首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
[Objective]This study was conducted to evaluate the soil fertility in Yiliantobacco-growing areas of Hunan Province.[Method]The soil nutrient contents iseven tobacco-growing towns of Yiliang County,Yunnan Province were surveyefrom 2010 to 2013 and integrated soil fertility index(SFI value)was calculated tanalyze the soil fertility suitability in theses areas.[Result]The soil p H,contents oorganic matter,hydrolytic N,rapidly available K and available B were all at an appropriate level,while the contents of rapidly available P,available Mg,available Zand water-soluble Cl-were high.Among them,the contents of available P and water-soluble Cl-had great variation.Finally,the soil fertility suitability of Yiliang tobacco-growing areas was graded based on their SFI values.As a result,20%of thestobacco-growing areas were in Grade I,47.7%in Grade II,29.3%in Grade III1.5%in Grade IV and 1.5%in Grade V.The average SFI was 0.61.From 2010 t2013,the p H value and available Mg content reduced year by year,while the contents of organic matter,hydrolytic N,rapidly available P,rapidly available K,available Zn,available B and water-soluble Cl-were increased.  相似文献   

2.
Methiopyrisulfuron is a novel sulfonylurea herbicide with good activity for annual broadleaf and gramineal weeds control. Present study was to investigate the effects of organic amendments (including peat (PE), sewage sludge (SS), and humic acid (HA)) on adsorption, desorption and leaching of methiopyrisulfuron in soils. The batch equilibration technique was applied for adsorption-desorption experiments and the leaching was tested through soil column simulated experiments under laboratory conditions. The Freundlich model may well describe adsorption-desorption of methiopyrisulfuron on organic amendments, the natural soil, and amended soils. Organic amendments could not only greatly increase the adsorption capacity of methiopyrisulfuron, but also significantly enhance the hysteresis of desorption of methiopyrisulfuron. The correlations between Kf-ads and organic matter content of amended soils were significant, and the correlations between H and soil organic matter in amended soils with PE, SS, and HA were significant too. The results of soil column experiments indicated that organic amendments greatly decreased leaching of methiopyrisulfuron. This study suggested that PE, SS, and HA could greatly influence environmental behavior of methiopyrisulfuron in soils. Use of organic amendments might be an effective management practice for controlling potential pollution of methiopyrisulfuron to environment.  相似文献   

3.
Soil acid and alkali buffer capacity, as a major indicator for evaluating its vulnerability and resistibility to acidification and alkalization, is an important factor affecting the sustainable agriculture, through knowledge on which soil acidification process can be predicted and modified. In this study, titration curve method was adopted to investigate the pH buffer capacity (pHBC) of fluvor-aquic soil, and separate titration curves were established by adding incremental amounts of either standardized hydrochloric acid (HC1) (0.12 mol L^-1) or sodium hydroxide (NaOH) (0.10 mol L^-1) to soil suspended in deionized water (soil:solution = 1:5). Soil pH was measured after 7 d resuspension and isothermal equilibrium (T = 25℃). Linear regressions were fitted to the linear portion of each titration curve and the slopes of these lines were derived as the soil pHBC. The results showed that significant correlations between the amounts of adding acid or alkali and each pH change were presented, and titration curve method was feasible for measurement of pHBC on typical fluvor-aquic soil in Huang-Huai-Hai Plain, and the coefficients of determination were higher than the similar researches on acid soil (R^2 = 0.96). The slope-derived pHBC of acid and alkali were 158.71 and 25.02 mmol kg^-1, respectively. According to the classification of soil buffer systems, the soil tested belongs to the calcium carbonate buffer system, carbonates contribute the most to pHBC, and the contribution of soil organic matter relatively less than it.  相似文献   

4.
For the scientific management of farmland, it is significant to understand the spatio-temporal variability of soil organic matter and to study the influences of related factors. Using geostatistical theory, GIS spatial analysis, trend analysis and a Geographically Weighted Regression (GWR) model, this study analyzed the response of soil organic matter to climate and socio-economic factors in central Heilongjiang Province during the past 25 years. Second soil survey data of China for 1979-1985, 2005 field sampling data, climate observations and socio-economic data for 1980-2005 were analyzed. First, soil organic matter in 2005 was spatially interpolated using the Co-Kriging method along with auxiliary data sets of soil type and pH. The spatio-temporal variability was then studied by comparison with the 1980s second soil census data. Next, the temporal trends in climate and socio-economic factors over the past 25 years were investigated. Finally, we examined the variation of the response of soil organic matter to climate and socio-economic factors using the GWR model spatially and temporally. The model showed that 53.82% area of the organic matter content remained constant and 29.39% has decreased during the past 25 years. The impact of precipitation on organic matter content is mainly negative, with increasing absolute values of the regression coefficient. The absolute value of regression coefficient of annual average temperature has decreased, and more areas are now under its negative effects. In addition, the areas of positive regression coefficient of annual sunshine hours have northward shifted, with the increasing absolute value of positive coefficient and decreasing absolute value of negative coefficient. The areas of positive regression coefficient of mechanized farming as a socio-economic factor have westward shifted, with the increasing absolute value of negative coefficient and decreasing absolute value of positive coefficient. The area of regions with the positive regression coefficient of irrigatio  相似文献   

5.
Objective] This study aimed to investigate the improving effect of organic fertilizer on acidified soil as wel as their ef-fects on fruit quality and quantity in Yantai orchard. [Method] Plot experiment was conducted to investigate the effects of organic fertilizer on fruit yield and quality of Red Fuji and chemical properties of acidified soil. [Result] The apple yield in acidified soil applied with organic fertilizer al increased. Under the application of biological organic fertilizer, the apple yield was higher, and it was 8.92% higher than that in the control group. Under the mixed application of chemical fertilizer and biological organic fertiliz-er, the growth and development of apple trees were improved, and the total soluble solid (TSS) content, vitamin C (Vc) content and TSS-acid ratio in mature apples al increased. The application of organic fertilizer significantly reduced soil acidity. Compared with those in the control group, the soil pH value, organic matter content and alkali-hydrolyzable nitrogen content under the ap-plication of biological organic fertilizer were increased by 8.33%, 15.10% and 30.80%, respectively. [Conclusion] The application of biological organic fertilizer could improve the yield of apple in acidified soil.  相似文献   

6.
Root C and root-released C are closely related to soil organic matter content and mechanistic simulation modeling has proven to be useful for studying root and soil organic C dynamics in plant-soil ecosystems.A computer model was designed in this study to simulate the dynamics of root C and root released C decomposition in situ and the dynamics of different forms of C in soil under two barley cultivars(Abee and Samson).The results showed that on the 15th day,about 48%of the total 14C fixed in roots was respired for Abee and 42%for Samson.This indicated that the turnover rate of root 14C of Abee was higher than that of Samson.The percentage of water-soluble organic 14C,active microbial 14C and stable 14C over the total fixed 14C were not different between two barley cultivars.From the analysis of the model for two barley cultivars,the total 14C transformed into different soil pools(excluding CO2-C and root C pools)for the two barley cultivars was similar(26%for Abee and 25%for Samson),but the difference of 14C remaining in soil between the two barley cultivars was mainly because of the difference of 14C remaining in roots which have not been yet decomposed.Some of the information which could not be measured in the laboratory conditions was obtained in this study.  相似文献   

7.
Excessive use of agro-chemicals(such as mineral fertilizers) poses potential risks to soil quality. Application of organic amendments and reduction of inorganic fertilizer are economically feasible and environmentally sound approaches to develop sustainable agriculture. This study investigated and evaluated the effects of mineral fertilizer reduction and partial substitution of organic amendment on soil fertility and heavy metal content in a 10-season continually planted vegetable field during 2009–2012. The experiment included four treatments: 100% chemical fertilizer(CF100), 80% chemical fertilizer(CF80), 60% chemical fertilizer and 20% organic fertilizer(CF60+OM20), and 40% chemical fertilizer and 40% organic fertilizer(CF40+OM40). Soil nutrients, enzyme activity and heavy metal content were determined. The results showed that single chemical fertilizer reduction(CF80) had no significant effect on soil organic matter content, soil catalase activity and soil heavy metal content, but slightly reduced soil available N, P, K, and soil urease activity, and significantly reduced soil acid phosphatase activity. Compared with CF100, 40 or 60% reduction of chemical fertilizer supplemented with organic fertilizer(CF60+OM20, CF40+OM40) significantly increased soil organic matter, soil catalase activity and urease activity especially in last several seasons, but reduced soil available P, K, and soil acid phosphatase activity. In addition, continuous application of organic fertilizer resulted in higher accumulation of Zn, Cd, and Cr in soil in the late stage of experiment, which may induce adverse effects on soil health and food safety.  相似文献   

8.
The effect of agricultural practices on soil organic nitrogen (N) fractions in a cocoa plantation has not been much revealed till now. Despite the fact that soil organic N has been long admitted for its importance to maintain soil fertility. Presented field experiment was conducted in Kaliwining Experimental Station, Indonesian Coffee and Cocoa Research Institute (ICCRI), Jember, East Java, Indonesia, to investigate the effect of cocoa farm management, namely fertilization, weeding and soil tillage on the content of soil organic N fractions. The design of experiment was arranged in a split-split plot with two levels of weeding as main plots, two levels of soil tillage as subplot and three different fertilizer treatments as sub-sub plot. The analysis of soil N including total N and soil organic N fractions, namely, total hydrolized N, ammonium N, amino sugar N and amino acid N, were performed. The result showed that the effect of fertilization treatment was significant to the content of total N, ammonium N, amino sugar N and amino acid N. No-tillage treatment resulted in total N and amino sugar-N content increasing by 8% and 24%, respectively, over tillage treatment. Slashing treatment caused increase of the total N by 3% from herbicide treatment, whilst decrease of ammonium N and amino sugar N by 7% and 24%, respectively.  相似文献   

9.
This paper studied adsorption and deyradation of bensulfuron-methyl(BSM) by bioassay method.The results showed that adsorption rate of BSM increased with increasing organic matter content.Degradation velocity of BSM changed fast with pH increasing and temperature decreasing.There were different degradation of BSM between in water and soil.BSM was degraded rapidly in initial period.Afterward the degradation of BSM was slow dow.With increasing organic matter content deyradation of BSM in water was faster than that in soil.  相似文献   

10.
Model Establishment for Simulating Soil Organic Carbon Dynamics   总被引:5,自引:0,他引:5  
Assuming that decomposition of organic matter in soils follows the first-order kinetics reaction,a computer model was developed to simulate soil organic matter dynamics. Organic matter in soils is divided up into two parts that include incorporated organic carbon from crop residues or other organic fertilizer and soil intrinsic carbon. The incorporated organic carbon was assumed to consist of two components, labile-C and resistant-C. The model was represented by a differential equation of dCi/dt = Ki× fT × fw × fs × Ci ( i = l,r, S ) and an integral equation of Cit = Cio × EXP ( Ki X fT X fw X fs X t ). Effect of soil parameters of temperature, moisture and texture on the decomposition was functioned by the fT, fw and fs, respectively.Data from laboratory incubation experiments were used to determine the first-order decay rate Ki and the fraction of labile-C of crop residues by employing a nonlinear method. The values of K for the components of labile-C and resistant-C and the soil intrinsic carbon were evaluated to be 0. 025,0. 080 × 10-2 and 0. 065 ×10-3d-1, respectively. The labile-C fraction of wheat straw, wheat roots, rice straw and rice roots were0.50, 0.25, 0.40 and 0.20, respectively. These values are related to the initial residue carbon-to-nitrogen ratio ( C/N) and lignin content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号