首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies showed that a T. aestivum-H. villosa disomic substitution line DS4V(4D) showed a high level of resistance to wheat spindle streak mosaic virus (WSSMV). By crossing DS4V(4D) with the common wheat variety Yangmai #5, plants were obtained that were double monosomic for chromosomes 4V and 4D. Univalents are prone to misdivision at the centromere, and fusion of the derived telocentric chromosomes leads to the production of Robertsonian whole-arm translocations. We screened the progenies of such double monosomic plants by C-banding and genomic in situ hybridization and identified one compensating translocation where the short arm of 4V was translocated to the long arm of 4D of wheat, T4VS⋅4DL. RFLP analysis using the group-4 specific probe BCD110 was used to confirm the translocation. The T4VS⋅4DL translocation stock, accessioned as NAU413, is highly resistant to WSSMV and is also of good agronomic type. The WSSMV resistance gene located on 4VS was designated Wss1.  相似文献   

2.
The sensitivity of the embryo to abscisic acid (ABA) has been reported toplay an important role in seed dormancy. Using ditelocentric lines of wheatcv. Chinese Spring (CS, nondormant and ABA insensitive), F2 seedsbetween monosomic lines of CS and a wheat line Kitakei-1354 (dormant,ABA sensitive) and deletion lines of CS chromosome 4A, germinability ofseeds and embryo-half seeds incubated in water and ABA were examined. The results indicated that the long arm of chromosome 4A carried majorgene(s) for the embryo sensitivity to ABA and dormancy. Chromosome2D might be also involved in the sensitivity to ABA.  相似文献   

3.
Genes for frost resistance in wheat   总被引:4,自引:0,他引:4  
J. Sutka 《Euphytica》2001,119(1-2):169-177
Wheat varieties differ in their responses to low temperatures. Geneticstudies on frost resistance in wheat are difficult because the effects arequantitative in nature and thus require precise genetic material andreproducible experimental conditions. The detailed diallel analyses indicatedthat the inheritance of frost resistance is polygenic and mostly additive.Nevertheless, studies using monosomic, ditelosomic and substitution lineshave identified specific chromosomes that carry genes responsible for frostresistance. In particular, the chromosomes 5A and 5D appear to carrymajor genes. Using molecular markers (RFLP, AFLP) and recombinantsubstitution lines it was shown that the Vrn-A1 (vernalization) and Fr1 (frost resistance) loci were located closely linked on the distal portionof the long arm of 5A, but recombination between them was found (cM = 2). The RFLP markers Xpsr426 and Xwg644 were tightlylinked to the Vrn-A1 locus. Loci Vrn-D1 and Fr2are located on the long arm of 5D. Fr2 and Vrn-D1 arehomoeologous to Fr1 and Vrn-A1. A physical map of theVrn-A1 and Fr1 genes was constructed on chromosome 5Ausing deletion lines. This cytogenetically based physical map could be usefulin further work on genome mapping and gene cloning.  相似文献   

4.
Bronco 90 is an advanced line of hexaploid triticale and was reported to be a 2D(2R) chromosome substitution type. In F1 hybrids of this triticale with bread wheat, however, a meiotic configuration of 16 bivalents and 10 univalents was frequently observed indicating the presence of an additional D(R) chromosome substitution or D/R translocation. To determine the chromosome constitution of Bronco 90, C-banding and fluorescent in situ hybridization techniques were applied to somatic and meiotic metaphase chromosomes. These analyses revealed that in Bronco 90, the terminal 7% of the long arm of rye chromosome 5R is derived from the long arm of chromosome 4D. This translocated chromosome (5RS.5RL-4DL) and telosome 4DL formed metaphase I bonds at a frequency of 71%, demonstrating the significance of small terminal chromosome segments for pairing. This novel rye-wheat translocation is probably generated by homoeologous crossing-over because the distal region of 5RL is known to be homoeologous to that of 4DL. Possible association of this translocation with the absence of hairy peduncle character in Bronco 90 is discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
H. Li    X. Chen    Z. Y. Xin    Y. Z. Ma    H. J. Xu    X. Y. Chen  X. Jia 《Plant Breeding》2005,124(2):203-205
Three lines conferring resistance to powdery mildew, Pm97033, Pm97034 and Pm97035, were developed from the cross of Triticum durum-Haynaldia villosa amphidiploid TH3 and wheat cv.'Wan7107' via backcrosses, immature embryo and anther culture. Genomic in situ hybridization analysis showed that these lines were disomic translocation lines. Cytogenetic analysis indicated that the F1 plants of crosses between the three translocation lines and 'Wan7107' and crosses between the three translocation lines and substitution line 6V(6D) formed 21 bivalents at meiotic metaphase I. Aneuploid analysis with 'Chinese Spring' double ditelocentric stocks indicated that the translocated chromosomes were related to chromosome 6D. Biochemical and restriction fragment-length polymorphism (RFLP) analyses showed that the translocation lines lacked a specific band of 6VL of H. villosa compared with the substitution and addition lines but possessed specific markers on the short arm of the 6V chromosome of H. villosa. The three translocation lines lacked specific biochemical loci and RFLP markers located on chromosome 6DS. The results confirmed that Pm97033, Pm97034 and Pm97035 were T6DL.6VS translocation lines.  相似文献   

6.
Chromosomal location of genes for supernumerary spikelet in bread wheat   总被引:2,自引:0,他引:2  
Z.S. Peng  C. Yen  J.L. Yang 《Euphytica》1998,103(1):109-114
The supernumerary spikelet (SS) character of bread wheat (Triticum aestivum L.) is an abnormal spike morphology expressing extra spikelets per spike. Chromosomal location of the genes for the SS character in the bread wheat line, Yupi Branching was determined by monosomic analysis. The normal-spiked bread wheat Chinese Spring monosomic series were used as testing lines. Data indicated that chromosomes 2D, 4A, 4B and 5A of bread wheat carry genes for SS character (bh genes). Among them, the gene on chromosome 2D has the strongest effect on the expression of the SS character. Comparison of disomic and monosomic plants in 2D, 4A, 4B and 5A F2 populations revealed that the bh genes are hemizygous-effective and dosage-independent. The F1 monosomic analysis showed that the bh genes of Yupi Branching are recessive. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Summary The genePm2 conditioning resistance to powdery mildew in the cultivar Ulka was located on chromosome 5D by monosomic analysis. It showed genetic segregation independent of geneLr3 conditioning resistance to leaf rust on the same chromosome. Results of telocentric mapping demonstrated thatLr1 was on the long arm of 5D whereasPm2 was very close to the centromere on this arm or, more likely, on the opposite arm. Evidence from chimaeric sectoring favoured the latter alternative.  相似文献   

8.
M. Wagenvoort  W. Lange 《Euphytica》1980,29(2):281-293
Summary Initial single and double trisomics of S. tuberosum Group Tuberosum cv. Gineke were successfully crossed with and backcrossed to clones obtained through inbreeding of self-compatible dihaploids of the same variety. Some trisomics showed reduced flowering or flower abnormalities and contributed therefore only to a small extent. Berry-set and seed-set varied considerably. There was no relation between these phenomena, nor was there any relation between either berry-or seed-set and the identity of the extra chromosome in the female parent. Seed-set seemed to be influenced by the male parent. When a more inbred male parent was used in the crosses with trisomics this often resulted in less seed per cross. There was no clear relation between seed-set and stainability of the pollen grains, but both the strong selection for good pollen and the high level of self-compatibility, have apparently contributed to the success of the crosses. The double trisomic plants yielded less seed than most single trisomics. Only three of the single trisomics produced stainable pollen and two of them yielded progeny when used as male parent in crosses or selfings.In the progenies several of the trisomic types could be distinguished on the basis of plant morphology in the young seedling stage. For ten different trisomics the morphotype is being described. The average rate of female transmission of the extra chromosome was about twenty per cent, but there was a wide variation, both between and within the various trisomic types. The results indicated that for chromosomes 3 and 8 the rate of transmission was higher than the average value. In one out of two trisomic types male transmission of the extra chromosome occurred, with a rate of 4.7%. The possible causes for the observed differences in female transmission of the extra chromosome are being discussed.  相似文献   

9.
Dasypyrum villosum (L.) Candargy is a diploid, wild relative of bread wheat (Triticum aestivum L.). Previous studies showed that D. villosum chromosome 1V has genes that encode seed storage proteins that may be used to enhance the grain quality of bread wheat. As a first step in genetic transfer, the present study was initiated to develop compensating Robertsonian translocations involving wheat chromosome 1D and D. villosum chromosome 1V and to analyze their effects on grain quality. A monosomic 1D stock was crossed with the disomic addition stock DA1V#3 and the double monosomic plants (20″ + 1D′ + 1V#3′) were self pollinated. Two co-dominant STS markers (BE499250 and BE591682) polymorphic for the short arm of 1V#3S and two dominant STS markers (BE518358 and BE585781) polymorphic for the long arm of 1V#3L were developed to screen a large number of progeny to identify plants that had only the 1V#3S or 1V#3L arms. Five compensating Robertsonian heterozygous translocations, two (plants #56 and #83) for the short arm (T1DL·1V#3S) and three (plants #7, #123, and #208) for the long arm (T1DS·1V#3L) were identified from 282 F2 plants and confirmed by genomic in situ hybridization and C-banding analyses. Two homozygous translocations T1DL·1V#3S (plants #14 and #39) were identified from 52 F3 plants derived from F2 plant #83. Four homozygous translocations T1DS·1V#3L (plants #3, #22, #29, and #30) were identified from 68 F3 plants derived from F2 plant #208. The homozygous translocation T1DL·1V#3S had a significantly higher (37.4 ml) and T1DS·1V#3L had significantly lower (10 ml) Zeleny sedimentation values compared to Chinese Spring wheat (30.7 ml). Our results showed that 1V#3S increased gluten strength and enhanced wheat quality, but 1V#3L decreased gluten strength and did not enhance wheat quality.  相似文献   

10.
小麦抗白粉病新基因的AFLP和SSR标记及其染色体定位   总被引:11,自引:2,他引:9  
李韬  张增艳  林志珊  陈孝  高珊  辛志勇 《作物学报》2005,31(9):1105-1109
M53 (YAV2/TEZ//Ae.squarrosa 249) 是硬粒小麦与粗山羊草的双二倍体合成种,携带一个抗白粉病新基因,暂命名为Pm-M53,该基因对北京地区白粉病优势生理小种15号表现免疫抗性。本研究利用来源于杂交组合M53/宛7107的一个F2群体,在苗期采用白粉病15号小种(Blumeria graminis f. sp. tritici)接种,抗病反应型鉴定表明,抗感比例符合3∶1,说明其抗性受显性单基因控制;对部分F2植株的F3株系的抗病鉴定进一步证明了F2鉴定的可靠性;利用AFLP和SSR标记技术结合F2分离群体对目的基因进行了遗传作图,将目的基因定位在5D染色体的长臂上。其中AFLP标记P16M16-109(Apm109)和P5M16-161(Apm161)与目的基因的遗传距离分别为1.0和3.0 cM。SSR标记Xwmc289b、Xgwm583和Xgwm292与目的基因的遗传距离分别为20.0、33.0和24.0 cM。这些标记位于目的基因的两侧。利用中国春遗传背景的缺-四体和双端体结合AFLP标记Apm109确证了SSR标记定位的可靠性,进一步证明该基因是一个新的抗白粉病基因。  相似文献   

11.
Linked leaf rust and stripe rust resistance genes introduced from Triticum dicoccoides protected common wheat seedlings against a range of pathotypes of the respective pathogens. The genes were chromosomally mapped using monosomic and telosomic analyses, C-banding and RFLPs. The data indicated that an introgressed region is located on wheat chromosome arm 6BS. The introgressed region did not pair with the ‘Chinese Spring’ 6BS arm during meiosis possibly as a result of reduced homology, but appeared to pair with 6BS of W84-17 (57% of pollen mother cells) and ‘Avocet S’. The introgressed region had a very strong preferential pollen transmission (0.96–0.98) whereas its transmission through egg cells (0.41–0.66) varied with the genetic background of the heterozygote. Homozygous resistant plants had a normal phenotype, were fertile and produced plump seeds. Symbols Lr53 and Yr35 are proposed to designate the respective genes.  相似文献   

12.
Summary The Sr27 translocation in WRT238 was found to consist of chromosome arms 3RS of rye and 3AS of common wheat. An attempt was made to purposely produce compensating translocations having 3RS and a wheat homoeologous group 3L arm. To achieve this, plants, double monosomic for 3R and a wheat homoeologous group 3 chromosome, were irradiated (7.5 Gy gamma rays) or left untreated before being used to pollinate stem rust susceptible testers. Segregation for stem rust resistance was studied to identify F2 families with Sr27-carrying translocated chromosomes, these were confirmed by means of C-banding. Compensating translocations 3RS3AL and 3RS3BL) were obtained readily and at similar frequencies from untreated and irradiated plants (respectively, 7.2% and 9.3%). Both translocation types have impaired transmission and segregate approximately 3: 2 (present: absent) in the F2.  相似文献   

13.
G. F. Marais 《Plant Breeding》1990,104(2):152-159
A Thinopyrum distichum chromosome segment translocated on chromosome arm 7DL. of the line ‘Indis’, was shown to be preferentially transmitted in crosses with other bread wheats. The translocated segment carries a gene for leaf rust resistance and produces a null condition for the endopeptidase product, EP-Dla. These characters were used to follow the transmission of the translocated chromosome in segregating and testcross progenies derived by crossing ‘Indis’ to four bread wheat cultivars. The severity of the gametocidal response in the heterozygotes ranged from a virtually exclusive transfer of the translocation to an almost normal transmission of the homologues. In some genetic backgrounds an intermediate level of transmission occurred. In the F1 with a gametocidal response, the transmission of the normal chromosome 7D was reduced in both sexes, but the reduction may be more severe in the male germline.  相似文献   

14.
The spikes of club wheat are significantly more compact than spikes of common wheat due to the action of the dominant allele of the compactum (C) locus. Little is known about the location of C on chromosome 2D and the relationship between C and to other spike-compacting genes. Thus, a study was undertaken to place C on linkage maps and a chromosome deletion bin, and to assess its relatedness to the spike compacting genes zeocriton (Zeo) from barley and soft glume (Sog) from T. monococcum. Genetic mapping was based on recombinant inbred lines (RILs) from a cross between the cultivars Coda (club) and Brundage (common) and F2 progeny from a cross between the club wheat Corrigin and a chromosome 2D substitution line [Chinese Spring (Ae. tauschii 2D)]. The C locus was flanked by Xwmc144 and Xwmc18 in the RIL population and it was completely linked to Xcfd116, Xgwm358 and Xcfd17 in the F2 population. C could not be unambiguously placed to a chromosome bin because markers that were completely linked to C or flanked this locus were localized to chromosome bins on either side of the centromere (C-2DS1 and C-2DL3). Since C has been cytogenetically mapped to the long arm of chromosome 2D, we suspect C is located in bin C-2DL3. Comparative mapping suggested that C and Sog were present in homoeologous regions on chromosomes 2D and 2Am, respectively. On the other hand, C and Zeo, on chromosome 2H, did not appear to be orthologous.  相似文献   

15.
Summary An Indian hexaploid wheat var. Pb C591 has been shown to carry gene(s) for chlorophyll synthesis on chromosome 3A (Singh & Joshi, 1979). In the present study cv. Pb.C591, its monosomic 3A and diteocentrics for 3A, 3BL and 3DL of var. Chinese Spring have been used. The F2 segregation involving crosses between Pb.C591 as male, monosomic line 3A of Pb.C591 (female) and ditelocentrics 3A, 3BL and 3DL of cv. Chinese Spring as male and female respectively has been observed. It has been found that there are two dominant genes regulating chlorophyll synthesis in cv. Chinese Spring. These genes are located on chromosomes arms 3A and 3DS respectively.These chlorophyll synthetic genes must be the same which were postulated by Sears (1956, 1957) as the normal alleles of virescent gene v 2 (which was located on 3BS) on chromosomes 3A(v 1) and 3D(V 3).  相似文献   

16.
Chromosome 5A of wheat carries several major genes of agronomic importance, including Vrn1 controlling spring/winter wheat difference, Q determining spike morphology and B1 inhibiting awn development. A population of single-chromosome recombinant lines from the cross between two chromosome substitution lines, 'Chinese Spring' (Cappelle-Desprez 5A) and 'Chinese Spring' (Triticum spelta 5A) was developed to map these genes on the long arm of chromosome 5A relative to RFLP markers. Using 120 recombinant lines, a map of approximately 230 cM in length was constructed. The gene order was centromere– Vrn1– Q– B1. The Vrn1 locus was tightly linked to two RFLP markers, Xbcd450 and Xrz395 with 0.8 cM, and to Xpsr426 with 5.0 cM. The Vrn1-adjacent region was located in the central of the long arm, approximately 90 cM from the centromere. The chromosome region around Q and the 5A/4A translocation break-point were mapped by three RFLP markers, and their order was found to be Q– Xpsr370– Xcdo457–4A/5A break-point– Xpsr164. The B1 locus was located on the most distal portion of the long arm. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
采用中国春单体系列对多小穗小麦品系“88F2185”的抽穗期进行了遗传分析。 “88F2185”的早抽穗性状是其3B、 5B和7D染色体的效应。 其中, 7D染色体的效应最强, 5B染色体具早抽穗的新基因。 3B、 5B和7D F2群体中单体株与二体株比较的结果表明, 早抽穗基因是半合、 有效的。  相似文献   

18.
N. Watanabe  S.F. Koval 《Euphytica》2003,129(3):259-265
The chlorophyll a:b ratio of chlorina mutants is much higher than that of wild type plants. Physical mapping of the chlorina mutant loci (cn-A1, cn-B1 and cn-D1) of common wheat (Triticum aestivum L.) and durum wheat (T. turgidum L.) was carried out with partial deletion lines of Chinese Spring(CS) of the long arms of homoeologous group7 chromosomes. F1 plants of partial deletion lines with near-isogenic lines (ANK-32A and ANK-32B) of the spring bread wheat Novosibirskaya 67 and a near-isogenicline of durum wheat LD222, ANW-7B were evaluated for chlorophyll a:b ratio of the leaves. Hemizygous and heterozygous plants were more easily distinguished by chlorophyll a:b ratio than by visual observation. The dose effects of the chlorina loci on chlorophyll a:b ratio were also confirmed. The position of the allele on the chromosome was localized by fraction length, the comparative values between whole chromosome and partially deleted chromosome. The locus cn-A1 was localized on the region of 83% distal from the centromere on the long arm of chromosome 7A, cn-B1 locus was localized on the region between 69% and 78% distal from the centromere on the long arm of chromosome 7B, and cn-D1 locus was localized on the region between 76% and 77% distal from the centromere on the long arm of chromosome 7D. We consider the map derived by deletion mapping is more accurate than the map calculated from recombination frequency. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
To study the influence of genes from Thinopyrum intermedium on traits affecting the bread‐making quality of wheat, two derivatives from a putative disomic addition line in cultivar ‘Vilmorin 27’ were used in cytological, biochemical and molecular characterization. Cytological analysis suggested that one of the derivatives (Line‐1) had a terminal deletion involving the long arm of chromosome 1D (2n = 42, Del‐1DL”), and the other (Line‐2) was a conventional addition line, but also carried the same deletion on chromosome 1D (2n = 44, Thi”+Del‐1DL”). Amplification and sequencing of high‐molecular‐weight glutenin subunit (HMW‐GS) genes coded by the Th. intermedium chromosome in Line‐2 indicated the presence of one x‐type with an extra cysteine and four (rather than one) unique y‐type genes. Rheological studies of Line‐1 showed significantly lower dough strength compared to ‘Vilmorin 27’, confirming the recognized role of Glu‐1D coded HMW‐GSs. Line‐2 showed significantly higher dough strength compared to the background cultivar, indicating a significant potential of Th. intermedium for improvement of bread‐making quality in wheat.  相似文献   

20.
Chromosomal localization and linkage mapping of a powdery mildewresistance gene were conducted in the resistant wheat line Pova, derivedfrom a Triticum aestivum cv. Poros-Aegilops ovata-alien additionline. Monosomic analysis revealed that a major dominant gene was locatedon chromosome 7D. This gene possessed a distinct disease response patternagainst a differential set of Blumeria graminis tritici isolates andsegregated independently from resistance gene Pm19 also located onwheat chromosome 7D. Molecular genetic analysis showed that theresistance gene in Pova was specifically located on the long arm ofchromosome 7D closely linked to one RFLP and three AFLP markers. It isproposed that the new gene be designated Pm29.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号