首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 379 毫秒
1.
针对江苏LNG接收站长期处于低外输量运行工况储罐压力偏高、设备运行存在潜在安全隐患等问题,分析了LNG接收站BOG的产生原因,包括储罐吸热、管道漏热以及一些其他因素,提出了B()G预冷再冷凝工艺,即经过BOG压缩机压缩后的BOG,不直接进入再冷凝器,而先进入换热器,与高压泵出口输出的LNG间接换热,BOG经过预冷后再进入再冷凝器冷凝处理,而换热后的LNG继续进入气化器气化外输,从而达到预冷BOG的目的,实现低外输量工况下BOG处理最优化.同时,从方案的可行性出发,提出了相关注意事项.与现有工艺流程相比,新工艺在低外输量工况下能够处理更多的BOG,从而有效降低储罐压力,为避免高压泵发生气蚀提供了可靠的温度保证,并表现出一定节能降耗的效果.  相似文献   

2.
与接收站同步投产的储罐相比,扩建储罐的预冷工艺具有较大差异。针对扩建储罐预冷工艺方案研究较少的问题,为积累理论和工程经验,以某大型沿海LNG接收站扩建储罐项目为例,结合该接收站工艺流程,分析扩建与新建储罐工程之间的差异,并对4种LNG填充方法进行适用性分析,开展扩建储罐预冷工艺方案设计,形成了预冷关键流程与工艺指标,包括卸料管道预冷、卸料管道填充、氮气置换、储罐预冷、储罐充液静置、低压外输管道预冷填充及排净管道预冷填充。实例应用结果表明:设计形成的预冷方案操作工艺简单,且储罐、管道温降速率符合标准要求,预冷成效良好。该项目预冷工艺对后续扩建储罐项目普适性较好,可为后续项目预冷方案编制、现场预冷操作及关键工艺指标选取提供借鉴和参考。(图5,表1,参23)  相似文献   

3.
最小外输工况下BOG再冷凝工艺的平稳控制是LNG接收站安全平稳运行的关键,对LNG接收站BOG再冷凝工艺在最小外输工况下的控制难点和技巧进行分析,结果表明:最小外输工况下LNG接收站产生的BOG的量较多,通过再冷凝器底部旁路的LNG量过少,运行过程中调整压缩机负荷、槽车站装车量波动等因素都会导致再冷凝器的压力、液位波动较大,同时也无法满足高压泵入口的温度要求及维持其入口压力的稳定.最后提出减少接收站BOG产生量、降低进入再冷凝器的BOG温度、保证BOG压缩机在高负荷下运行及提高再冷凝器的操作压力等措施,这些措施能够提高BOG再冷凝工艺控制的平稳性,保证系统安全运行.  相似文献   

4.
往复式压缩机是LNG接收站调节储罐气相空间压力的核心设备,其流量是判断压缩机整体运行性能的重要参数.基于江苏LNG接收站往复式天然气压缩机流量偏低的问题,给出了江苏LNG接收站往复式天然气压缩机流量的计算方法,并将理论计算值和实际运行参数进行对比分析.结合江苏LNG接收站的生产实际,提出了有效的解决方案:更换压缩机的活塞铜套,尽量使压缩机在设计工况下运行,避免在压缩机出口与流量计之间连接消耗天然气的工艺管道,及时检查压缩机的进出口阀门及余隙阀门有无损坏,维持储罐压力恒定等.  相似文献   

5.
随着我国进口LNG量的快速增长,LNG储罐已成为接收站的重要储存设施,其容量大小不仅直接影响接收站LNG的接收和天然气的外输,而且直接影响接收站的投资和运行的经济性。由于LNG接收站的存储特点,其存储能力会受到许多因素的影响,包括LNG运输船的运输方案、天然气外输方案、接收站的作业特点等。通过分析,确定了影响LNG储罐罐容的因素和罐容的计算方法,并对不同计算方法进行了讨论。  相似文献   

6.
LNG接收站高压泵并联运行时,单台泵故障停车或其他水力干扰会导致泵瞬间流量过大,电机过载,造成全站停车甚至损坏电机.针对高压泵设备特性及机组并联运行工艺现状,并结合全站工艺流程,分析了高压泵并联运行控制特点及操作难点.通过优化启停机操作程序,避免水力冲击.采用增加运行泵的数量以增宽流量调节范围的方法优化配泵方案.将高压泵出口的紧急切断阀改成调节阀,在单台泵故障停车时通过改变管路特性匹配系统流量,可有效减小运行泵的流量增幅,降低泵过载停车风险.在分析接收站天然气外输管网压力趋势的基础上,提出管道压力越高越有利于高压泵的平稳运行,根据不同工况采取有效措施保证高压泵机组安全、平稳、高效运行.  相似文献   

7.
在工业生产中,经常通过流量分程控制测量、调节工艺参数,通过对给定对象的测量调节系统的压力和流量等参数,从而排除干扰,消除偏差,保证系统的稳定运行.随着天然气用量的增加,LNG接收站通过储存、气化、外输这一过程实现能源的充分利用,而LNG工艺系统控制的平稳性直接影响接收站的外输供气.通过对江苏LNG接收站流量分程控制回路运行情况进行观察和分析,总结了可能影响其稳定性的各种因素,提出了可行的优化方案.  相似文献   

8.
LNG接收站试运投产中储罐冷却的相关问题   总被引:1,自引:0,他引:1  
大型常压LNG储罐是LNG接收站中非常重要的单元设备,其冷却过程是LNG接收站试运投产过程中风险最大、最难控制的一个环节.详细介绍了LNG接收站试运投产过程中LNG储罐的冷却过程,冷却前提条件及注意事项.分析讨论了LNG储罐冷却过程中储罐温度变化趋势、冷却喷淋流量、冷却速率及温度监测点最大温差等技术参数之间的相互联系.指出冷却过程容易出现管道变形受阻,管道法兰连接处泄漏,冷却流量控制不均造成储罐温降不均,以及火炬系统易产生积液等问题,给出相应的解决方法.研究成果可为其他LNG接收站试运投产过程中LNG储罐的冷却提供参考.  相似文献   

9.
海水开架式气化器(Open Rack Vaporizer,ORV)和浸没燃烧式气化器(Submerged Combustion Vaporizer,SCV)是LNG接收站LNG气化的重要设备。ORV运行成本远低于SCV,但在冬季海水入口温度较低时,ORV操作负荷受到限制。对海水入口温度为2~6℃时ORV的运行情况进行测试,提出了ORV达到最大操作负荷的判定标准。通过Origin软件对海水入口温度、海水出口温度、LNG流量运行数据进行拟合,得到了ORV最大允许LNG流量函数式,可以较精确地计算不同海水入口温度下ORV能够处理的最大LNG流量。利用该函数式,结合某LNG接收站2015-2016年冬季外输量,得出了ORV和SCV运行模式优化方案。通过最大程度利用ORV进行气化外输,LNG接收站冬季气化成本可节约1 070×10~4元。  相似文献   

10.
LNG接收站不同运行参数下最小外输量的计算   总被引:1,自引:0,他引:1  
投产初期LNG接收站的外输量较小,需要在最小外输量下运行;接收站主要起调峰作用,天然气外输需求不稳定,随时可能在最小外输量下运行,因而影响接收站的安全运行。分析了影响最小外输量的主要因素,由BWRS方程和能量、质量守恒定律,确定再冷凝器回收BOG所需的最小LNG流量,同时采用二分法确定运行SCV时的最小外输量。据此,以Force Control V7.0为平台,设计出LNG接收站不同参数下最小外输量的计算软件,并以大连LNG接收站实际运行参数验证其可靠性,计算结果表明:大连LNG接收站正常运行ORV的最小外输量为375.65×104 m3/d,运行SCV的最小外输量为322.82×104 m3/d,与实际运行数据380×104 m3/d和320×104 m3/d非常接近。  相似文献   

11.
江苏LNG接收站采用手动调节低压泵出口阀方式,控制低压输出流量匹配槽车装车.手动跟踪及阀门节流存在调节滞后、泵运转效率低、能耗高、泵阀磨损严重等问题,严重影响再冷凝器的平稳运行.基于此,提出在新建储罐中专设装车罐,并使用变频技术,采用“1台变频泵+2台定速泵并联安装”模式,当正常外输时,低压泵采用“n台定速泵+1台变频泵”运行方式优化配置.以进入再冷凝器前汇管压力保持定值为控制目标,根据外输量确定n值,定速泵出口不做节流控制,变频泵转速可调自动匹配装车流量变化,其水力分析验证结果表明控制效果良好,且可以达到节能目的.指出变频泵选型需充分考虑管路特性,提供了选型和工艺操作方面的相关建议.  相似文献   

12.
LNG接收站储罐配置   总被引:1,自引:0,他引:1  
LNG接收站储罐的配置方案是LNG接收站设计的重要内容,储罐的容量和数量不仅决定了LNG接收站的规模,还直接影响LNG接收站投资和运行的经济性.概述了LNG接收站储罐容量的定义、计算方法及影响因素,举例分析了LNG船舶运输方案、不均匀用气及储备时间对LNG接收站储罐配置方案的影响.  相似文献   

13.
宋鹏飞  陈峰  侯建国  周婵 《油气储运》2015,(3):316-318,339
LNG储罐是LNG接收站投资费用最高的关键核心设施,前期设计阶段通过静态经验公式合理估算罐容及数量至关重要。LNG储罐数量及罐容的计算方法需要因地制宜,不同的设计公司采用的计算方法不尽相同。选取3种国内外LNG接收站设计公司常用的静态计算方法,对具体设计案例分别进行计算,结果表明:对于不承担调峰,外输相对均匀的LNG接收站或大型LNG接收站后期增罐的情况,采用法国某设计公司的计算方法较为合理;对于市场用气波动较大又兼顾调峰的LNG接收站,采用日本某设计公司和库存量法的计算方法更为合理。最后,针对3种公式的不足,给出了优化的计算公式,并针对不同类型接收站推荐适用的计算方法。  相似文献   

14.
在LNG接收站运行过程中,准确计算BOG产生量是保证安全生产的重要工作之一。基于BOG产生量常用的计算方法,总结了非卸船工况下BOG产生量的关键因素,主要包括储罐吸热、保冷管道吸热、泵运行产热,同时增加了再冷凝器冷凝BOG随保冷循环LNG重新回流到储罐这一不可忽略的因素,并分析了罐压变化对BOG产生量的影响。通过对罐压不变、罐压逐渐上升、罐压逐渐下降3种工况下的BOG产生量与处理量进行计算,结果表明:在3种不同工况下,利用储罐吸热量、保冷管道吸热量、泵热量回流量、再冷凝器冷凝BOG回流储罐流量计算BOG产生量具有较高的准确性和可行性;BOG产生量与处理量计算结果的偏差均小于5%,但若忽略冷凝BOG回流储罐、罐压变化的影响,则二者偏差可分别达到50%、23%。在LNG接收站生产运行中,建议重视罐压变化对BOG产生量的影响,并对再冷凝器冷凝BOG回流储罐的流量加以控制。(图1,表15,参32)  相似文献   

15.
LNG接收站BOG处理工艺优化及功耗分析   总被引:1,自引:0,他引:1  
为优化LNG接收站BOG处理工艺,降低整个接收站的功耗,以外输量为200 t/h、储罐BOG蒸发量为3.04 t/h的某LNG接收站为例,对再冷凝工艺和直接压缩工艺两种典型的BOG处理工艺进行了功耗分析,得出BOG压缩机和LNG高压泵的功耗为整个工艺的主要功耗。运用ASPENHYSYS模拟软件对现有工艺流程进行了优化:在现有BOG处理工艺的基础上,通过对LNG进一步加压至高于外输压力,靠气化后膨胀高压外输天然气做功来实现BOG的压缩和对LNG的加压。优化结果表明:BOG直接压缩工艺和再冷凝工艺分别节约功耗1 616.27 k W、1 270.64 k W。  相似文献   

16.
对比了大型LNG储罐的几种氮气吹扫和干燥方案的优缺点,重点介绍了各方案干燥时间的长短、安全性及经济性.结合江苏LNG接收站储罐的氮气吹扫和干燥方案,通过干燥时间的理论计算,分析了LNG储罐干燥时间的主要影响因素,提出了优化方案.结果表明:若在液氮气化器后端增加一个功率为266 kW以上的氮气加热器,同时在控制储罐压力和温度的前提下适当增加氮气流量和注入压力,可缩短氮气吹扫和干燥时间.江苏LNG接收站储罐的氮气吹扫和干燥方案具有经济效益高、可操作性强、安全性高等优点.  相似文献   

17.
随着中国天然气需求量的爆发式增长,LNG接收站外输管道里程不断增长,出站压力随之持续增高,对压缩机、高压泵等设备性能提出了更高要求。以青岛LNG接收站为例,针对外输压力的变化,提出对其4台高压泵增加4级叶轮的改造方法,并对改造后外输高压泵的性能变化及其对LNG接收站工艺运行的影响进行研究。通过对改造后的高压泵扬程、轴功率、效率随着流量增加的变化趋势进行现场测试,结果表明:高压泵增加叶轮后,其扬程、轴功率、效率、电流均显著提高,其中3台高压泵的运行参数可满足LNG接收站现场实际需要,另外1台即使在相同的测试条件下出口压力仍明显偏低;气化器、HIPPS(High Integrity Pressure Protective System)系统、外输管道高报压力及联锁值均需随之上调,接收站高压区连接法兰出现了多处泄漏,应加大巡检频率和力度;当LNG接收站高压泵性能不同时,在运行过程中应该尽量选用性能相近的泵。研究结果可为高压泵的国产化设计、制造提供参考。  相似文献   

18.
LNG接收站接收、储存并气化LNG,具有储存量大,气化速度快,调峰方便等特点.而卸料臂是连接LNG船与接收站的纽带,物料通过卸料臂由船方汇管进入站内工艺管道.卸料臂ERS系统可以对卸料臂工作状态进行实时监控,并能在紧急情况下,自动控制卸料臂完成隔离、断开、收回等操作.介绍了卸料臂ERS(紧急脱离系统)的组成结构和工作原理,重点描述了ESD(紧急停车关断)时,各个部件在逻辑和结构上的动作原理,总结了紧急工况下卸料臂应急断开的操作方法,为卸料臂应急操作提供了必要的技术支持和操作建议.  相似文献   

19.
当LNG接收站全速卸料时,船舱内压力由于LNG体积减少而骤降,需要从岸上返回蒸发气以维持船舱压力,返气量与返气速率由卸载量和卸料速度决定.回流鼓风机作为LNG接收站返气工艺的关键设备,其运行状态直接影响卸料操作的顺利进行.通过对回流鼓风机的流量调节方式和工作点进行分析,总结出在实际运行中回流鼓风机的流量控制需要将IGV调节和出口节流调节相结合,避免在喘振区域工作.同时对回流鼓风机的喘振工况进行分析和计算,根据计算结果预先判断发生喘振工况时的参数,提前干预,严格控制运行的各个环节,保证回流鼓风机的平稳运行.  相似文献   

20.
液化天然气BOG的计算方法与处理工艺   总被引:1,自引:0,他引:1  
孙宪航  陈保东  张莉莉  刘杰  李征帛  杜义朋 《油气储运》2012,31(12):931-933,967
介绍了液化天然气蒸发气(BoilOffGas,BOG)的产生原因,不同条件下BOG量的计算方法,以及直接压缩和再冷凝两种BOG处理工艺。利用伯努利方程定量地对两种处理工艺的能耗进行对比,并进行实例验算。结果表明:在相同工况下,再冷凝工艺比直接压缩工艺节能,且处理的BOG量越大、LNG储罐储存压力越低﹑外输管网压力越高,再冷凝工艺的节能效果越明显。得出结论:再冷凝工艺适用于大型LNG接收站处理BOG,直接压缩工艺适用于小型LNG卫星站处理BOG。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号