-labelled fungicides entering celery seeds imbibed in PGR/fungicide mixtures in comparison with fungicides alone.
A 24-h seed soak at 20° C in a mixture of aqueous benomyl, GA 4/7 and ethephon eliminated S. apiicola in infected celery seeds. A thiram soak was also effective but PGR mixtures alone did not completely eliminate the pathogen.  相似文献   

18.
19.
Septoria leaf blotch progresses rapidly, leading to the development of Zymoseptoria titici forms resistant to fungicides. Cephalosporium stripe is caused by Cephalosporium gramineum. The aim of this study was to evaluate the effectiveness of selected pesticides in limiting the symptoms of both diseases on winter wheat leaves, and to determine their influence on grain yield and the content and composition of protein fractions in wheat kernels. Propiconazoles were most effective in inhibiting the development of Septoria leaf blotch (symptoms were reduced from 54.7% to 78.6%). Strobilurins were less effective due to the presence of isolates with the G143A mutation. Symptoms of Cephalosporium stripe were rarely observed, and protective treatments did not reduce their severity. The highest content of grain protein (14.81%) was found in plants most intensely protected with the fungicides containing fenpropimorph, pyraclostrobin and epoxiconazole. The principal component analysis revealed that the plant protection method influenced the grain protein profile. The accumulation of HMW glutenins and α/β gliadins was mutually interrelated and higher in high-input treatments; control grain was characterized by close relationships between ω-gliadins, LMW glutenins, albumins and globulins, whereas low-input treatments influenced mostly γ-gliadins.  相似文献   

20.
Z. EYAL 《EPPO Bulletin》1981,11(2):53-57
A review of the recent advances in research on Septoria leaf blotch is given with particular emphasis on epidemiology and control strategies. The effect of straw infected with pycnidia of Septoria tritici or perithecia of its perfect stage Mycosphaerella graminicola , infected seeds and alternative hosts on the initiation of epidemics is discussed. Reference is made to the effect of plant stature on the vertical progress of the disease. The role of fungicide protection in the control of the disease is discussed. Resistance and tolerance to Septoria leaf blotch is dealt with in more detail, with reference to the author's own research, and with implications on breeding strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号