首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Three experiments were conducted to evaluate the effects of feeding dietary concentrations of organic Zn as a Zn-polysaccharide (Quali Tech Inc., Chaska, MN) or as a Zn-proteinate (Alltech Inc., Nicholasville, KY) on growth performance, plasma concentrations, and excretion in nursery pigs compared with pigs fed 2,000 ppm inorganic Zn as ZnO. Experiments 1 and 2 were growth experiments, and Exp. 3 was a balance experiment, and they used 306, 98, and 20 crossbred pigs, respectively. Initially, pigs averaged 17 d of age and 5.2 kg BW in Exp. 1 and 2, and 31 d of age and 11.2 kg BW in Exp. 3. The basal diets for Exp. 1, 2, and 3 contained 165 ppm supplemental Zn as ZnSO4 (as-fed basis), which was supplied from the premix. In Exp. 1, the Phase 1 (d 1 to 14) basal diet was supplemented with 0, 125, 250, 375, or 500 ppm Zn as Zn-polysaccharide (as-fed basis) or 2,000 ppm Zn as ZnO (as-fed basis). All pigs were then fed the same Phase 2 (d 15 to 28) and Phase 3 (d 29 to 42) diets. In Exp. 2, both the Phase 1 and 2 basal diets were supplemented with 0, 50, 100, 200, 400, or 800 ppm Zn as Zn-proteinate (as-fed basis) or 2,000 ppm Zn as ZnO (as-fed basis). For the 28-d Exp. 3, the Phase 2 basal diet was supplemented with 0, 200, or 400 ppm Zn as Zn-proteinate, or 2,000 ppm Zn as ZnO (as-fed basis). All diets were fed in meal form. In Exp. 1, 2, and 3, pigs were bled on d 14, 28, or 27, respectively, to determine plasma Zn and Cu concentrations. For all three experiments, there were no overall treatment differences in ADG, ADFI, or G:F (P = 0.15, 0.22, and 0.45, respectively). However, during wk 1 of Exp. 1, pigs fed 2,000 ppm Zn as ZnO had greater (P < or = 0.05) ADG and G:F than pigs fed the basal diet. In all experiments, pigs fed a diet containing 2,000 ppm Zn as ZnO had higher plasma Zn concentrations (P < 0.10) than pigs fed the basal diet. In Exp. 1 and 3, pigs fed 2,000 ppm Zn as ZnO had higher fecal Zn concentrations (P < 0.01) than pigs fed the other dietary Zn treatments. In conclusion, organic Zn either as a polysaccharide or a proteinate had no effect on growth performance at lower inclusion rates; however, feeding lower concentrations of organic Zn greatly decreased the amount of Zn excreted.  相似文献   

2.
Three experiments were conducted to determine the effects of phytase, excess Zn, or their combination in diets for nursery pigs. In all experiments, treatments were replicated with five to seven pens of six to seven pigs per pen, dietary Ca and available P (aP) levels were decreased by 0.1% when phytase was added to the diets, excess Zn was added as ZnO, a basal level of 127 mg/kg of Zn (Zn sulfate) was present in all diets, and the experimental periods were 19 to 21 d. In Exp. 1, pigs (5.7 kg and 18 d of age) were fed two levels of phytase (0 or 500 phytase units/kg) and three levels of excess Zn (0, 1,000, or 2,000 ppm) in a 2 x 3 factorial arrangement. Added Zn linearly increased ADG and ADFI during Phase 1 (P = 0.01 to 0.06), Phase 2 (P = 0.02 to 0.09), and overall (P = 0.01 to 0.02). Gain:feed was linearly increased by Zn during Phase 1 (P = 0.01) but not at other times. Dietary phytase decreased ADG in pigs fed 1,000 or 2,000 ppm Zn during Phase 2 (Zn linear x phytase interaction; P = 0.10), did not affect (P = 0.27 to 0.62) ADFI during any period, and decreased G:F during Phase 2 (P = 0.01) and for the overall (P = 0.07) period. Plasma Zn was increased by supplemental Zn (Zn quadratic, P = 0.01) but not affected (P = 0.70) by phytase addition. In Exp. 2, pigs (5.2 kg and 18 d of age) were fed two levels of phytase (0 or 500 phytase units/kg) and two levels of Zn (0 or 2,000 ppm) in a 2 x 2 factorial arrangement. Supplemental Zn increased ADG and G:F during Phase 2 (P = 0.02 to 0.09) and overall (P = 0.07 to 0.08), but it had no effect (P = 0.11 to 0.89) on ADG during Phase 1 or ADFI during any period. Phytase supplementation increased ADG (P = 0.06) and G:F (P = 0.01) during Phase 2. Gain:feed was greatest for pigs fed 2,000 ppm Zn and phytase (Zn x phytase interaction; P = 0.01). Bone (d 20) and plasma Zn (d 7 and 20) were increased (P = 0.01) by added Zn but not affected (P = 0.51 to 0.90) by phytase. In Exp. 3, pigs (5.7 kg and 19 d of age) were fed a basal diet or the basal diet with Ca and aP levels decreased by 0.10% and these two diets with or without 500 phytase units/kg. Supplemental phytase had no effect (P = 0.21 to 0.81) on growth performance. Reduction of dietary Ca and aP decreased (P = 0.02 to 0.08) ADG, ADFI, and G:F for the overall data. These results indicate that excess dietary supplemental Zn increases ADG and plasma and bone Zn concentrations. Dietary phytase did not affect plasma or bone Zn concentrations.  相似文献   

3.
Three experiments were conducted to evaluate the effect of feeding pharmacological concentrations of zinc (Zn), from organic and inorganic sources, on growth performance, plasma and tissue Zn accumulation, and Zn excretion of nursery pigs. Blood from all pigs was collected for plasma Zn determination on d 14 in Exp. 1, d 7 and 28 in Exp. 2, and d 15 in Exp. 3. In Exp. 1, 2, and 3, 90, 100, and 15 crossbred (GenetiPorc USA, LLC, Morris, MN) pigs were weaned at 24+/-0.5, 18, and 17 d of age (6.45, 5.47, and 5.3 kg avg initial BW), respectively, and allotted to dietary treatment based on initial weight, sex, and litter. A Phase 1 nursery diet was fed as crumbles from d 0 to 14 in Exp. 1, 2, and 3, and a Phase 2 nursery diet was fed as pellets from d 15 to 28 in Exp. 1 and 2. The Phase 1 and Phase 2 basal diets were supplemented with 100 ppm Zn as ZnSO4. Both dietary phases contained the same five dietary treatments: 150 ppm additional Zn as zinc oxide (ZnO), 500 ppm added Zn as ZnO, 500 ppm added Zn as a Zn-amino acid complex (Availa-Zn 100), 500 ppm added Zn as a Zn-polysaccharide complex (SQM-Zn), and 3,000 ppm added Zn as ZnO. Overall in Exp. 1, pigs fed 500 ppm added Zn as SQM-Zn or 3,000 ppm added Zn as ZnO had greater ADG (P < 0.05) than pigs fed 150 ppm, 500 ppm added Zn as ZnO, or 500 ppm added Zn as Availa-Zn 100 (0.44 and 0.46 kg/d vs 0.35, 0.38, and 0.33 kg/d respectively). Overall in Exp. 2, pigs fed 3,000 ppm added Zn as ZnO had greater (P < 0.05) ADG and ADFI than pigs fed any other dietary treatment. On d 14 of Exp. 1 and d 28 of Exp. 2, pigs fed 3,000 ppm added Zn as ZnO had higher (P < 0.05) plasma Zn concentrations than pigs on any other treatment. In Exp. 3, fecal, urinary, and liver Zn concentrations were greatest (P < 0.05) in pigs fed 3,000 ppm added Zn as ZnO. On d 10 to 15 of Exp. 3, pigs fed 3,000 ppm added Zn as ZnO had the most negative Zn balance (P < 0.05) compared with pigs fed the other four dietary Zn treatments. In conclusion, feeding 3,000 ppm added Zn as ZnO improves nursery pig performance; however, under certain nursery conditions the use of 500 ppm added Zn as SQM-Zn may also enhance performance. The major factor affecting nutrient excretion appears to be dietary concentration, independent of source.  相似文献   

4.
Two 28-d randomized complete block design experiments were conducted to evaluate the effects of concentrations and sources of Zn on growth performance of nursery pigs. Seven stations participated in Exp. 1, which evaluated the efficacy of replacing 2,500 ppm of Zn from ZnO with 125, 250, or 500 ppm of Zn from Zn methionine. A control diet with 125 ppm of supplemental Zn was included at all stations. A total of 615 pigs were used in 26 replicates. Average weaning age was 20.6 d and the average initial BW was 6.3 kg. There were no differences in any growth response among the three supplemental Zn methionine levels fed in Exp. 1. Zinc supplementation from Zn methionine improved ADG compared with the control during all phases (P < 0.05), due primarily to an increase in ADFI. Pigs fed 2,500 ppm of Zn from ZnO gained faster (P < 0.01) than those fed the control diet during all phases, and faster (P < 0.05) than those fed supplemental Zn from Zn methionine for the 28-d experiment. Differences in gain were again due mainly to differences in feed intake. A second experiment compared five sources of supplemental organic Zn (500 ppm of Zn) with 500 and 2,000 ppm supplemental Zn from ZnO and a control (140 ppm total Zn). Six stations used a total of 624 pigs, with an average weaning age of 20.4 d and averaging 6.2 kg BW in 15 replicates. Pigs fed 2,000 ppm of Zn from ZnO gained faster (P < 0.05) than pigs fed the control or any of the 500 ppm of Zn treatments (ZnO or organic Zn). Pigs fed the 2,000 ppm of Zn from ZnO also consumed more feed than those receiving 500 ppm of Zn from ZnO or from any of the organic Zn sources (P < 0.05). Organic sources of Zn did not improve gain, feed intake, or feed efficiency beyond that achieved with the control diet. Supplemental Zn at a concentration of 500 ppm, whether in the form of the oxide or in an organic form, was not as efficacious for improved ADG as 2,000 to 2,500 ppm of Zn from ZnO.  相似文献   

5.
Three experiments were conducted to evaluate the efficacy of phosphorylated mannans (MAN) and pharmacological levels of ZnO on performance and immunity when added to nursery pig diets. Pigs (216 in each experiment), averaging 19 d of age and 6.2, 4.6, and 5.6 kg of BW in Exp. 1, 2, and 3, respectively, were blocked by BW in each experiment, and penned in groups of six. A lymphocyte blastogenesis assay was performed in each experiment to measure in vitro lymphocyte proliferation response. In Exp. 1, diets were arranged as a 2 x 2 factorial with two levels of Zn (200 and 2,500 ppm) and two levels of MAN (0 and 0.3% from d 0 to 10, and 0 and 0.2% from d 10 to 38). Zinc oxide increased (P < 0.05) ADG, ADFI, and G:F from d 0 to 10, and ADG and ADFI from d 10 to 24. In Exp. 2, diets were arranged as a 2 x 3 factorial with two levels of Zn (200 and 2,500 ppm) and three levels of MAN (0, 0.2, and 0.3%). Pigs fed 2,500 ppm Zn from d 0 to 10 had greater (P < 0.05) ADG, ADFI, and G:F than pigs fed 200 ppm Zn. From d 10 to 24, ADG was similar when pigs were fed 200 ppm Zn, regardless of MAN supplementation; however, ADG increased (P < 0.05) when 0.2% MAN was added to dietscontaining 2,500 ppm Zn (MAN x Zn interaction, P < 0.05). In Exp. 3, diets were arranged as a 2 x 3 factorial with two levels of MAN (0 and 0.3%) and three levels of Zn (200, 500, and 2,500 ppm). Zinc was maintained at 200 ppm from d 21 to 35, so only two dietary treatments (0 and 0.3% MAN) were fed during this period. Average daily gain was greater (P < 0.05) from d 7 to 21 when pigs were fed 2,500 ppm Zn compared with pigs fed 200 or 500 ppm Zn. The addition of MAN improved (P < 0.05) G:F from d 7 to 21 and d 0 to 35. Lymphocyte proliferation of unstimulated cells and phytohemagglutinin-stimulated cells was decreased (P < 0.05) in cells isolated from pigs fed MAN compared with cells isolated from pigs fed diets without MAN. Lymphocyte proliferation of pokeweed mitogen-stimulated cells isolated from pigs fed MAN was less (P < 0.05) than for pigs fed diets devoid of MAN when diets contained 200 ppm Zn; however, MAN had no effect on lymphocyte proliferation when the diet contained 500 or 2,500 ppm Zn (MAN x Zn interaction, P < 0.05). Although the magnitude of response to MAN was not equivalent to that of pharmacological concentrations of Zn, MAN mayimprove growth response when pharmacological Zn levels are restricted.  相似文献   

6.
Two experiments were conducted to evaluate the effects of dietary Zn and Fe supplementation on mineral excretion, body composition, and mineral status of nursery pigs. In Exp. 1 (n = 24; 6.5 kg; 16 to 20 d of age) and 2 (n = 24; 7.2 kg; 19 to 21 d of age), littermate crossbred barrows were weaned and allotted randomly by BW, within litter, to dietary treatments and housed individually in stainless steel pens. In Exp. 1, Phases 1 (d 0 to 7) and 2 (d 7 to 14) diets (as-fed basis) were: 1) NC (negative control, no added Zn source); 2) ZnO (NC + 2,000 mg/kg as Zn oxide); and 3) ZnM (NC + 2,000 mg/kg as Zn Met). In Exp. 2, diets for each phase (Phase 1 = d 0 to 7; Phase 2 = d 7 to 21; Phase 3 = d 21 to 35) were the basal diet supplemented with 0, 25, 50, 100, and 150 mg/kg Fe (as-fed basis) as ferrous sulfate. Orts, feces, and urine were collected daily in Exp. 1; whereas pigs had a 4-d adjustment period followed by a 3-d total collection period (Period 1 = d 5 to 7; Period 2 = d 12 to 14; Period 3 = d 26 to 28) during each phase in Exp. 2. Blood samples were obtained from pigs on d 0, 7, and 14 in Exp. 1 and d 0, 7, 21, and 35 in Exp. 2 to determine hemoglobin (Hb), hematocrit (Hct), and plasma Cu, (PCu), Fe (PFe), and Zn (PZn). Pigs in Exp. 1 were killed at d 14 (mean BW = 8.7 kg) to determine whole-body, liver, and kidney mineral concentrations. There were no differences in growth performance in Exp. 1 or 2. In Exp. 1, pigs fed ZnO or ZnM diets had greater (P < 0.001) dietary Zn intake during the 14-d study and greater fecal Zn excretion during Phase 2 compared with pigs fed the NC diet. Pigs fed 2,000 mg/kg, regardless of Zn source, had greater (P < 0.010) PZn on d 7 and 14 than pigs fed the NC diet. Whole-body Zn, liver Fe and Zn, and kidney Cu concentrations were greater (P < 0.010), whereas kidney Fe and Zn concentrations were less (P < 0.010) in pigs fed pharmacological Zn diets than pigs fed the NC diet. In Exp. 2, dietary Fe supplementation tended to increase (linear, P = 0.075) dietary DMI, resulting in a linear increase (P < 0.050) in dietary Fe, Cu, Mg, Mn, P, and Zn intake. Subsequently, a linear increase (P < 0.010) in fecal Fe and Zn excretion was observed. Increasing dietary Fe resulted in a linear increase in Hb, Hct, and PFe on d 21 (P < 0.050) and 35 (P < 0.010). Results suggest that dietary Zn or Fe additions increase mineral status of nursery pigs. Once tissue mineral stores are loaded, dietary minerals in excess of the body's requirement are excreted.  相似文献   

7.
Two experiments were conducted to determine the effects of crude protein (CP) level in diets containing coarse wheat bran (CWB) with or without pharmacological levels of Zn (provided by zinc oxide: ZnO) on growth performance and fecal DM of nursery pigs. In experiment 1, 360 barrows (Line 200 × 400, DNA, Columbus, NE, initially 5.6 kg) were allotted to 1 of 6 dietary treatments from d 0 to 21 after weaning with 5 pigs per pen and 12 pens per treatment. Treatments included a positive control diet (21% CP) with 3,000 mg/kg Zn in phase 1 and 2,000 mg/kg in phase 2; negative control (21% CP) with 110 mg/kg added Zn, and 4 diets containing 4% CWB and 110 mg/kg added Zn formulated to contain 21%, 19.5%, 18%, or 16.5% CP. The 2 control diets and 21% CP CWB diet contained 1.40% standardized ileal digestible (SID) Lys in phase 1 and 1.35% SID Lys in phase 2, while the 19.5%, 18%, and 16.5% CP diets contained 1.33, 1.25 and 1.20% Lys, respectively, in both phases. Pigs fed the positive control diet containing pharmacological ZnO had increased (P < 0.05) ADG and G:F compared with the negative control and the 21% CP CWB diet. Reducing CP (concurrently with SID Lys) in diets containing CWB decreased ADG and G:F (linear, P = 0.002); however, fecal DM increased (linear, P = 0.005). In experiment 2, two groups of 300 and 350 pigs, initially 7.0 and 6.2 kg, respectively, were used with 5 pigs per pen and 26 pens per treatment. The objective was to determine if adding back essential AA would improve growth performance of pigs fed the low CP diets. All dietary treatments were fed for 13 days, contained 4% CWB, and consisted of: (1) positive control with 2,000 mg/kg of Zn and 21% CP (1.35% SID Lys); (2) no ZnO and 21% CP; and 3 diets with no ZnO formulated to 18% CP and (3) 1.2% SID Lys; (4) 1.35% SID Lys by the addition of feed grade amino acids (AA), and (5) diet 4 with non-essential amino acids (NEAA; Gly and Glu). Pigs fed 21% CP with ZnO had increased (P = 0.001) ADG compared to those fed 18% CP (1.35% SID Lys) with high levels of feed grade amino acids or those fed the reduced SID Lys (1.2%) diet. Overall, G:F was improved (P < 0.001) for pigs fed 21% CP diets and those fed the 18% CP diet with NEAA compared to pigs fed 1.2% SID Lys and pigs fed high levels of feed grade amino acids. Fecal DM was increased for pigs fed the reduced SID Lys diet. In summary, pharmacological levels of Zn improve pig growth performance, but reducing CP (and subsequently SID Lys) decreased nursery pig growth performance.  相似文献   

8.
Benefits of feeding pharmacological concentrations of zinc (Zn) provided by Zn oxide (ZnO) to 21-d conventionally weaned pigs in the nursery have been documented; however, several management questions remain. We conducted two experiments to evaluate the effect on growth from feeding 3,000 ppm Zn as ZnO during different weeks of the nursery period. In Exp. 1 (n = 138, 11.5 d of age, 3.8 kg BW) and Exp. 2 (n = 246, 24.5 d of age, 7.2 kg BW), pigs were fed either basal diets containing 100 ppm supplemental Zn (adequate) or the same diet with an additional 3,000 ppm Zn (high) supplied as ZnO. Pigs were fed four or two dietary phases in Exp. 1 and 2, respectively, that changed in dietary ingredients and nutrient content (lysine and crude protein) to meet the changing physiological needs of the pigs for the 28-d nursery period. Dietary Zn treatments were 1) adequate Zn fed wk 1 to 4, 2) high Zn fed wk 1, 3) high Zn fed wk 2, 4) high Zn fed wk 1 and 2, 5) high Zn fed wk 2 and 3, and 6) high Zn fed wk 1 to 4. In Exp. 1 and 2, pigs fed high Zn for wk 1 and 2 or the entire 28-d nursery period had the greatest (P < .05) ADG. During any week, pigs fed high Zn had greater concentrations of hepatic metallothionein and Zn in plasma, liver, and kidney than those pigs fed adequate Zn (P < .05). In summary, both early- and traditionally weaned pigs need to be fed pharmacological concentrations of Zn provided as ZnO for a minimum of 2 wk immediately after weaning to enhance growth.  相似文献   

9.
This study was conducted to determine the effect of zinc level and source on growth performance, tissue Zn concentrations, intracellular distribution of Zn, and immune response in weanling pigs. Ninety-six 3-wk-old crossbred weanling pigs (BW = 6.45 +/- 0.17 kg) were assigned to one of six dietary treatments (four pigs per pen, four replicates per treatment) based on weight and litter origin. Treatments consisted of the following: 1) a corn-soybean meal-whey diet (1.2% lysine) with a basal level of 80 ppm of supplemental Zn from ZnSO4 (control; contained 104 ppm total Zn); 2) control + 80 ppm added Zn from ZnSO4; 3) control + 80 ppm added Zn from Zn methionine (ZnMet); 4) control + 80 ppm added Zn from Zn lysine (ZnLys); 5) control + 40 ppm added Zn from ZnMet and 40 ppm added Zn from ZnLys (ZnML); and 6) control + 160 ppm added Zn from ZnSO4. Zinc supplementation of the control diet had no effect on ADG or ADFI. Gain efficiency was less (P < 0.05) for pigs fed 80 ppm of Zn from ZnSO4 than for control pigs and pigs fed 160 ppm of Zn from ZnSO4. Organ weights, Zn concentration, and intracellular distribution of Zn in the liver, pancreas, and spleen were not affected (P = 0.12) by Zn level or source. Skin thickness response to phytohemagglutinin (PHA) was not affected (P = 0.53) by dietary treatment. Lymphocyte proliferation in response to PHA was greater (P < 0.05) in pigs fed ZnLys than in pigs fed the control diet or the ZnML diet; however, when pokeweed mitogen was used, lymphocyte proliferation was greatest (P < 0.05) in pigs fed the ZnMet diet than pigs fed the control, ZnLys, ZnML, or 160 ppm ZnSO4 diets. Antibody response to sheep red blood cells was not affected by dietary treatments. Supplementation of 80 ppm of Zn from ZnSO4 or ZnMet and 160 ppm of Zn from ZnSO4 decreased (P < 0.05) the antibody response to ovalbumin on d 7 compared with control pigs, but not on d 14. Phagocytic capability of peritoneal exudate cells was increased (P < 0.05) when 160 ppm of Zn from ZnSO4 was supplemented to the diet. The number of red blood cells ingested per phagocytic cell was increased (P < 0.05) in pigs fed the diet supplemented with a combination of ZnMet and ZnLys and the diet with 160 ppm of Zn from ZnSO4. Results suggest that the level of Zn recommended by NRC for weanling pigs was sufficient for optimal growth performance and immune responses, although macrophage function may be enhanced at greater levels of Zn. Source of Zn did not alter these measurements.  相似文献   

10.
Three experiments were conducted to evaluate the effects of increasing dietary Cu and Zn on weanling pig performance. Diets were fed in 2 phases: phase 1 from d 0 to 14 postweaning and phase 2 from d 14 to 28 in Exp. 1 and 2 and d 14 to 42 in Exp. 3. The trace mineral premix, included in all diets, provided 165 mg/kg of Zn from ZnSO(4) and 16.5 mg/kg of Cu from CuSO(4). In Exp. 1, treatments were arranged in a 2 × 3 factorial with main effects of added Cu from tri-basic copper chloride (TBCC; 0 or 150 mg/kg) and added Zn from ZnO (0, 1,500, or 3,000 mg/kg from d 0 to 14 and 0, 1,000, or 2,000 mg/kg from d 14 to 28). No Cu × Zn interactions were observed (P > 0.10). Adding TBCC or Zn increased (P < 0.05) ADG and ADFI during each phase. In Exp. 2, treatments were arranged in a 2 × 3 factorial with main effects of added Zn from ZnO (0 or 3,000 mg/kg from d 0 to 14 and 0 or 2,000 mg/kg from d 14 to 28) and Cu (control, 125 mg/kg of Cu from TBCC, or 125 mg/kg of Cu from CuSO(4)). No Cu × Zn interactions (P > 0.10) were observed for any performance data. Adding ZnO improved (P < 0.02) ADG and ADFI from d 0 to 14 and overall. From d 0 to 28, supplementing CuSO(4) increased (P < 0.02) ADG, ADFI, and G:F, and TBCC improved (P = 0.006) ADG. In Exp. 3, the 6 dietary treatments were arranged in a 2 × 2 factorial with main effects of added Cu from CuSO(4) (0 or 125 mg/kg) and added Zn from ZnO (0 or 3,000 mg/kg from d 0 to 14 and 0 or 2,000 mg/kg from d 14 to 42). The final 2 treatments were feeding added ZnO alone or in combination with CuSO(4) from d 0 to 14 and adding CuSO(4) from d 14 to 42. Adding ZnO increased (P < 0.04) ADG, ADFI, and G:F from d 0 to 14 and ADG from d 0 to 42. Dietary CuSO(4) increased (P < 0.004) ADG and ADFI from d 14 to 42 and d 0 to 42. From d 28 to 42, a trend for a Cu × Zn interaction was observed (P = 0.06) for ADG. This interaction was reflective of the numeric decrease in ADG for pigs when Cu and Zn were used in combination compared with each used alone. Also, numerical advantages were observed when supplementing Zn from d 0 to 14 and Cu from d 14 to 42 compared with all other Cu and Zn regimens. These 3 experiments show the advantages of including both Cu and Zn in the diet for 28 d postweaning; however, as evident in Exp. 3, when 3,000 mg/kg of Zn was added early and 125 mg/kg of Cu was added late, performance was similar or numerically greater than when both were used for 42 d.  相似文献   

11.
Three experiments were conducted to evaluate spray-dried blood cells (SDBC) and crystalline isoleucine in nursery pigs. In Exp. 1, 120 pigs were used to evaluate 0, 2, 4, and 6% SDBC (as-fed basis) in a sorghum-based diet. There were six replicates of each treatment and five pigs per pen, with treatments imposed at an initial BW of 9.3 kg and continued for 16 d. Increasing SDBC from 0 to 4% had no effect on ADG, ADFI, and G:F. Pigs fed the 6% SDBC diet had decreased ADG (P < 0.01) and G:F (P = 0.06) compared with pigs fed diets containing 0, 2, or 4% SDBC. In Exp. 2, 936 pigs were used to test diets containing 2.5 or 5% SDBC (as-fed basis) vs. two control diets. There were six replicates of each treatment at industry (20 pigs per pen) and university (six pigs per pen) locations. Treatments were imposed at an initial BW of 5.9 and 8.1 kg at the industry and the university locations, respectively, and continued for 16 d. Little effect on pig performance was noted by supplementing 2.5% SDBC, with or without crystalline Ile, in nursery diets. Pigs fed the 5% SDBC diet without crystalline Ile had decreased ADG (P < 0.01), ADFI (P < or = 0.10), and G:F (P < 0.05) compared with pigs fed the control diets. Supplementation of Ile restored ADG, ADFI, and G:F to levels that were not different from that of pigs fed the control diets. In Exp. 3, 1,050 pigs were used to test diets containing 5, 7.5, or 9% SDBC (as-fed basis) vs. a control diet. There were six replicates of each treatment at the industry (20 pigs per pen) location and five replicates at the university (six pigs per pen) locations. Treatments were imposed at an initial BW of 6.3 and 7.0 kg at the industry and university locations, respectively, and continued for 16 d. Supplementation of 5% SDBC without crystalline Ile decreased ADG and G:F (P < 0.01) compared with pigs fed the control diet, but addition of Ile increased ADG (P < 0.01) to a level not different from that of pigs fed the control diet. The decreased ADG, ADFI, and G:F noted in pigs fed the 7.5% SDBC diet was improved by addition of Ile (P < 0.01), such that ADG and ADFI did not differ from those of pigs fed the control diet. Pigs fed diets containing 9.5% SDBC exhibited decreased ADG, ADFI, and G:F (P < 0.01), all of which were improved by Ile addition (P < 0.01); however, ADG (P < 0.05) and G:F (P = 0.09) remained lower than for pigs fed the control diet. These data indicate that SDBC can be supplemented at relatively high levels to nursery diets, provided that Ile requirements are met.  相似文献   

12.
Two experiments were conducted to determine the interactive effects of phytase with and without a trace mineral premix (TMP) in diets for nursery, growing, and finishing pigs on growth performance, bone responses, and tissue mineral concentrations. Pigs (initial and final BW of 5.5 and 111.6 kg [Exp. 1] or 5.4 and 22.6 kg [Exp. 2]) were allotted to treatments on the basis of BW with eight (Exp. 1) or six (Exp. 2) replications of six or seven pigs per replicate pen. Pigs were started on the diets the day of weaning (average of 18 d). In both experiments, the treatments were with or without 500 phytase units/kg of diet and with or without the TMP in a 2 x 2 factorial arrangement. The Ca and available P concentrations were decreased by 0.10% in diets with phytase. The nursery phase consisted of Phase I (7 d), Phase II (14 d), and Phase III (13 d) periods. In Exp. 1, 26 of 52 pigs fed the diet without the TMP and without phytase had severe skin lesions and decreased growth performance; therefore, pigs fed this diet were switched to the positive control diet. In Exp. 2, the treatment without the TMP and without phytase had 12 replications instead of six. At the end of Phase III, half these replications were switched to the positive control diet and half were switched to the diet without the TMP but with phytase. In Exp. 1 during Phases II and III and in the overall data, pigs fed the diet without the TMP had decreased ADG and ADFI, but the addition of phytase prevented these responses (phytase x TMP; P < 0.02). Growth performance was not affected by diet during the growing-finishing period. Coccygeal bone Zn and Na concentrations were decreased (P < 0.09) in pigs fed the diet without the TMP, and adding phytase increased (P < 0.03) Zn and Fe concentrations. In Exp. 2 during Phases I and II, pigs fed the diet without the TMP had decreased ADG, but the addition of phytase prevented this response (phytase x TMP; P < 0.10). Pigs fed the diet without the TMP had decreased (P < 0.10) ADG (Phase II and overall), ADFI (Phases II and III and in the overall data), and G:F (Phase III). Coccygeal bone Zn and Cu concentrations were decreased (P < 0.09) in pigs fed the diet without the TMP, and adding phytase increased (P < 0.03) Zn concentration in the bones. These data indicate that removing the TMP in diets for nursery pigs decreases growth performance and bone mineral content, and that phytase addition to the diet without the TMP prevented the decreased growth performance.  相似文献   

13.
Two experiments were conducted to determine the efficacy of mannan oligosaccharides (MOS) fed at two levels of Cu on growth and feed efficiency of weanling and growing-finishing pigs, as well as the effect on the immunocompetence of weanling pigs. In Exp. 1, 216 barrows (6 kg of BW and 18 d of age) were penned in groups of six (9 pens/treatment). Dietary treatments were arranged as a 2 x 2 factorial consisting of two levels of Cu (basal level or 175 ppm supplemental Cu) with and without MOS (0.2%). Diets were fed from d 0 to 38 after weaning. Blood samples were obtained to determine lymphocyte proliferation in vitro. From d 0 to 10, ADG, ADFI, and gain:feed (G:F) increased when MOS was added to diets containing the basal level of Cu, but decreased when MOS was added to diets containing 175 ppm supplemental Cu (interaction, P < 0.01, P < 0.10, and P < 0.05, respectively). Pigs fed diets containing 175 ppm Cu from d 10 to 24 and d 24 to 38 had greater (P < 0.05) ADG and ADFI than those fed the basal level of Cu regardless of MOS addition. Pigs fed diets containing MOS from d 24 to 38 had greater ADG (P < 0.05) and G:F (P < 0.10) than those fed diets devoid of MOS. Lymphocyte proliferation was not altered by dietary treatment. In Exp. 2, 144 pigs were divided into six pigs/pen (six pens/treatment). Dietary treatments were fed throughout the starter (20 to 32 kg BW), grower (32 to 68 kg BW), and finisher (68 to 106 kg BW) phases. Diets consisted of two levels of Cu (basal level or basal diet + 175 ppm in starter and grower diets and 125 ppm in finisher diets) with and without MOS (0.2% in starter, 0.1% in grower, and 0.05% in finisher). Pigs fed supplemental Cu had greater (P < 0.05) ADG and G:F during the starter and grower phases compared to pigs fed the basal level of Cu. During the finisher phase, ADG increased when pigs were fed MOS in diets containing the basal level of Cu, but decreased when MOS was added to diets supplemented with 125 ppm Cu (interaction, P < 0.05). Results from this study indicate the response of weanling pigs fed MOS in phase 1 varied with level of dietary Cu. However, in phase 2 and phase 3, diets containing either MOS or 175 ppm Cu resulted in improved performance. Pharmacological Cu addition improved gain and efficiency during the starter and grower phases in growing-finishing pigs, while ADG response to the addition of MOS during the finisher phase seems to be dependent upon the level of Cu supplementation.  相似文献   

14.
Weanling pigs (total of 560) were used in two experiments to determine the effects of poultry meal in nursery diets on pig performance. In Exp. 1,210 barrows and gilts (initially 7.4 kg and 21 +/- 2 d of age) were fed one of five diets, which included a control diet with no specialty protein products or (as-fed basis) the control with 2.5 or 5.0% fish meal, or 2.9 or 5.9% poultry meal (11.8% ash). Poultry meal replaced fish meal on an equal lysine basis. Overall (d 0 to 28), pigs fed diets containing fish meal had greater (P < 0.01) ADG than pigs fed poultry meal. Increasing fish meal tended to have increased (quadratic, P < 0.07) ADG, with the greatest improvement observed in pigs fed the diet containing 2.5% fish meal. Pigs fed diets containing fish meal had improved (P < 0.01) G:F compared with pigs fed diets containing poultry meal. In Exp. 2, a total of 350 barrows and gilts (initially 8.9 kg and 22 +/- 2 d of age) were fed one of seven experimental diets, which included a control diet with no specialty protein products, or the control with 2.5 or 5.0% fish meal, 2.9 or 5.8% low-ash (10.9%) poultry meal, and 3.1 or 6.2% high-ash (13.5%) poultry meal. Poultry meal replaced fish meal on an equal lysine basis. Overall (d 0 to 15), there were no differences in ADG and ADFI (P = 0.14); however, pigs fed diets containing fish meal or poultry meal had improved (linear, P < 0.01) G:F compared with pigs fed the control diet. Pigs fed diets containing low-ash poultry meal had greater (P < 0.01) G:F compared with pigs fed diets containing high-ash poultry meal. Based on these data, quality control specifications, such as ash content, need to be considered when using poultry meal as an animal protein replacement in diets for nursery pigs.  相似文献   

15.
Three experiments were conducted to evaluate pet food-grade poultry by-product meal (PBM) as a replacement protein source for fish meal (FM), blood meal (BM), and spray-dried plasma protein (SDPP) in weanling pig diets. In the first study, 200 crossbred pigs (initial BW = 6.5 kg) were weaned (21 d) and randomly allotted to one of four dietary treatments, which included a control and three test diets where PBM was substituted for FM, blood products, or both. Experimental diets were fed during Phase I (d 0 to 5 postweaning) and Phase II (d 5 to 19), and a common Phase III diet was fed from d 19 to 26. Overall (d 0 to 26), there was no difference in performance of pigs fed PBM in place of the other ingredients. However, during Phase I, BW (P < 0.05), ADG (P < 0.02), and intake (P < 0.001) in pigs fed diets containing SDPP were greater than those fed diets with PBM. In Exp. 2, the performance of pigs (n = 100, initial BW = 6.5 kg) fed diets containing 20% PBM (as-fed basis, replacing SDPP, BM, FM, and a portion of the soybean meal) in all phases of the nursery diet was compared with a group fed conventional diets without PBM. There were no differences in overall performance (d 0 to 26); however, ADG (P < 0.10) and feed intake were higher (P < 0.01) for pigs fed the conventional diet than for pigs fed the 20% PBM diet during Phase I (d 0 to 5). Experiment 3 was a slope-ratio assay to determine the ability of PBM to replace SDPP. A total of 320 pigs (initial BW = 7.32 kg) was weaned (21 d) and allotted to five treatment groups in three trials in a blocked design with product (SDPP or PBM) as the first factor, and lysine level (1.08, 1.28, 1.49%; as-fed basis) as the second factor. Growth rate increased with increasing lysine (P < 0.05), regardless of the source. These results indicate that PBM can be used in nursery diets in place of blood meal and fish meal without affecting performance. Furthermore, although feeding PBM in Phase I diets was not equivalent to SDPP during the first week, there was no overall difference in performance at the end of the nursery phase.  相似文献   

16.
Sixty Angus and Angus x Hereford steers (246 kg initial BW) were used to determine the effects of Zn level and source on performance, immune response, and carcass characteristics of growing and finishing steers. Treatments consisted of 1) control (no supplemental Zn), 2) ZnO, 3) Zn proteinate-A (ZnProt-A, 10% Zn), and 4) ZnProt-B (15% Zn). Treatments 2, 3, and 4 supplied 25 mg of supplemental Zn/kg diet. Steers were individually fed a corn silage-based diet during the 84-d growing phase and a high corn diet during the finishing phase. Cell-mediated and humoral immune response measurements were obtained between d 67 and 74 of the growing phase. Equal number of steers per treatment were slaughtered after receiving the finishing diets for 84 or 112 d. Performance and carcass measurements were similar in steers fed the two ZnProt sources. Zinc supplementation, regardless of source, increased (P < 0.05) ADG during the growing phase. In the finishing phase, ADG (P = 0.10) and gain/feed (P = 0.07) tended to be higher for steers fed ZnProt compared with those supplemented with ZnO. Gain and feed efficiency were similar for control and ZnO-supplemented steers during the finishing phase. Steers fed ZnProt had heavier (P < 0.05) hot carcass weights and slightly higher (P < 0.05) dressing percentages than those in the control or ZnO treatments. Quality grade, yield grade, marbling, and backfat were increased by Zn supplementation, but were not affected by Zn source. In vitro response of lymphocytes to mitogen stimulation and in vivo swelling response following intradermal injection of phytohemagglutinin were not affected by Zn level or source. Humoral immune response following vaccination with infectious bovine rhinotracheitis also was not affected by treatment. Soluble concentrations of Zn in ruminal fluid were higher (P < 0.05) in steers fed ZnProt compared to ZnO steers. Results indicate that ZnProt may improve performance of finishing steers above that observed with inorganic Zn supplementation.  相似文献   

17.
Effect of mannan oligosaccharides on growth performance of weanling pigs   总被引:8,自引:0,他引:8  
Four experiments were conducted to evaluate the effects of mannan oligosaccharides (provided by Bio-Mos [BM], a product containing a minimum of 28% glucomannoprotein from S. cerevisiae) on growth performance of nursery pigs. Treatments were replicated with five to six pens of four to five pigs each. Initial BW ranged from 4.7 to 5.4 kg, and pigs were weaned at 16 to 20 d of age. Experiments 1, 2, and 4 consisted of Phase 1 (7 to 8 d), Phase 2 (12 to 14 d), and Phase 3 (7 to 8 d) periods, but Exp. 3 consisted only of Phase 1 (7 d) and 2 (14 d) periods. The diets for Phase 1, 2, and 3 contained 1.6, 1.5, and 1.1% Lys, respectively. The treatments in Exp. 1 were 0, 0.20, and 0.30% BM, which did not affect growth performance. The treatments in Exp. 2 were two levels of excess Zn (0 and 3,000 ppm) and three levels of BM (0, 0.20, and 0.30%) in a 2 x 3 factorial. Excess Zn increased (P < 0.08) ADG and ADFI in Phase 2 and 3 and overall. The 0.20% BM addition increased ADG (Phase 3 and overall) and ADFI (Phase 2 and overall) in the absence of excess Zn but did not affect or decreased these response variables in the presence of excess Zn (Zn x BM quadratic, P < 0.08). Experiment 3 was similar to Exp. 2, but the 0.30% BM addition was not used. Excess Zn decreased (P < 0.09) ADG in Phase 1 but increased (P < 0.09) ADG and ADFI in Phase 2. The BM decreased (P < 0.03) overall ADFI but increased Phase 2 and overall ADG and gain:feed (GF) in the absence of excess Zn but not in the presence of excess Zn (Zn x BM, P < 0.07). The BM decreased ADFI during Phase 2, but the decrease was greater in pigs fed excess Zn (Zn x BM, P < 0.07). Experiment 4 evaluated the interactive effects of the antibiotic (oxytetracycline and neomycin) and BM and of Zn and BM. Antibiotic (no excess Zn) increased (P < 0.01) ADG and ADFI in Phases 2 and 3 and overall. The BM addition decreased ADG and GF in Phase 2 when the antibiotic was not in the diet but increased ADG when the antibiotic was in the diet (antibiotic x BM, P < 0.05). Excess Zn increased (P < 0.07) ADG and ADFI during Phases 2 and 3 and overall. In Phase 2, the 0.20% BM decreased GF when excess Zn was not added to the diet but increased GF when Zn was included (Zn x BM, P < 0.03). Mannan oligosaccharides improved pig performance in some instances during Phase 2 when fed in combination with an antibiotic and no excess dietary Zn, but it had no effect or negative effects in the presence of excess Zn or in the absence of an antibiotic.  相似文献   

18.
A total of 1,210 nursery pigs was used in two experiments to evaluate the effects of irradiation of typical nursery diet ingredients, specialty protein products, and the whole diet on nursery pig performance. In Exp. 1, 880 barrows and gilts (15 +/- 2 d of age at weaning) were used in two growth trials (14 d and 12 d for Trials 1 and 2, respectively) to determine the effects of individual ingredient and whole-diet irradiation on nursery pig performance. Overall (d 0 to 14 of Trial 1 and d 0 to 12 of Trial 2), ADG was greater (P < 0.05) for pigs fed irradiated animal plasma compared with pigs fed the control, the diet containing irradiated microingredients, and the diet that was manufactured and irradiated. Also, pigs fed irradiated soybean meal had greater (P < 0.05) ADFI compared with pigs fed the manufactured diet that was irradiated. Pigs fed the diet containing irradiated animal plasma had improved feed efficiency (G:F; P < 0.05) compared with those fed the diet with irradiated microingredients and when all ingredients were irradiated before manufacturing of complete feed. Finally, pigs fed irradiated corn, whey, fishmeal, soybean oil, microingredients, or if all ingredients or the whole diet were irradiated, had similar ADG, ADFI, and G:F (P > 0.12) to control pigs. In Exp. 2, 330 nursery pigs (20 +/- 2 d of age at weaning) were used to determine the effects of irradiation of commercially available specialty protein products in diets for nursery pigs. Overall, ADG was greater (P < 0.05) when pigs were fed diets containing nonirradiated spray-dried animal plasma and egg combination (SDAPE) and dried porcine digest (DPD) compared with pigs fed the control diet containing no specialty protein products. In addition, G:F was improved (P < 0.05) when pigs were fed diets containing nonirradiated SDAPE, DPD, spray-dried beef muscle (SDBM), and spray-dried whole egg (SDWE) compared with pigs fed the control diet. Pigs fed irradiated SDAPE and SDBM had greater (P < 0.05) ADG than pigs fed the nonirradiated forms. Pigs fed irradiated SDBM had improved (P < 0.05) G:F compared with pigs fed the nonirradiated form. In Exp. 1 and 2, an irradiation treatment level of 8.5 kGy was effective in reducing the total bacterial concentration of all ingredients evaluated, as well as the whole diet in Exp.1. Irradiation of certain ingredients, but not the complete diet, increased growth performance of nursery pigs.  相似文献   

19.
Four experiments were conducted to determine the effects of adding a beta-mannanase preparation (Hemicell, ChemGen, Gaithersburg, MD) to corn-soybean meal-based diets on growth performance and nutrient digestibility of weanling and growing-finishing pigs. In Exp. 1, 156 weanling pigs (20 d, 6.27 kg BW) were allotted to four dietary treatments in a randomized complete block design. Treatments were a factorial arrangement of diet complexity (complex vs simple) and addition of 3-mannanase preparation (0 vs 0.05%). Pigs were fed in three dietary phases (Phase 1, d 0 to 14; Phase 2, d 14 to 28; and Phase 3, d 28 to 42). Pigs fed complex diets gained faster and were more efficient (P < 0.05) during Phase 1 compared with pigs fed simple diets. Overall, gain:feed ratio (G:F) tended to be improved (P < 0.10) for pigs fed complex diets and it was improved (P < 0.01) for those fed diets with beta-mannanase. In Exp. 2, 117 pigs (44 d, 13.62 kg BW) were allotted randomly to three dietary treatments. Dietary treatments were 1) a corn-soybean meal-based control, 2) the control diet with soybean oil added to increase metabolizable energy (ME) by 100 kcal/kg, and 3) the control diet with 0.05% beta-mannanase preparation. Beta-mannanase or soybean oil improved (P < 0.05) G:F compared with pigs fed the control diet. In Exp. 3, 60 pigs (22.5 kg BW) were allotted randomly to the three dietary treatments used in Exp. 2. Dietary treatments were fed in three phases (23 to 53 kg, 53 to 82 kg, and 82 to 109 kg with 0.95, 0.80, and 0.65% lysine, respectively). Overall, the addition of soybean oil tended to improve G:F (P < 0.10) compared with that of pigs fed the control diet, and G:F was similar (P > 0.54) for pigs fed diets with soybean oil or beta-mannanase. Also, addition of beta-mannanase increased ADG (P < 0.05) compared with that of pigs fed the control or soybean oil diets. There were no differences (P > or = 0.10) in longissimus muscle area or backfat; however, on a fat-free basis, pigs fed the diet with beta-mannanase had greater (P < 0.05) lean gain than pigs fed the control or soybean oil diets. In Exp. 4, 12 barrows (93 kg BW) were allotted randomly to one of the three dietary treatments used in Exp. 3. Addition of 3-mannanase had no effect (P > 0.10) on energy, nitrogen, phosphorus, or dry matter digestibility. These results suggest that beta-mannanase may improve growth performance in weanling and growing-finishing pigs but has minimal effects on nutrient digestibility.  相似文献   

20.
An experiment was conducted to compare the effects of organic (Zn AA complex, ZnAA) and inorganic Zn (ZnSO4) sources on sows and their progeny during gestation and lactation and on the pigs during the nursery period. The dietary treatments were 1) a corn-soybean meal diet with 100 ppm Zn from ZnSO4 (control); 2) diet 1 + 100 ppm additional Zn from ZnSO4; and 3) diet 1 + 100 ppm additional Zn from ZnAA. Dietary additions were on an as-fed basis. Thirty-one primaparous and multiparous sows were allotted to the treatment diet beginning on d 15 of gestation and continuing through lactation. At weaning (d 17 of age), 202 pigs (63, 55, and 84 pigs for treatments 1 to 3, respectively) were allotted to the same dietary treatment as their dam. The pigs were fed a 3-phase diet regimen during the nursery period: d 0 to 7 (phase I); d 7 to 21 (phase II); and d 21 to 28 (phase III). At weaning and at the end of phase III, 1 gilt per replicate was killed, and the left front foot, liver, pancreas, and entire small intestine were removed. Diet had no effect (P > 0.10) on any response during gestation. During lactation, there was an increase (P < 0.10) in litter birth weight in sows fed ZnAA compared with those fed the control or ZnSO4 diets. The sows fed ZnAA nursed more pigs (P < 0.10) than sows fed the ZnSO4 diet, and they weaned more pigs (P < 0.05) than sows fed the control diet. Jejunal villus height of the weaned pigs from sows fed ZnSO4 was increased (P < 0.05) compared with those from the sows fed the control diet. During the nursery period, growth performance was not affected (P > 0.10) by diet. Pigs fed ZnSO4 had greater duodenal villus width (P < 0.05) than those fed ZnAA, and pigs fed ZnSO4 or the control diet had greater ileal villus width (P < 0.05) than those fed ZnAA. Pigs fed ZnSO4 or ZnAA had more (P < 0.05) bone Zn than those fed the control diet. Liver Zn concentration was greatest in pigs fed ZnSO4, followed by those fed ZnAA, and then by those fed the control diet (P < 0.05). Pancreas Zn was increased (P < 0.05) in pigs fed ZnSO4 compared with those fed the control diet. These results suggest that 100 ppm Zn in trace mineral premixes provides adequate Zn for optimal growth performance of nursery pigs, but that 100 ppm additional Zn from ZnAA in sow diets may increase pigs born and weaned per litter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号