首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
海水开架式气化器(Open Rack Vaporizer,ORV)和浸没燃烧式气化器(Submerged Combustion Vaporizer,SCV)是LNG接收站LNG气化的重要设备。ORV运行成本远低于SCV,但在冬季海水入口温度较低时,ORV操作负荷受到限制。对海水入口温度为2~6℃时ORV的运行情况进行测试,提出了ORV达到最大操作负荷的判定标准。通过Origin软件对海水入口温度、海水出口温度、LNG流量运行数据进行拟合,得到了ORV最大允许LNG流量函数式,可以较精确地计算不同海水入口温度下ORV能够处理的最大LNG流量。利用该函数式,结合某LNG接收站2015-2016年冬季外输量,得出了ORV和SCV运行模式优化方案。通过最大程度利用ORV进行气化外输,LNG接收站冬季气化成本可节约1 070×10~4元。  相似文献   

2.
SCV是LNG接收站冬季运行的重要设备,SCV热效率,直接影响SCV的运行成本,应尽量提高SCV运行热效率.分析了LNG在SCV管束内被加热的3个阶段,利用HYSYS软件,计算了江苏LNG接收站SCV实际运行时的热效率.定性分析了冬季和夏季SCV运行热效率的差异,状态方程选择PR方程,SCV进口高压LNG和出口高压NG焓值选择Lee -Kesier方程进行修正,计算结果表明:江苏LNG接收站SCV实际热效率98.02%,基本达到设计要求.建议对江苏LNG接收站SCV燃料气流量计进行标定,减少计量误差,提高热效率计算精度;SCV运行时尽可能降低SCV出口天然气设定温度,节约运行成本.  相似文献   

3.
LNG进入常温卸料管道前需进行预冷,在低温氮气预冷过程中,会出现管道顶底温差较大的现象,过大的顶底温差会造成管道拱起。利用Fluent软件,建立LNG卸料管道氮气预冷三维模型,采用阶段降低氮气入口温度的预冷方式,模拟氮气预冷卸料管道温度分布规律,探究卸料管道顶底温差产生原因及影响因素。结果表明:在预冷过程中,管道近管壁处温度梯度大,管道内部温度梯度较小;同时预冷过程中管道内自然对流作用不可忽略,与管道换热后的氮气温度升高、密度减小,在浮升力作用下向上运动,从而导致顶部温度高于底部温度;影响顶底温差大小的因素有预冷时间、质量流量、氮气温度等;顶底温差随时间先增大后减小,质量流量越大,氮气入口温度越低,管道顶底温差越大。为避免管道顶底温差过大和预冷速度不超过10 K/h,建议采用阶梯式预冷建议逐渐将温度降至123 K左右。(图10,表2,参10)  相似文献   

4.
开架式气化器(Open Rack Vaporizers,简称ORV)是LNG接收站中的关键设备,它以海水为热源将LNG气化成气态天然气.ORV及其相关管道在备用时处于常温状态,为了防止低温LNG突然进入常温管道和设备,引起管道急剧收缩造成损坏,ORV在运行前必须进行预冷.重点介绍了江苏LNG接收站中ORV预冷的准备工作、工艺流程、工作要点、冷却过程等,并针对实际过程中的操作要点和控制重点进行了分析.  相似文献   

5.
卸料管道预冷是确保LNG接收站顺利投产试运行的重点工作,既可防止管道温度变化过快造成管材损坏,也可检验和测试低温设备的性能及质量。山东LNG接收站为了缩短LNG船舶靠泊时间、降低接收站运营成本,提出了在首船接气前采用液氮预冷卸料总管的方法:由于山东LNG接收站卸料总管较长,将其分成A、B、C段进行渐进式预冷,当管道顶底部温差超过10℃时,关闭隔断阀门,憋压至0.2 MPa后进行爆吹以消除温差;为了方便操作与控制,按照0℃、-30℃、-60℃、-90℃、-120℃、-150℃温度节点来调整汽化器的工况,以控制预冷速率。实践结果表明:该方法安全性高,可操作性强;在预冷过程中,管顶与管底温差控制在30℃以下,预冷速度应低于10℃/h;分段渐进式预冷法有利于减小管道顶底部温差,可减少预冷时间、提高预冷效率,并缩短LNG船靠泊时间约7天。(图1,表4,参13)  相似文献   

6.
介绍了高压泵的组成以及LNG接收站配备的立式、电动、定速、潜液式离心高压泵的技术特点.高压泵初次使用或者进行维修作业再次投入使用时均需预冷.为此,将高压泵分为6部分:底部轴承以下、泵吸入室的中部、底部轴承、电动机定子的中部、上部轴承、高压泵出口法兰,由下向上进行预冷,并根据其内部结构制定了每一部分所需的预冷时间.对两种不同压力预冷方式的进行比较:当泵井压力为20 kPa时,泵井进液时液位控制较困难,但预冷入口和出口管路比较安全;当泵井压力为0.7 MPa时,泵井进液时液位上升平稳,且静置时液位变化较小,但是在预冷入口和出口管路时,可能发生高压气体窜入低压管路,导致再冷凝器液位和压力波动,甚至导致全场工艺设备停车.最后,指出了预冷作业过程中需要注意的几个问题.  相似文献   

7.
为了降低LNG船BOG再液化流程的功耗,在ASPEN PLUS中选择合适的热力学方法和设备模块对LNG船BOG再液化装置进行建模.通过对丙烯的预冷换热器出口温度、压缩机出口压力、节流阀出口压力以及BOG压缩机出口压力等工艺设备运行参数的模拟计算,得到各参数对BOG再液化流程功耗的影响规律.以工艺系统最低功耗为优化目标,采用变量轮换法对优化参数进行优化计算,得出在一定海水温度和液货舱BOG压力变化范围内,BOG再液化系统中重要节点的相关参数、压缩机和换热器最优化性能参数和设备设计参数,优化后流程总功耗比优化前降低了8.82%.  相似文献   

8.
针对江苏LNG接收站长期处于低外输量运行工况储罐压力偏高、设备运行存在潜在安全隐患等问题,分析了LNG接收站BOG的产生原因,包括储罐吸热、管道漏热以及一些其他因素,提出了B()G预冷再冷凝工艺,即经过BOG压缩机压缩后的BOG,不直接进入再冷凝器,而先进入换热器,与高压泵出口输出的LNG间接换热,BOG经过预冷后再进入再冷凝器冷凝处理,而换热后的LNG继续进入气化器气化外输,从而达到预冷BOG的目的,实现低外输量工况下BOG处理最优化.同时,从方案的可行性出发,提出了相关注意事项.与现有工艺流程相比,新工艺在低外输量工况下能够处理更多的BOG,从而有效降低储罐压力,为避免高压泵发生气蚀提供了可靠的温度保证,并表现出一定节能降耗的效果.  相似文献   

9.
景佳琪  陈军 《油气储运》2015,(3):328-331
LNG接收站生产运行中的重点和风险点是LNG接卸船工作,卸船时预冷速度的控制甚为关键。国内外大多数LNG接收站的接卸经验并不是很成熟,预冷速度的控制经验相对缺乏,难于把握。基于某LNG接收站已接卸的LNG船的预冷数据,对LNG接卸时预冷速度的控制、影响与卸料过程中存在的安全操作等问题进行分析。在卸船过程中,预冷速度过快是引起卸料臂快速耦合器法兰处泄漏的重要原因;根据卸船安全性要求和接卸经验,目前该接收站预冷速度控制在2℃/min左右,对整个卸船过程影响较小,能有效避免或减少事故。  相似文献   

10.
LNG接收站安全、按期试运投产是保证其平稳、高效运营的重要环节,一旦管道及设备的施工、吹扫、气密、干燥置换、预冷、单机试车等环节质量控制不到位,可能造成投产期间事故频发,甚至延迟试车。以中国某大型LNG接收站为研究对象,总结LNG接收站试运投产关键环节的质量控制要点,对影响LNG储罐与工艺管道干燥、预冷效果的主要因素以及重要设备单机试车前检查的重点部位进行深入分析,并提出施工控制措施。研究结果对其他新建LNG接收站的投产具有借鉴意义,也可供相关设计、施工单位参考。(图2,表1,参20)  相似文献   

11.
程云东 《油气储运》2014,(3):292-294
大连液化天然气有限公司接收站在开工试运时,由于SCV运转不正常,经常联锁停车。因此,需要对SCV进行改造,以使设备运转正常,满足生产需要。通过割掉一段点火枪保护套管,加长点火枪向下伸出的长度,改变了原来需要点火4~5次才能点燃SCV的状况,使点火一次成功率达到100%;通过调换火焰检测器和观察视镜的位置,使SCV不再因为炉膛内有火焰,但火焰检测器未检测到而造成误动作停车;通过在天然气主管道上放空阀处增加限流孔板,使点火时不再发生因入口压力过高导致的联锁停车。通过以上技术改造,确保了SCV的平稳运行。(图3,参7)  相似文献   

12.
LNG储罐在投产前需要进行调试,其中LNG储罐预冷是最重要的环节。采用MATLAB软件,建立16×104 m3地上全容式常压LNG储罐预冷模型,研究预冷过程中LNG喷淋量、BOG排放量、储罐压力、LNG气化率及温降速率的变化规律对LNG储罐预冷的影响。研究结果表明:在恒定温降速率下,LNG喷淋流量逐渐增加、BOG排放流量及储罐压力先增后减、LNG气化率仅在预冷后期逐渐降低;随着温降速率增大,LNG喷淋流量、BOG排放流量及罐内压力均增加,但LNG喷淋总量及BOG排放总量减小,LNG气化率仅在预冷后期随温降速率增大而增大;在温降速率超过3 K/h后,对LNG储罐预冷影响较小;在对LNG储罐进行预冷分析时,太阳辐射的影响不可忽略。为了保障LNG储罐投产工作的顺利开展,建议在预冷前期,将温降速度控制在1 K/h之内;在预冷后期,为提高LNG冷量利用率,应增大温降速率,将平均温降速率控制在2~3 K/h。经过实例验证,LNG储罐预冷模型模拟误差均小于10%,可以满足工程应用要求,对于LNG储罐实际预冷过程、预冷方案设计及预冷参数优化具有参考意义。(图2,表2,参20)  相似文献   

13.
与接收站同步投产的储罐相比,扩建储罐的预冷工艺具有较大差异。针对扩建储罐预冷工艺方案研究较少的问题,为积累理论和工程经验,以某大型沿海LNG接收站扩建储罐项目为例,结合该接收站工艺流程,分析扩建与新建储罐工程之间的差异,并对4种LNG填充方法进行适用性分析,开展扩建储罐预冷工艺方案设计,形成了预冷关键流程与工艺指标,包括卸料管道预冷、卸料管道填充、氮气置换、储罐预冷、储罐充液静置、低压外输管道预冷填充及排净管道预冷填充。实例应用结果表明:设计形成的预冷方案操作工艺简单,且储罐、管道温降速率符合标准要求,预冷成效良好。该项目预冷工艺对后续扩建储罐项目普适性较好,可为后续项目预冷方案编制、现场预冷操作及关键工艺指标选取提供借鉴和参考。(图5,表1,参23)  相似文献   

14.
果蔬差压预冷集装箱的设计与试验   总被引:1,自引:0,他引:1  
为解决果蔬产地预冷设备移动性差等问题,研制了果蔬差压预冷集装箱,并对3.18 t马铃薯进行预冷试验。结果表明:该集装箱能够实现24 h内将3.18 t马铃薯的平均温度自24.3℃降至2.5℃,且预冷过程中马铃薯的最低温度为0.5℃,高于马铃薯的冷害温度;不同摆放高度对马铃薯温度有影响,上层马铃薯温度依次高于中层和下层。  相似文献   

15.
LNG在管道输送过程中的物性参数可以通过LKP方程及其关联式确定,Lee-Kesler分别应用氩和正辛烷的实验数据拟合确定了该方程简单流体和参考流体的常数项。分别给出了用对比密度表示的LKP方程表达式和LNG混合物粘度的计算公式,利用对比态原理(CSP)计算比定压热容的表达式。利用"过冷"态原理进行无气化LNG管道输送工艺参数的计算,给出了管道水力、热力参数和保冷层厚度的计算方法。以大连LNG接收站为例,对1条长6 km、高程差48.5 m管道的运行参数进行计算,求得管道压降为0.338 MPa,保冷层厚度为0.145 mm,管输介质到达管道终点的温度为-154℃,因此在1.194 MPa的输送压力下,LNG全程处于液化状态,验证了LNG在"过冷"状态下输送的可行性。  相似文献   

16.
李安  李小瑜  邵勇  张平 《油气储运》2005,24(11):19-21
天然气管道在实际运行时,由于用户种类不同,对气量和压力的要求相去甚远.通过对福建LNG站输气干线工程设计进行合理的优化设计计算,采用动态模拟方法对管网系统进行了分析和计算,研究了影响管网系统主要因素,提出了在天然气管网的设计中对管网系统进行优化的方法.  相似文献   

17.
随着LNG接收站设备的启动运行,原设计的无功补偿电容量已不能满足用电负荷的要求,补偿容量的不足将导致无法对功率因数进行有效调整,从而严重影响电能质量.通过对LNG接收站负荷的预测,计算出需要增加的无功补偿电容量,确定加装补偿设备容量.结果表明:通过对供电系统进行无功补偿,提高了江苏LNG供电系统的电能质量,降低了设备和线路的功率损耗,很大程度上提高了变压器的利用率,起到了节能降耗的作用.  相似文献   

18.
再冷凝器是BOG再冷凝工艺流程的核心设备,其运行状态关系到整个接收站运行状态的稳定.为探索LNG接收站再冷凝器的控制方法,以江苏LNG接收站再冷凝器为原型,从物料平衡、热量平衡和相平衡的角度对再冷凝器的控制要求进行分析,并以其为基础,分别比较了以压力为控制变量、以液位为控制变量和以温度为控制变量3种不同的控制方案.通过分析每种控制方案的利弊,并根据江苏LNG再冷凝器的实际运行状态,提出了用再冷凝器的入口BOG温度代替出口LNG温度的前馈控制方案与采用选择控制原理进行液汽比R设定的选择控制方案相结合的改进控制方案,以维持再冷凝器的稳定运行.  相似文献   

19.
LNG接收站试运投产中储罐冷却的相关问题   总被引:1,自引:0,他引:1  
大型常压LNG储罐是LNG接收站中非常重要的单元设备,其冷却过程是LNG接收站试运投产过程中风险最大、最难控制的一个环节.详细介绍了LNG接收站试运投产过程中LNG储罐的冷却过程,冷却前提条件及注意事项.分析讨论了LNG储罐冷却过程中储罐温度变化趋势、冷却喷淋流量、冷却速率及温度监测点最大温差等技术参数之间的相互联系.指出冷却过程容易出现管道变形受阻,管道法兰连接处泄漏,冷却流量控制不均造成储罐温降不均,以及火炬系统易产生积液等问题,给出相应的解决方法.研究成果可为其他LNG接收站试运投产过程中LNG储罐的冷却提供参考.  相似文献   

20.
LNG接收站不同运行参数下最小外输量的计算   总被引:1,自引:0,他引:1  
投产初期LNG接收站的外输量较小,需要在最小外输量下运行;接收站主要起调峰作用,天然气外输需求不稳定,随时可能在最小外输量下运行,因而影响接收站的安全运行。分析了影响最小外输量的主要因素,由BWRS方程和能量、质量守恒定律,确定再冷凝器回收BOG所需的最小LNG流量,同时采用二分法确定运行SCV时的最小外输量。据此,以Force Control V7.0为平台,设计出LNG接收站不同参数下最小外输量的计算软件,并以大连LNG接收站实际运行参数验证其可靠性,计算结果表明:大连LNG接收站正常运行ORV的最小外输量为375.65×104 m3/d,运行SCV的最小外输量为322.82×104 m3/d,与实际运行数据380×104 m3/d和320×104 m3/d非常接近。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号