首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The yield response of yellow lupin (Lupinus luteus), sand plain lupin (L. cosentinii), narrow‐leafed lupin (L. angustifolius), and white lupin (L. albus) to applications of phosphorus (P), as single superphosphate (0 to 80 kg P ha‐1), was measured in the year of application in a field experiment on a sandy soil. Comparative P requirement was determined from yields when no P was applied, the amount of P required to produce the same percentage of the maximum (relative) yield, such as 90% of the maximum yield, and the P content measured in dried tops. For all these criteria, P requirement generally increased in the order L. cosentinii < L. albus < L. angustifolius < L. luteus. Proteoid roots, found only on L. cosentinii and L. albus plants, were probably responsible for these species using indigenous soil P and applied fertilizer P more effectively than L. luteus and L. angustifolius.  相似文献   

2.
Yellow lupin (Lupinus luteus L.) and narrow-leafed lupin (L. angustifolius L.) are grown as grain legumes in rotation with spring wheat (Triticum aestivum L.) on acidic sandy soils of south-western Australia. Yellow lupin can accumulate significantly larger cadmium (Cd) concentrations in grain than narrow-leafed lupin. A glasshouse experiment was undertaken to test whether adding increasing zinc (Zn) levels to soil increased Zn uptake by yellow lupin reducing accumulation of Cd in yellow lupin grain. Two cultivars of yellow lupin (cv. ‘Motiv’ and ‘Teo’) and 1 cultivar of narrow-leafed lupin (cv. ‘Gungurru’) were used. The soil was Zn deficient for grain production of both yellow and narrow-leafed lupin, but had low levels of native soil Cd (total Cd <0.05 mg kg?1) so 1.6 mg Cd pot?1, as a solution of cadmium chloride (CdCl2·H2O), was added and mixed through the soil. Eight Zn levels (0–3.2 mg Zn pot?1), as solutions of zinc sulfate (ZnSO4·7H2O), were added and evenly mixed through the soil. Yellow lupin accumulated 0.16 mg Cd kg?1 in grain when no Zn was applied, which decreased as increasing Zn levels were applied to soil, with ~0.06 mg Cd kg?1 in grain when the largest level of Zn (3.2 mg Zn pot?1) was applied. Low Cd concentrations (<0.016 mg Cd kg?1) were measured in narrow-leafed lupin grain regardless of the Zn treatment. When no Zn was applied, yellow lupin produced ~2.3 times more grain than narrow-leafed lupin, indicating yellow lupin was better at acquiring and using indigenous Zn from soil for grain production. Yellow lupin required about half as much applied Zn as narrow-leafed lupin to produce 90% of the maximum grain yield, ~0.8 mg pot?1 Zn compared with ~1.5 mg Zn pot?1. Zn concentration in whole shoots of young plants (eight leaf growth stage) related to 90% of the maximum grain yield (critical prognostic concentration) was (mg Zn kg?1) 25 for both yellow lupin cultivars and 19 for the narrow-leafed lupin cultivar. Critical Zn concentration in grain related to 90% of maximum grain yield was (mg Zn kg?1) 24 for both yellow lupin cultivars compared with 20 for the narrow-leafed lupin cultivar.  相似文献   

3.
Cadmium (Cd) accumulation in the aboveground parts of grain crops, and cultivar variation in uptake are of significant concern in the food supply chain. A glasshouse experiment on an acidic yellow sand was conducted to determine the effect of applied cadmium (0, 0.83, 1.67, 2.5, 3.35 mg Cd kg?1 soil) on the grain yield of Lupinus angustifolius L. (narrow-leafed lupin; cv. Gungurru) and Lupinus luteus L. (yellow lupin) cultivars, and the concentration and uptake (content) of cadmium by stems and grain. The addition of Cd decreased the grain yield of all varieties of yellow lupin, except Teo-105. However, the grain yield of narrow-leafed lupin was not significantly (p = 0.05) reduced by the addition of Cd to the soil. The grain yield of yellow lupin varieties of P283553 and 94017-3 decreased by 50–60% by the addition of Cd compared to other varieties (Wodjil, 94DO19-1) where grain yield decreased by about 10% with Cd application. Cadmium concentration in plant stems and grain and the content of Cd in lupin plants increased markedly with increasing levels of Cd in the soil. The increase in Cd concentration in stems and grain with the addition of Cd was always higher in yellow lupin than for narrow-leafed lupin. The Cd concentration in the grain of narrow-leafed lupin was about 40% of that of yellow lupin. The concentration of Cd in the stem at maturity was always higher than the Cd concentration in the grain for both Lupinus species. Yellow lupin, except 94DO19-1 had higher concentration of Cd in grain where no Cd was applied to the soil. However, compared to narrow-leafed lupin, all yellow lupin varieties had higher concentration of Cd in grain where Cd was applied to the soil.  相似文献   

4.
Lupinus angustifolius L. is a Mediterranean species, domesticated in the 20th century, representing an important grain legume crop in Australia and other countries. This work is focused on the collection of wild germplasm and on the characterisation of morphological and molecular diversity of germplasm accessions. It reports the collection of 81 wild L. angustifolius accessions from the South and Centre of Portugal, available at the ‘Instituto Superior de Agronomia Gene Bank’, with subsequent morphological and molecular characterisation of a selection of these and other accessions. A multivariate analysis of morphological traits on 88 L. angustifolius accessions (including 59 wild Portuguese accessions, 15 cultivars and 14 breeding lines) showed a cline of variation on wild germplasm, with plants from Southern Portugal characterised by earlier flowering, higher vegetative development and larger seeds. AFLP and ISSR molecular markers grouped modern cultivars as sub-clusters within the wider diversity of wild germplasm, revealing the narrow pool of genetic diversity on which domesticated accessions are based. The importance of preserving, characterising and using wild genetic resources for L. angustifolius crop improvement is outlined by the results obtained.  相似文献   

5.
In soils with low P availability, several legumes have been shown to mobilise less labile P pools and a greater capacity to take up P than cereals. But there is little information about the size of various soil P pools in the rhizosphere of legumes in soil fertilised with P although P fertiliser is often added to legumes to improve N2 fixation. The aim of this study was to compare the growth, P uptake and the changes in rhizosphere soil P pools in five grain legumes in a soil with added P. Nodulated chickpea (Cicer arietinum L.), faba bean (Vicia faba L.), white lupin (Lupinus albus L.), yellow lupin (Lupinus luteus L.) and narrow-leafed lupin (Lupinus angustifolius L.) were grown in a loamy sand soil low in available P to which 80 mg P kg−1 was added and harvested at flowering and maturity. At maturity, growth and P uptake decreased in the following order: faba bean > chickpea > narrow-leafed lupin > yellow lupin > white lupin. Compared to the unplanted soil, the depletion of labile P pools (resin P and NaHCO3-P inorganic) was greatest in the rhizosphere of faba bean (54% and 39%). Of the less labile P pools, NaOH-P inorganic was depleted in the rhizosphere of faba bean while NaOH-P organic and residual P were most strongly depleted in the rhizosphere of white lupin. The results suggest that even in the presence of labile P, less labile P pools may be depleted in the rhizosphere of some legumes.  相似文献   

6.
The degree of damage done to lupin plants by slugs is highly dependent on the species and the cultivar of plant. A study was carried out, in laboratory conditions and on small plots, to investigate the extent of damage done to plants of eight cultivars of narrow-leafed lupin when exposed to grazing by Arion vulgaris, Arion rufus and Deroceras reticulatum. Five sweet and three bitter cultivars of lupin were selected, respectively, having low- and high-alkaloid content. The contents of the dominant lupine alkaloids in these plants were determined. It was found that the susceptibility of the plants to slug damage is dependent on their content of alkaloids. The plants of high-alkaloid cultivars (Karo, Mirela and Oskar) were less heavily damaged by the studied species of slugs. The greatest differences were recorded for A. vulgaris and D. reticulatum, while the differences for A. rufus were smaller. For all studied slug species, the differences were statistically significant. The results of carried out experiments may potentially be of use in the selection of cultivars of Lupinus angustifolius to be grown in areas inhabited by these slug species.  相似文献   

7.
Landraces of white lupin (Lupinus albus L.) collected in Egypt were evaluated along with locally developed cultivars and selected foreign germplasm for yield and major morphological characteristics in five different locations. These locations represent different soil types and climatic conditions in Egypt. The results showed an outstanding performance of the local cultivar checks across traditional locations for lupin cultivation, which supports the utilization of local germplasm for further improvement of locally adapted lupins in Egypt. The results further suggest that local landrace germplasm may be an important source of alleles for shortening the vegetative period, reducing plant height and stem length, as well as for improving some yield components as number of pods and seeds per plant. The genotype-by-location interaction was significant for all characteristics. Mass selection in the Egyptian germplasm collection of white lupin has the potential for enhancing yield, especially in germplasm adapted to newly reclaimed desert locations.  相似文献   

8.
Phosphorus nutrition of spring wheat (Triticum aestivum L.) in mixed culture with white lupin (Lupinus albus L.). Spring wheat (Triticum aestivum L. ?Schirokko”?) and white lupin (Lupinus albus L.) were grown in mixed culture in Mitscherlich pots with 20 kg of soil in a green house. The soil used was a Bt of a Parabraunerde-Pseudogley from loess low in available P and limed from pH 4.6 to pH 6.5. Phosphorus was added as phosphate rock. In half of the pots cylinders of stainless steel screen prevented intertwining of the roots of the plant species. Independent of P addition, white lupin had higher dry matter production and P uptake than wheat, even although wheat had thinner roots and higher root densities than lupin, factors which favour the utilization of soil and fertilizer P. The higher P efficiency of white lupin was due to higher P uptake rates per unit root length mainly through mobilization of P especially in the rhizosphere of the proteoid roots. When the roots of the two species were allowed to intertwine, shoot dry matter production of wheat was nearly double because of improved tillering. Higher P concentrations and a more than 2-fold higher P uptake indicated that the increase in dry matter production of wheat was due to improved P nutrition. Nitrogen concentrations, however, remained unaffected at sufficient levels. An increased P uptake rate per unit root length was responsible for the better utilization of P by wheat, rather than the increase in total root length, due to the extended root volume. White lupin was able to mobilize P in the rhizosphere in excess of its own requirements. Thus mobilized P may be available to less P-efficient plants grown in mixed culture.  相似文献   

9.
该文研究了不同制备方法对花生浓缩蛋白功能性的影响,以期为不同制备方法制得的花生浓缩蛋白在食品中的广泛应用提供理论支持。以脱脂花生蛋白粉(DPF)为原料,通过等电沉淀、乙醇浸提、等电沉淀与乙醇浸提相结合及碱溶酸沉技术制备花生浓缩蛋白,并分别测定其蛋白功能性(蛋白溶解性、吸水性、持油性、乳化能力及乳化稳定性、起泡能力及泡沫稳定性、凝胶性质)。结果表明:碱溶酸沉技术制备的蛋白溶解性、起泡能力及泡沫稳定性最好;而乙醇浸提制备的蛋白吸水性、持油性和凝胶性质要显著性的高于其他方法制备的蛋白产品的;不同方法制备的花生浓缩蛋白的乳化稳定性均明显低于对照(DPF),尤以碱溶酸沉技术制备的最低。因此可知,乙醇浸提制备的蛋白适用于对吸水性、持油性和凝胶性质要求较高的食品中;碱溶酸沉技术制备的蛋白适用于对起泡能力要求较高的食品中。  相似文献   

10.
Summary During a collecting mission in South-West Turkey some lupin plants differing from Lupinus pilosus Murr., L. micranthus Guss. and L. angustifolius L., wild-growing in this region were found. These plants markedly distinguished from a dwarf habit of L. micranthus and exuberant L. pilosus. As found later, these plants with regard to many traits differed still more from the remaining lupin species of the Old World. The collected seeds of these plants were multiplied at the Plant Breeding Station in Wiatrowo. They were characterized by a smooth seed coat and according to classification of Gladstones could be referred to a group of European lupin crops containing the primitive species L. micranthus.New accession was compared to L. micranthus and L. pilosus considering 20 morphological, some physiological features and chemotaxonomic analyses. New accession was also artificially crossed to L. micranthus and L. pilosus but hybrid seeds were not obtained. The most pronounced morphological differences were in the height and exuberance of plants, the size of inflorescences and flowers, the size and coloration of strongly pubescent, ripen pods but first of all, the size and shape of seeds and seed coat surface.Differences in the protein and fat content in seeds as well as those in quantitative and qualitative composition of alkaloids also appear to be significant.Marked differences occurred also in the electrophoretic phenotype of isozymes. They consisted not only in differences of electrophoretic mobility of bands, but also in different number of bands.The obtained results enabled us to give the population of these plants a separate species name — Lupinus anatolicus.  相似文献   

11.
《Cereal Chemistry》2017,94(4):670-676
Wheat grain may be attacked by different insect species. Among them, some Heteroptera species (e.g., Aelia spp. and Eurygaster spp.) reduce wheat breadmaking quality; others, such as Nysius simulans , commonly extract water and nutrients from soy plants. The aim of this study was to assess the effect of N. simulans infestation on breadmaking quality of different bread wheat cultivars. Twelve wheat cultivars (damaged and undamaged by N. simulans ) were studied. Infested grain percentage varied between 51 and 78%, depending on cultivar. Protein and gluten quantity and quality were significantly reduced in damaged flours, as shown by gluten index, solvent retention capacity, and SDS sedimentation index. SDS‐PAGE from water‐extractable proteins evidenced an important proteolytic activity in damaged samples. Dough rheological properties showed a reduced dough viscoelasticity in damaged samples. Microbread specific volume changed from 3.26 cm3/g for samples made with undamaged flour to 2.77 cm3/g for bread made with damaged flour. No evidence for modification in starch properties was found. The infestation by N. simulans reduced wheat breadmaking quality in all cultivars studied, as a result of proteolytic activity occurring after dough hydration. Results suggest that the presence of N. simulans should be considered as a factor affecting wheat crops, mainly those located next to soy crop areas, which is the usual host for this insect.  相似文献   

12.
Lupin (Lupinus angustifolius L.) and pea (Pisum sativum L.) differ substantially in their root growth at pH≥6. The mechanisms underlying such a variation are not fully understood. The H+ buffering capacity of isolated cell wall and calcium binding property of intact roots of these two species were compared under various experimental conditions. The shape of the H+/OH titration curves of cell wall for lupin and pea showed no major discrepancy except with differed magnitudes. There appeared to be two H+‐titratable groups in root cell wall of both species—below pH 6 and above 8. The wall H+ buffering capacity of pea roots was lower at pH 4–5, but was greater at pH above 5.5 than that of lupin roots. The fractionation of apoplastic calcium demonstrated that the proportion of easily exchangeable Ca2+ was greater while that of tightly bound Ca2+ was smaller in pea roots than in lupin roots. In addition, Ca2+ in cell wall was more easily exchanged by H+ in pea than in lupin roots. The results suggest that the different sensitivity in root growth at pH≥6 of lupin and pea is related to the difference in H+ buffering and Ca2+ exchange capacities in the root apoplast of these species, and that the greater sensitivity of lupin roots to pH≥6 is partly due to a higher threshold of H+ concentration required for cell wall loosening.  相似文献   

13.
The level of grain hardness of wheat (Triticum aestivum) cultivars profoundly affects milling properties and end-use. We examined grain hardness among a genetically defined set of 83 chromosome 5D homozygous recombinant substitution lines derived from soft wheat cv. Chinese Spring and hard wheat cv. Cheyenne and compared four common methods of measuring wheat grain hardness. Measures of grain hardness included a modified particle size index, Brabender Quadrumat flour milling, near-infrared reflectance (NIR) spectroscopy, and the single-kernel characterization system (SKCS). Duncan's multiple range test was used to group recombinant lines according to parental classes. Quadrumat milling fractions, percent bran and middlings, were well correlated to NIR and SKCS grain hardness, whereas break flour, a traditional measure of grain hardness, was poorly correlated to other hardness measures. NIR and SKCS grain hardness measures provided the greatest and similar mean separations. Both methods identified recombinant lines as being significantly outside either parental class and significantly different from and in between the two parental classes. Between two divergent environments, correlations (r) for Quadrumat bran and middlings percents and NIR and SKCS hardness ranged from 0.83 to 0.94. Analysis of variance indicated that lines differed substantially for hardness, and hardness was highly influenced by environment, albeit consistently, as indicated by low line-location model interaction terms. The results confirmed the presence of major allelic differences assignable to chromosome 5D and suggested the action of minor gene(s). Break flour, in particular, showed strong indications of transgressive segregation independent of the Hardness (Ha) locus. The Perten 4100 SKCS provided the best (most discriminating) measure of the material properties of the wheat endosperm manifested by the action of the Ha locus.  相似文献   

14.
In a series of experiments, the effect of elevated pH on root growth of different lupin genotypes and lime-tolerant Pisum sativum was assessed. Seedlings were cultivated in pH-controlled but unbuffered nutrient or test solutions with pH 5—8 under constant light or constant darkness. Moderately increased solution pH did not affect root elongation. At high pH, root elongation rates were reduced by less than 35%, L. luteus being most sensitive. In a further experiment, effects of 10 mM bicarbonate (HCO3-) and organic buffers (MES, TES) were examined. Bicarbonate severely affected root elongation of lupins, sensitivity increasing in the order Lupinus albus < L. angustifolius < L. luteus. Since the reduced root elongation was not accompanied by a decreased root weight, specific root weight was increased. Shoot growth was not affected by HCO3-. Addition of organic buffers to alkaline nutrient solution, similarly to HCO3-, reduced elongation of main roots, but not that of laterals. Both treatments increased citrate concentrations in roots of sensitive L. luteus, but not of tolerant L. albus. Other carboxylates were not related to growth inhibition. Xylem exudate pH was always below 5.8, indicating that HCO3- was probably not translocated to the shoot. It is concluded that HCO3- is a key factor for lime-induced growth inhibition of calcifuge lupins, with the roots, not the shoots, being primarily affected.  相似文献   

15.
The functional properties of proteins from Tarom and Shiroodi cultivars were determined and compared with technological aspects of food and nutraceutical applications. Shiroodi has higher protein content than Tarom, and the yields of protein obtained were 72.88 and 66.36%, respectively. Nitrogen solubilities of rice bran protein of Tarom were more than Shiroodi at all pH levels. In addition, higher solubility was found in acidic or alkaline conditions. Although the rice bran proteins had lower emulsifying properties than bovine serum albumin, they had similar foaming properties in comparison with egg white. Tarom isolates had a significantly higher solubility, emulsifying property, and foaming stability and greater surface properties than Shiroodi isolates. The results showed the surface hydrophobicities of rice bran protein were greater than casein and ovalbumin and lower than other proteins such as bovine serum albumin. Water and oil absorption capacities were 1.03 and 1.66 for Tarom and 87.3 and 75.3 for Shiroodi, respectively. The bulk densities of Tarom and Shiroodi were also 0.55 and 0.53 g/mL, which make them suitable for weaning food and other industrial applications. As a result, these rice bran proteins showed higher hydrophobicity than that of other rice bran protein varieties as well as more functionality. Thus, they have good potential in the food and pharmaceutical industries.  相似文献   

16.
 The effect of six Bradyrhizobium sp. (lupin) strains (WPBS 3201D, WPBS 3211D, USDA 3040, USDA 3041, USDA 3042 and CB 2272) and Fe supply on nodulation, N2-fixation and growth of three lupin species (Lupinus termis, L. albus and L. triticale) grown under Fe deficiency in an alkaline soil, were examined in sterilized and non-sterilized pot experiments. When inoculated with USDA 3040, 3041, 3042 and CB2272 without Fe addition, the three lupin species had a very low nodule number and mass, low shoot and root dry matter accumulation and lower N yield. However, inoculation with WPBS 3201D and 3211D without Fe treatments increased all these parameters substantially. The ability of WPBS 3201D and 3211D to form nodules on the three lupin species under conditions of Fe stress could be attributed to their ability to scavenge Fe from Fe-deficient environments through their siderophore production. Addition of Fe to the other four strains significantly increased nodulation and N2-fixation of the three lupin species, indicating that the poorer nodulation and N2-fixation of these strains in the absence of Fe, resulted from a low ability to obtain Fe from alkaline soils. Bradyrhizobium strains WPBS 3201D and 3211D were superior to the other four strains in terms of promoting greater nodulation, N2-fixation, plant growth and N accumulation of L. termis and L. albus. However, the other four strains were more efficient in symbiotic association with L. triticale. The greater variations in nodule efficiencies (specific nitrogenase activity) under different levels of Fe supply could be attributed to the quantities of bacteroid protein and leghaemoglobin in the nodules. The results suggested that Bradyrhizobium (lupin) strains differ greatly in their ability to obtain Fe from alkaline soils, and that the selection of bradyrhizobial strains which are tolerant of Fe deficient soils could complement plant breeding for the selection of legume crops for Fe-deficient soils. Received: 5 January 1998  相似文献   

17.
《Cereal Chemistry》2017,94(5):801-804
Durum breeding programs need to identify raw material traits capable of predicting whole wheat spaghetti quality. Nineteen durum wheat (Triticum turgidum L. var. durum ) cultivars and 17 breeding lines were collected from 19 different environments in North Dakota and were evaluated for physical and cooking qualities of whole wheat spaghetti. Raw material traits evaluated included grain, semolina, and whole wheat flour characteristics. Similar to traditional spaghetti, grain protein content had a significant positive correlation with cooking quality of whole wheat spaghetti. Stepwise multiple regressions showed grain protein content, mixogram break time, and wet gluten were the predominant characteristics in predicting cooked firmness of whole wheat spaghetti.  相似文献   

18.
Narrow-leafed lupin (Lupinus angustifolius L.) is widely planted in infertile acidic soils where phosphorus (P) deficiency is one of the major limiting factors for plant growth. A hydroponic experiment was conducted to examine the morphological and physiological responses of roots of narrow-leafed lupin in response to altered P supply at 0, 1, 10, 25 or 75 μ M P as monopotassium phosphate (KH2PO4). Low P (P0 and P1) significantly decreased the plant biomass, but the supply of 10 μ M P was sufficient to produce similar plant biomass as the maximal P supply (P75), indicating an efficient P acquisition by narrow-leafed lupin. Phosphorus deficiency did not enhance rates of carboxylate exudation and proton release by plant roots, indicating that carboxylate exudation and proton release are not the mechanisms for efficient P acquisition. In contrast, low P supply evidently modified the root morphology by increasing the primary root elongation, and developing a large number of cluster-like first-order lateral roots with dense root hairs, thus allowing efficient P acquisition by narrow-leafed lupin under low P supply.  相似文献   

19.
Little information is available on phosphorus (P) uptake and rhizosphere processes in maize (Zea mays L.), faba bean (Vicia faba L.), and white lupin (Lupinus albus L.) when intercropped or grown alone in acidic soil. We studied P uptake and soil pH, carboxylate concentration, and microbial community structure in the rhizosphere of maize, faba bean, and white lupin in an acidic soil with 0–250 mg P (kg−1 soil) as KH2PO4 (KP) or FePO4 (FeP) with species grown alone or intercropped. All plant species increased the pH compared to unplanted control, particularly faba bean. High KP supply (>100 mg P kg−1) significantly increased carboxylate concentration in the rhizosphere of maize. The carboxylate composition of the rhizosphere soil of maize and white lupin was significantly affected by P form (KP or FeP), whereas, this was not the case for faba bean. In maize, the carboxylate composition of the rhizosphere soil differed significantly between intercropping and monocropping. Yield and P uptake were similar in monocropping and intercropping. Monocropped faba bean had a greater concentration of phospholipid fatty acids in the rhizosphere than that in intercropping. Intercropping changed the microbial community structure in faba bean but not in the other corps. The results show that P supply and P form, as well as intercropping can affect carboxylate concentration and microbial community composition in the rhizosphere, but that the effect is plant species-specific. In contrast to previous studies in alkaline soils, intercropping of maize with legumes did not result in increased maize growth suggesting that the legumes did not increase P availability to maize in this acidic soil.  相似文献   

20.
Grain hardness (kernel texture) is of central importance in the quality and utilization of wheat (Triticum aestivum L.) grain. Two major classes, soft and hard, are delineated in commerce and in the Official U.S. Standards for Grain. However, measures of grain hardness are empirical and require reference materials for instrument standardization. For AACC Approved Methods employing near‐infrared reflectance (NIR) and the Single Kernel Characterization System (39‐70A and 55‐31, respectively), such reference materials were prepared by the U.S. Dept. of Agriculture Federal Grain Inspection Service. The material was comprised of genetically pure commercial grain lots of five soft and five hard wheat cultivars and was made available through the National Institute of Standards and Technology (SRM 8441, Wheat Hardness). However, since their establishment, the molecular‐genetic basis of wheat grain hardness has been shown to result from puroindoline a and b. Consequently, we sought to define the puroindoline genotype of these 10 wheat cultivars and more fully characterize their kernel texture through Particle Size Index (PSI, Method 55‐30) and Quadrumat flour milling. NIR, SKCS, and Quadrumat break flour yield grouped the hard and soft cultivars into discrete texture classes; PSI did not separate completely the two classes. Although all four of these methods of texture measurement were highly intercorrelated, each was variably influenced by some minor, secondary factors. Among the hard wheats, the two hard red spring wheat cultivars that possess the Pina‐D1b (a‐null) hardness allele were harder than the hard red winter wheat cultivars that possess the Pinb‐D1b allele based on NIR, PSI, and break flour yield. Among the soft wheat samples, SKCS grouped the Eastern soft red winter cultivars separate from the Western soft white. A more complete understanding of texture‐related properties of these and future wheat samples is vital to the use and calibration of kernel texture‐measuring instruments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号