首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
Adsorption of Potassium and Sodium Ions by Variable Charge Soils   总被引:4,自引:2,他引:4  
Adsorption of potassium and sodium ions by four typical variable charge soils of South China was studied.The results indicated that the variable charge soils saturated with H and Al showed a much higher preference for potassium ions relative to sodium ions,and this tendence could not be changed by such factors as the pH,the concentration of the cations,the dielectric constant of solvent,the accompanying anions and the iron oxide content etc.,suggesting that this difference in affinity is caused by the difference in the nature of the two cations.It was observed that a negative adsorption of sodium ions by latosol and lateritic red soil in a mixed system containing equal amount of potassium and sodium ions at low pH,which is caused by a competitive adsorption of potassium and sodium ions and repulsion of positive charge on the surfaces of soil particles for cations.The adsorption of potassium and sodium ions increased with the decreases in the dielectric constant of solvent and the iron oxide content.Sulfate affected the adsorption of potassium and sodium ions through changing the surface properties of the soils.  相似文献   

2.
Low-molecular-weight (LMW) organic acids exist widely in soils and have been implicated in many soil processes.The objective of the present paper was to evaluate effect of two LMW organic acids, citric acid and oxalic acid, on Cl^- adsorption by three variable charge soils, a latosol, a lateritic red soil and a red soil, using a batch method. The results showed that the presence of citric acid and oxalic acid led to a decrease in Cl- adsorption with larger decreases for citric acid. Among the different soils Cl- adsorption in the lateritic red soil and the red soil was more affected by both the LMW organic acids than that in the latosol.  相似文献   

3.
Paddy fields in the southeastern basin of Dianchi Lake have rapidly changed to greenhouses since 1999. A total of 61 surface soil samples, including 43 greenhouse soils, 12 upland soils, and 6 paddy soils, were collected from a flat lowland area mainly used for agricultural production fields in the southeastern basin of Dianchi Lake. Analyses of the soil samples indicated that the greenhouse soils were characterized by a lower organic matter content, lower pH, and higher soluble nutrients than the paddy soils in the area. The lower organic matter content of the greenhouse soils was ascribed to environmental or management factors rather than the clay content of the soil. Accumulation of soluble nutrients, especially inorganic N, was due to over-application of fertilizers, which also caused soil acidification. The average amount of readily available N, P, and K accumulated in the greenhouse soils was estimated to be equal to or higher than the annual input of these nutrients as a fertilizer, indicating that a reduction in fertilizer application was possible and recommended. In contrast, a very low available Si content was observed in the paddy soils, suggesting the need for Si application for rice production.  相似文献   

4.
R. MOREAU  J. P&#;TARD 《土壤圈》2004,14(4):409-423
Highly weathered soils are distributed in the humid and wet-dry tropics, as well as in the humid subtropics. As a result of strong weathering, these soils are characterized by low activity clays, which develop variable surface charge and related specific properties. Surface reactions regarding base exchange and soil acidification, heavy metal sorption and mobility, and phosphorus sorption and availability of the tropical highly weathered soils are reviewed in this paper. Factors controlling surface reactivity towards cations and anions, including ion exchange and specific adsorption processes, are discussed with consideration on practical implications for rational management of these soils. Organic matter content and pH value are major basic factors that should be controlled through appropriate agricultural practices, in order to optimise favorable effects of colloid surface properties on soil fertility and environmental quality.  相似文献   

5.
Adsorption of Potassium and Calcium Ions by Variable Charge Soils   总被引:1,自引:1,他引:1  
Interactions of potassium and calcium ions with four typical variable charge soils in South China were examined by measuring pK-0.5pCa value with a potassium ion-selective electrode and a calcium ion-selective electrode,and pK value with a potassium ion-selective electrode.The results showed that adsorption of potassium and calcium ions increased with soil suspension pH,and the tendency of the pK-0.5pCa value changing with pH differed with respect to pH range and potassium to calcium ratio.Adsorption of equal amount of calcium and potassium ions led to release of an identical number of protons,suggesting similar adsorption characteristics of these two ions when adsorbed by variable charge soils.Compared with red soil,latosol and lateritic red soil had higher adsorption selectivities for calcium ion.The red soil had a greater affinity for potassium ion than that for calcium ion at low concentration,which seems to result from its possession of 2:1 type minerals,such as vermiculite and mica with a high affinity for potassium ion.The results indicated that adsorption of potassium and calcium ions by the variable charge soils was chiefly caused by the electrostatic attraction between the cations and the soil surfaces.Moreover,it was found that sulfate could affect the adsorption by changing soil surface properties and by forming ion-pair.  相似文献   

6.
WANG Jing-Hua 《土壤圈》1995,5(3):193-202
The sensitivity of a large number of variable charge soils to acid rain was evaluated through examining pH-H2SO4 input curves. Two derivative parameters, the consumption of hydrogen ions by the soil and the acidtolerant limit as defined as the quantity of sulfuric acid required to bring the soil to pH 3.5 in a 0.001mol L-1 Ca(NO3)2 solution, were used. The sensitivity of variable charge soils was higher than that of constant charge soils, due to the predominance of kaolinite in clay mineralogical composition. Among these soils the sensitivity was generally of the order lateritic red soil > red soil > latosol. For a given type of soil within the same region the sensitivity was affected by parent material, due to differences in clay minerals and texture. The sensitivity of surface soil may be lower or higher than that of subsoil, depending on whether organic matter or texture plays the dominant role in determining the buffering capacity. Paddy soils consumed more acid within lower range of acid input when compared with upland soils, due to the presence of more exchangeable bases, but consumed less acid within higher acid input range, caused by the decrease in clay content.  相似文献   

7.
Equilibrium and kinetic studies have been made on the adsorption of acrylonitrile(CH2=CHCN) on three soils and four minerals from aqueous solutions.It was shown that the organic matter was the major factor affecting the adsorption process in the soils.The conformity of the equilibrium data to linear type(one soil) and Langmuir type(two soils) isotherms indicated that different mechanisms were involved in the adsorption.This behavior appears bo be related to the hydrophobicity of soil organic matter due to their composition and E4/E6 ratio of humic acids.The adsorption kinetics were also different among the soils,indicating the difference in porosity of organic matter among the soils,and the kinetics strongly affected the adsorption capacity of soils for acrylonitrile.Acrylonitrile was slightly adsorbed from aqueous solutions on pyrophyllite with electrically neutral and hydrophobic nature,and practically not on montmorillonite and kaolinite saturated with Ca.However,much higher adsorption occurred on the zeolitized coal ash,probably caused by high organic carbon content(107g/kg).  相似文献   

8.
The study about the adsorption of phosphate on four variable charge soils and some minerals revealed that two stage adsorption appeared in the adsorption isotherms of phosphate on 4 soils and there was a maximum adsorption on Al-oxide-typed surfaces between pH 3.5 to pH 5.5 as suspension pH changed from 2 to 9, but the adsorption amount of phosphate decreased continually as pH rose on Fe-oxide typed surfaces. The adsorption amount of phosphate and the maximum phosphate adsorption pH decreased in the order of yellow-red soil > lateritic red soil > red soil > paddy soil, which was coincided with the content order of amorphous Al oxide. The removement of organic matter and Fe oxide made the maximum phosphate adsorption pH rise from 4.0 to 5.0 and 4.5, respectively. The desorption curves with pH of four soils showed that phosphate desorbed least at pH 5. Generally the desorption was contrary to the adsorption with pH changing.  相似文献   

9.
Two variable charge soils were submerged after the addition of 30g/kg of organic matter to examine the differences in behavior between iron and manganese with respect to reduction and the distribution of different froms of the reduced elements.The reduction of manganese proceeded almost synchronously with the fall in redox potential,while the reduction of iron showed a remarkable lag behind the Eh change.Once formed,the distribution of water-soluble,exchangeable and precipitatied forms of ferrous iron was controlled by pH,CEC of the soil and total concentration of the element.For manganous ions,the proportions of water-soluble and exchangeable forms in total Mn^2 were larger than those for ferrous ions.The reduction of the two elements led to a mobilization of them,and such effect persisted even after drying of the soil,i.e.,the content of amorphous Fe became higher than that of the original soil.  相似文献   

10.
Charge characteristics and Cu^2 adsorption-desorption of soils with variable charge(latosol)and permanent charge(brown soil)and the relationship between them were studied by means of back-titration and adsorption equilibrium respectively.The amount of variable negative charge was much less in variable-charge soil than in permanent-charge soil and increased with the pH in the system,but the opposite trend occurred in the points of zero charge(PZCs).The amount of Cu^2 ions sorbed by permanent-charge soil was more than that by variable-charge soil and increased with the increase of Cu^2 concentration within a certain range in the equilibrium solution.The amount of Cu^2 ions desorbed with KCl from permanent-charge soil was more than that from variable-charge soil,but the amount of Cu^2 ions desorbed with de-ionized water from permanent-charge soil was extremely low whereas there was still a certain amount of desorption from variable-charge soil.The increase of PZC of soils with variable or permanent change varied with the increment of Cu^2 ions added.When the same amount of Cu^2 ions was added,the increments of PZC and variable negative surface chargc of permanent-charge soil were different from those of variable-charge soil.  相似文献   

11.
徐明岗  季国亮 《土壤学报》2002,39(2):161-169
对 3种可变电荷土壤和 4种恒电荷土壤在陪伴阳离子分别为Na 、K 、NH 4 、Mg2 、Ba2 、Al3 和共存SO2 -4下Cl- 的吸附量进行了测定。结果表明 ,供试土壤的Cl-吸附量顺序均为AlCl3>BaCl2 和MgCl2 >KCl和NH4 Cl>NaCl,其中可变电荷土壤的差异较大。不同电解质溶液中Cl- 吸附量的顺序与土壤所带正电荷量的顺序一致。Langmuir方程的K值较小 ,且在不同介质中的差异不大。随SO2 -4浓度的增大 ,可变电荷土壤对Cl- 的吸附量减少 ,平衡液的pH值增大 ,而恒电荷土壤则变化甚微 ,说明共存的SO2 -4使可变电荷土壤的表面负电荷增加 ,但对恒电荷土壤则影响不大。这些结果说明 ,Cl- 以电性吸附的机理不因介质而变。可变电荷土壤在一价阳离子存在时 ,除土壤本身所带的正电荷外 ,还有一价阳离子吸附后产生的正电荷以及由此引起的对Cl- 的协同吸附。在二、三价阳离子存在时 ,还有Cl- 的离子对吸附 ,而恒电荷土壤在所有介质中 ,似乎总是以与Cl- 的协同吸附为主  相似文献   

12.
The effects of simulated acid rain retained in soil on the properties of acid soil and its diminishing by application of ground phosphate rock were investigated by using the sorption method.Results show as follows:(1)For yellow brown soil,the effect of simulated acid rain on the properties of soil with a pH value of 5.9 was relatively small,except a great quantity of acid rain deposited on it.(2) for red soil,the effect of simulated acid rain on the properties of soil was significant.With the increase of the amount of acid deposition,the pH value of soil was declined,but the contents of exchangeable H^ ,Al^3 and Mn^2 and the amount of SO4^1- retention were increased.(3) Many properties of acid soils could be improved by applying ground phosphate rock.For example,pH value of soils and the amounts of available P and exchangeable Ca^2 and Mg^2 were increased,and the amounts of exchangeable H^ and Al^3 and SO4^2- retained was reduced.The application of ground posphate rock could effctively diminish the pollution of acid rain to soil.  相似文献   

13.
酸雨对黄土磷的淋溶效应   总被引:1,自引:0,他引:1  
采用室内土柱模拟淋溶试验,分析了陕西省杨凌区3种土壤在5个酸雨梯度的侵蚀作用下,土壤磷的释放和迁移规律.结果表明,酸雨会使土壤受到一定程度的酸化,而土壤的酸化程度与酸雨的pH值、土壤的类型、土壤的pH值、阳离子交换量、有机质含量有关.土壤对酸雨的缓冲能力由大到小的顺序为:腐殖质层>母质层>黏化层.随着酸雨累积淋溶量的增加,土壤磷的释放总量呈增加趋势,但淋失率会下降.酸雨的pH值为5时土壤磷的累积淋失量最大,土壤磷的累积淋失量和淋失率顺序为:腐殖质层>黏化层>母质层.酸雨对腐殖质层的磷具有最强侵蚀效应.母质层和黏化层的酸化主要发生在土壤表层,而腐殖质层酸化主要发生在土壤底层,酸雨侵蚀后腐殖质层酸化最严重.长期的酸雨侵蚀会导致土壤磷流失,造成土壤养分贫瘠化.  相似文献   

14.
酸雨中的SO4^2-和NO3^-等阴离子在土壤中迁移时会引起大量的盐基离子淋溶,导致土壤退化。用室内土柱模拟SO4^2-和NO3^-在红壤旱地各土层中的垂直穿透状况,并用Hydrus-1D模型对试验结果进行了拟合和预测。结果表明,N05在红壤各层中的穿透速度较快,其中在耕作层的穿透曲线峰值最高,C/C0达到0.39,峰值高低顺序依次为:耕作层〉母质层〉淋溶层〉犁底层。SO4^2-在土柱中的穿透速度远低于NO3^-,穿透曲线有明显的拖尾现象。其在各土层的穿透时间依次为:母质层〉犁底层〉淋溶层〉耕作层;而其峰值高低顺序依次为:耕作层〉淋溶层〉母质层〉犁底层,最高点耕作层的顶点C/C0仅为0.22。用Hydrus-1D模型对试验结果进行模拟,所得的SO4^2-和NO3^-穿透土壤的浓度模拟值与其实测值均呈极显著的正相关关系。利用数学模拟获得了饱和导水率和垂直扩散率等溶质运移参数,并预测了研究区酸雨后SO4^2-和NO3^-在红壤耕层的迁移状况,表明SO4^2-会在酸雨结束后持续淋溶,从而影响土壤中Ca、Mg等盐基离子的淋失。  相似文献   

15.
Abstract

The influence of soil organic matter on selenite sorption was investigated in the selenite adsorption capacity and the surface particle charge change by ligand exchange reaction using the hydrogen peroxide (H2O2) treatment and the ignition treatment of two Andosols. The removal of organic carbon (C) in soils accelerated selenite sorption, implying that organic matter of soils had negative influence on the selenite adsorption on the soils. Positive charge decrease on soil particles, concomitant proton consumption, and release of silicon (Si), sulfate (SO4 2‐), and organic C were observed in selenite sorption by the soils. The development of surface particle negative charge with selenite sorption was smaller in the H2O2‐treated soil than in the original soils and was scarcely observed in the ignition‐treated soil. It can be assumed that the increase of negative charge by selenite sorption was attributed to new negative sites borne by released insoluble organic matter and negative charge development directly by selenite sorption was small.  相似文献   

16.
The insecticide-nematicide carbofuran was incorporated in alginate-based granules to obtain controlled-release (CR) properties. The basic formulation [sodium alginate (1.61%)-carbofuran (0. 59%)-water] was modified by addition of sorbents. The effect on carbofuran release rate, caused by the incorporation of natural and acid-treated bentonite (0.5 and 1.0 M H(2)SO(4)) in alginate formulation, was studied by immersion of the granules in water under shaking. The time taken for 50% of the active ingredient to be released into water, t(50), was longer for those formulations containing natural bentonite (6.1 h) or acid-treated bentonite (9.0 and 11.7 h for 0.5 and 1.0 M H(2)SO(4) treatments, respectively) than for the preparation without bentonite (4.7 h). It appears from the results that the release of carbofuran from the various formulations is controlled by a diffusion mechanism according to the n values obtained, which were close to 0.5 in all cases. The mobility of carbofuran from alginate-based CR formulations was investigated by using soil columns packed with a clay soil (53% clay and 0.08% organic matter). Two alginate-based CR formulations containing natural bentonite or acid-treated bentonite (0.5 M H(2)SO(4)) were compared to technical grade carbofuran. The use of alginate-based CR formulations resulted in a reduction of the leached amount of carbofuran compared with the total amount of pesticide leached using the technical product (50 and 75% for CR granules containing natural and acid-treated bentonite, respectively). Alginate-bentonite CR formulations might be efficient systems for reducing carbofuran leaching in clay soils, which would reduce the risk of groundwater pollution.  相似文献   

17.
In the context of pollution‐control strategies to minimize the detrimental effects of soil acidification, there is a need to know how and to what extent soils respond to acidifying substances. The purposes of this study were to assess the sensitivity of soil to acidification, in particular to a decrease in pH and in base saturation (BS), and the risk of Al toxicity for vulnerable plants using chemical indicators. These indicators were derived from soil data (pH, exchangeable cations, amount of fine earth) measured in the mineral horizons of 257 soil profiles throughout Switzerland. Based on the analysis of the distribution of pH and BS values in the soil collective, we assessed the sensitivity of soils to a decrease in pH and in BS. Soils that were considered sensitive to a decrease in pH had pH values between 4.8 and 7.0. The degree of sensitivity was estimated with the proportion of fine earth in the critical pH range to a depth of 100 cm. Soils that were considered sensitive to a decrease in BS had pH values between 3.6 and 5.5 and a BS between 10% and 95%. Since the effective cation‐exchange capacity (CECeff) of the fine earth might dampen the decrease in BS when acidity is added, the disposition for a decrease in BS was related to the relative amount of fine earth in the sensitive BS and to the mean CECeff of this fine‐earth fraction. The risk of Al toxicity for vulnerable plants was estimated using the ratio of base cations to Al at the cation‐exchange sites (BC : Alexc). A BC : Alexc of 0.2 was taken as a threshold value below which the risk for sensitive plants increases. The degree of risk was based on the proportion of fine earth in the critical BC : Al range (≤0.2) in the soil profile. These indicators taking into account the various aspects of soil acidification are derived from usually available data and represent therefore a cost‐effective tool to assess the sensitivity of soils to an input of acidity.  相似文献   

18.
我国南方不同母质土壤pH剖面特征及酸化因素分析   总被引:3,自引:1,他引:2  
【目的】母质是影响土壤理化性质的主要因素之一,研究不同母质土壤pH的剖面特征及主要影响因素,为防治土壤酸化提供依据。【方法】选取湖南祁阳白茅草植被下七种母质(第四纪红土、红砂岩、板页岩、花岗岩、石灰岩、紫色页岩、河流冲积物)发育的土壤,测定不同层次(0-20、20-40、40-60、60-80和80-100 cm)土壤pH,通过比较表层(0-20 cm)与底层(60-100 cm) pH的差异来表征表层土壤是否酸化及酸化程度;测定0-20 cm土层的酸碱缓冲容量、有机质含量、阳离子交换量、比表面积及颗粒组成,分析影响表层酸化的主要因素。【结果】石灰岩剖面土壤的pH (8.46~8.72)最高,呈强碱性,其次为河流冲积物(7.37~7.87)、紫色页岩土壤(7.41~8.00),呈碱性;花岗岩、第四纪红土、红砂岩、板页岩四种母质发育的红壤呈酸性或强酸性,以花岗岩红壤pH (5.31~5.70)较高,其次为第四纪红土(4.62~4.97)、红砂岩红壤(4.31~4.67),板页岩红壤pH (4.25~4.49)最低。比较表层(0-20 cm)与底层(60-100 cm)土壤的pH,发现七种母质剖面土壤的表层均出现了pH降低,说明表层已出现酸化现象,酸化程度大小依次为:紫色页岩土壤>河流冲积物土壤、花岗岩红壤>第四纪红土、红砂岩红壤>石灰岩土壤、板页岩红壤。对表层土壤的比表面积、颗粒组成(黏粒、粉粒、砂粒含量)和pH、酸碱缓冲容量、阳离子交换量、有机质含量共八种理化因素进行逐步线性回归分析,由于多种因素的相互影响,七种母质土壤并未发现影响表层酸化的主要因素,但在四种母质(第四纪红土、红砂岩、板页岩、花岗岩)发育的酸性红壤中阳离子交换量是影响表层酸化的主要因素。【结论】土壤阳离子交换量与表层红壤酸化差值呈显著负相关,是影响第四纪红土、红砂岩、板页岩和花岗岩四种酸性红壤表层酸化的主要因素之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号