首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
A growth trial was performed with gilthead sea bream juveniles (Sparus aurata) to evaluate the effect of diet supplementation with white tea and methionine on fish performance and lipid metabolism. For that purpose, four diets were formulated: a fish meal–based diet (Control) and diets identical to the control diet but supplemented with 2.9 % white tea (Tea), 0.3 % methionine (Met) or 2.9 % white tea plus 0.3 % methionine (Tea + Met). Growth performance and feed efficiency parameters, whole-body and liver composition, plasma metabolites concentration and liver glucose 6-phosphate dehydrogenase (G6PDH), malic enzyme (ME) and fatty acid synthetase (FAS) activities were determined. Feed intake was higher in fish fed methionine–supplemented diets, whereas this parameter and growth was decreased in fish fed white tea supplementation. Feed efficiency and protein efficiency ratio were not affected by diet composition. Plasma HDL cholesterol and total lipids concentration were higher in fish fed white tea–supplemented diets. Whole-body lipid, plasma glucose, liver glycogen concentration and liver G6PDH, ME and FAS activities were lower in fish fed white tea–supplemented diets. Results of the present study indicate that methionine seems to act as a feed attractant in diets for sea bream juveniles. Additionally, white tea is an important modulator of lipid metabolism in sea bream juveniles.  相似文献   

2.
The effect of dietary carbohydrate complexity on growth, feed utilization and activity of selected key liver enzymes of intermediary metabolism were studied in gilthead sea bream juveniles. Four isonitrogenous (50% crude protein) and isolipidic (16% crude lipids) diets were formulated to contain 20% of pregelatinized maize starch, dextrin, maltose or glucose. Triplicate groups of fish (117 g initial weight) were fed each diet to near satiation during 6 weeks. No effect of dietary carbohydrate on growth was noticed. Feed efficiency was lower in fish fed the glucose diet than the maltose and dextrin diets. The lowest protein efficiency ratio was observed in fish fed the glucose diet. Six hours after feeding, glycemia was higher in fish fed the glucose diet than the maltose and starch diets. Liver glycogen content was unaffected by dietary carbohydrate complexity. Hepatic glucokinase (GK) activity was higher in fish fed the glucose and the maltose diets, while higher pyruvate kinase (PK) activity was recorded in fish fed the glucose diet than in fish fed the starch diet. Fructose-1,6-bisphosphatase (FBPase) and glucose-6-phosphate dehydrogenase (G6PD) activities were higher in fish fed the starch diet compared to dextrin and glucose diets. Data suggest that dietary glucose and maltose are more effective than complex carbohydrates in enhancing liver glycolytic activity. Dietary glucose also seems to be more effective than starch in depressing liver gluconeogenic and lipogenic activities. Overall, dietary maltose, dextrin or starch was better utilized than glucose as energy source by gilthead sea bream juveniles.  相似文献   

3.
The objective of the present study was to investigate if dietary soluble non‐starch polysaccharides (NSP) increase digesta viscosity, reduce nutrient digestibility and increase organ weights in African catfish. The fish (mean weight 80 g) were fed diets supplemented with the soluble NSP guar gum at three levels, 0 g kg?1 (GG0), 40 g kg?1 (GG4) and 80 g kg?1 (GG8). Guar gum inclusion significantly increased digesta viscosity in the proximal (GG0: 1.7 centipoise or cP; GG4: 84.9 cP; GG8: 98.3 cP) and distal (GG0: 1.9 cP; GG4: 109.8 cP; GG8: 66.4 cP) intestine. Apparent digestibility coefficients (ADC) were significantly lower for the GG8 diet than the GG0 diet (dry matter: 52% versus 69%; protein: 77% versus 90%; ash: 41% versus 54%; energy: 60% versus 77%). The ADC of dry matter and energy were significantly lower for the GG4 diet than the GG0 diet. The relative growth rate of metabolic weight (14.5–15.4 g kg?0.8 day?1) and feed conversion ratio (0.8) did not differ between diets. Fish fed the GG8 diet had a significantly higher somatic stomach index than GG0 fish (0.71% versus 0.65% body weight). The intestinal somatic index tended to increase with increasing guar gum supplementation (GG0: 1.08%; GG4: 1.23%; GG8: 1.59%). In conclusion, high digesta viscosities in the guar gum fed fish may explain the observed reduced nutrient digestibilities and increases in digestive organ weights.  相似文献   

4.
The effect of fish meal (FM) substitution with fermented soybean meal (FSBM) in the diets of the carnivorous marine fish, black sea bream, Acanthopagrus schlegelii, was investigated. An 8‐wk feeding trial was conducted with black sea bream (11.82 ± 0.32 g; mean initial weight) in indoor flow‐through fiberglass tanks (25 fish per tank). Six isonitrogenous and isoenergetic diets were formulated, in which FM was replaced by FSBM at 0% (control diet), 10% (FSBM10), 20% (FSBM20), 30% (FSBM30), 40% (FSBM40), or 50% (FSBM50), respectively. Each diet was fed to triplicate groups of fish twice daily to apparent satiation. The results showed that there was no difference in survival of black sea bream during the feeding trial. Fish fed the FSBM10 or FSBM20 diet showed comparable growth performance compared with fish fed the control diet (P > 0.05), whereas more than 30% replacement of FM adversely affected weight gain and specific growth rate (P < 0.05). Feed intake was significantly lower for fish fed the FSBM50 diet compared with fish fed the control diet. Feed conversion ratio (FCR) tended to increase with increasing dietary FSBM with the poorest FCR observed for fish fed the FSBM50 diet. Protein efficiency ratio and protein productive values showed similar patterns. Apparent digestibility of nutrients significantly decreased with increasing dietary FSBM level. With the exception of protein content, no significant differences in whole body and dorsal muscle composition were observed in fish fed the various diets. Fish fed the FSBM50 diet had significantly lower intraperitoneal ratio than fish fed the control or FSBM10 diet. Hepatosomatic index and condition factor were unaffected by dietary treatments. This study showed that up to 20% of dietary FM protein could be replaced by FSBM protein in the diets of juvenile black sea bream.  相似文献   

5.
This study aimed at evaluating the effects of short‐chain fructooligosaccharides (scFOS), xylooligosaccharides (XOS) and galactooligosaccharides (GOS) on growth performance, hepatic metabolism, gut microbiota and digestive enzymes activities of white sea bream juveniles. Four diets were formulated: a control diet with fish meal (FM) and plant feedstuffs (PF) (30FM:70PF) and three test diets similar to control but supplemented with 10 g of scFOS, XOS or GOS per kilo diet, which were fed to fish during 12 weeks. Prebiotics had no effect on growth, feed efficiency or gut microbiota. Plasmatic triglycerides were lower in fish fed XOS than FOS and GOS diets. Malic enzyme activity was lower in fish fed XOS than FOS diet. Fish fed XOS diet had lower fatty acid synthetase (FAS), a key lipogenic enzyme and higher alanine aminotransferase activities. Fifteen days after the start of the trial, an enhancement of total alkaline protease, trypsin and lipase activities was observed in fish fed prebiotics, but such effect disappeared at 12 weeks. In conclusion, scFOS, XOS or GOS seem to have limited applicability in white sea bream feed.  相似文献   

6.
The effect of dietary carbohydrate complexity on growth, feed utilization, and glycemia was studied in European sea bass juveniles. Four isonitrogenous (50% crude protein) and isolipidic (15% crude lipids) diets were formulated to contain 20% pregelatinized maize starch (PGS diet), dextrin (DEX diet), maltose (MAL diet), or glucose (GLU diet). No effect of dietary carbohydrate complexity on growth was noticed. Feed efficiency and protein efficiency ratio were lower in fish fed the GLU diet than in the other groups, whereas the opposite was observed for feed intake. Plasma glucose peaked 3–4 h after feeding in fish fed the MAL and GLU diets, whereas in fish fed the PGS and DEX diets the peak was reached 5–6 h after feeding. Peak plasma glucose concentration (13 mmol/L) was higher in fish fed the GLU diet than the other diets (9 mmol/L). Shorter hyperglycemia duration was observed in fish fed the MALT and GLU diets (6 h) than the PGS and DEX diets (10 h). Complex carbohydrates delayed plasma glucose concentration peak compared with simple sugars, whereas the opposite was observed for hyperglycemia duration. Overall, dietary maltose, dextrin, and starch were apparently better utilized as energy source than glucose by European sea bass juveniles.  相似文献   

7.
The necessity of dietary taurine supplementation for preventing green liver symptom and improving growth performance of red sea bream Pagrus major fed nonfishmeal (non-FM) diets was investigated. Yearling red sea bream (initial body weight, 580 g) were fed for 36 weeks on non-FM diets based on soy protein concentrate (SPC) supplemented with taurine at levels of 0%, 0.5%, 1.0%, 1.5%, and 2.0%. Specific growth rate (SGR) and feed conversion ratio (FCR) of fish fed the taurine-unsupplemented SPC diet were markedly inferior. In these fish, incidence of green liver was markedly higher and was accompanied by a decrease of tissue taurine concentration and an increase of hepatopancreatic bile pigment content. The green liver symptom was mainly caused by an increase of hemolysis since the erythrocytes became osmotically fragile due to taurine deficiency. Physiological abnormality and growth performance (SGR and FCR) were markedly improved by taurine supplementation to the SPC diets. These results indicate that dietary taurine supplementation is necessary for yearling red sea bream fed non-FM diet based on SPC to maintain normal physiological condition and growth performance.  相似文献   

8.
Experimental diets were formulated to evaluate a “pure” poultry meat meal (PMM) source in diets formulated for juvenile gilthead sea bream (Sparus aurata L.). The digestible protein contribution of fish meal in a control diet was substituted by 25%, 50% and 75% of a processed poultry meat meal (PMM) on a digestible crude protein (DCP) basis and by 5% and 10% for an enzyme‐treated feather meal (EFM) and also a spray‐dried haemaglobin meal (SDHM), respectively. In a consecutive trial, diets were designed to assess the value of a “pure” (defatted) poultry protein substituting the fish meal (FM) protein content. Experimental diets included: a control diet, two test diets where 75% of FM was replaced by a full‐fat PMM (PMM75) or a defatted grade of PMM (dPMM75) and two test diets where 50% of FM was substituted for defatted PMM (dPMM50) or a 50:50 blend of soya bean meal and defatted PMM (SBM/dPMM) to produce a composite product. This soya bean/dPMM blend was tested to enhance the nutritional value of this key plant ingredient commonly employed in sea bream diets that can be deficient in specific amino acids and minerals. In the first trial, gilthead sea bream grew effectively on diets containing up to the 75% replacement of FM attaining a mean weight of 63.6 g compared to 67.8 g for the FM control fed group. For the consecutive trial, the fishmeal‐based control diet yielded the highest SGR followed by dPMM50 and SBM/dPMM blend inclusion but was not significant. Carcass FA profiles of gilthead sea bream conformed to the expected changes in relation to the dietary FA patterns, with the 18:1n‐9 representative of the poultry lipid signature becoming more apparent with PMM inclusion. The ratio of n‐3/n‐6 fatty acids was greatly affected in sea bream fed the full‐fat PMM at 75% inclusion due to fish oil exclusion. Defatted dPMM, however, allowed more of the fish oil to be used in the diet and reducing this latter effect in sea bream carcass, hence restoring the higher total omega‐3 HUFA fatty acids namely EPA and DHA and n‐3/n‐6 ratio. It is concluded that poultry meat meal can be modestly incorporated into formulated diets for sea bream and can be used in conjunction with soya bean meal without any fundamental changes in performance and feed efficiency.  相似文献   

9.
The 8‐week experiment was conducted to evaluate the effects of partial replacement of fish meal (FM) with soybean protein concentrate (SPC) on juvenile black sea bream, Acanthopagrus schlegelii (10.70 ± 0.04 g). Diets were formulated to replace FM protein by SPC at 0, 8, 16, 24, 32 or 40% (designated as T1, T2, T3, T4, T5 and T6, respectively). Diets except T1 were supplemented with phytase at 2000 phytase activity U kg?1. The results showed that survival rate, growth performance and feed utilization were not significantly affected by increasing dietary SPC. Fish fed diet T3 had higher feed intake compared to those fed T1, T2 and T5 diets. Whole body compositions of black sea bream were significantly influenced by SPC replacing FM except for protein, ash and phosphorus content. Condition factor of fish was significantly lower in T2 than that of fish in T3 group. Apparent digestibility coefficients (ADCs) of dry matter was higher in fish fed T6 diet than those of fish fed T1 and T2 diets, ADCs of phosphorus increased with dietary SPC level up to T3 and then decreased. The results obtained in this study indicate that FM protein could be effectively replaced by SPC protein with phytase in diet of black sea bream.  相似文献   

10.
A trial was conducted to determine the effect of ascorbyl‐2‐monophosphate Na/Ca (AMP‐Na/Ca) on blood chemistry and nonspecific immune response of red sea bream juveniles. Test diets with three levels of AsA (free, 107, and 325 mg/kg diet) were fed to juvenile red sea bream (36.0 ± 1.3 g) two times a day for 3 wk. There were no significant differences in hematocrit, glucose, and blood urea nitrogen. Total cholesterol and triglyceride in plasma of fish fed AsA‐free diet was significantly (P < 0.05) higher than that of fish fed two other diets. There were no significant differences in serum albumin, total bilirubin, and total serum protein. Glutamyl oxaloacetic transaminase in serum of fish fed diets containing 107 and 325 mg of AsA were significantly (P < 0.05) lower than that of fish fed AsA‐free diet. Serum lysozyme activity (LA) of fish fed diets containing 107 and 325 mg of AsA were significantly (P < 0.05) higher than that of fish fed AsA‐free diet. There was no significant difference in mucus LA. The results mentioned above demonstrated that AMP‐Na/Ca is a bioavailable AsA source for red sea bream juveniles. Supplement of more than 107 mg AsA/kg in diets improved blood chemistry and nonspecific immune function of red sea bream juveniles.  相似文献   

11.
An 84-day feeding trial was conducted with juvenile (6.9 g) Nile tilapia, Oreochromis niloticus (L.), to investigate the effects of replacing fish meal with the legume guar seed as a protein source in practical diets. Four isonitrogenous (32% crude protein) and isocaloric (3.5kcal DEg?1 diet) diets were formulated. The replacement levels for guar were 25%, 50% and 75%. The reference diet contained fish meal as the main protein source and no guar. The growth performance, feed conversion ratio and protein efficiency ratio were significantly better in fish fed diets with 25%, 50% and 0% guar than in fish fed the 75% guar diet. The results of the present study suggest that effective replacement of fish meal protein by guar seed protein up to the level of 50% is possible in tilapia practical diets without any adverse effects on growth and feed conversion ratio.  相似文献   

12.
The effect of dietary starch source and level on growth performance, feed utilization, apparent digestibility coefficients and liver enzyme activities involved in intermediary metabolism of gilthead sea bream juveniles was studied. Five isonitrogenous (47% crude protein) and isolipidic (15% crude lipids) diets were formulated to contain 10% native (diet NS10) or waxy (diet WS10) maize starch; 20% native (diet NS20) or waxy (diet WS20) maize starch or no starch (control). Diets were adjusted with α-cellulose. Another diet was formulated without carbohydrates, and contained 70% crude protein and 15% crude lipids (diet HP). Each diet was fed to triplicate groups of 30 fish (initial weight: 20 g) for 12 weeks. The HP group was fed to near satiation and the other 5 groups were fed on a pair-feeding scheme according to the group that ingested less feed (control diet group). The reduction of dietary protein level from 70% to 47% by the incorporation of 20% starch did not significantly affect gilthead sea bream growth performance or feed efficiency. Compared to the control diet, neither the level nor the nature of starch had any measurable effect on growth performance and feed efficiency. Digestibility of starch was unaffected by source or dietary inclusion level. Diet had no effect on plasma glucose levels, but liver glycogen was higher in diet groups NS20, WS20 and HP. Dietary carbohydrates increased GK and G6PD enzyme activities and decreased ALAT and GDH enzyme activities while had only a minor effect on FBPase activity. The nature of dietary starch tested (native or waxy) had little influence on performance criteria.  相似文献   

13.
In finfish aquaculture, fish meal is heated during the manufacturing process, which affects the digestibility and protein absorption by fish. However, manufactured fishmeal that is not heated does not undergo thermal denaturation. Few studies have investigated the effects of non-heated animal protein sources on the growth performance of fish. We investigated the effects of heated and non-heated squid and krill meal as diets for red sea bream. Five test diets were formulated to contain heated squid meal, non-heated squid meal, heated krill meal, non-heated krill meal, and fish meal as a control. Fifty fish (initial mean weight?=?3.5 g) were distributed in ten 100-l experimental tanks. Fish were fed one of the five diets 3 times daily until satiation for 5 weeks. Regarding growth performance, fish fed the krill meal diet exhibited better growth than those fed squid meal during the first week of the rearing period. However, the squid meal diet group showed better performance than the krill meal diet group during the third week. Moreover, differences in body weight among treatments were greater during the fifth week. Better weight gain and thermal growth coefficient were recorded in the non-heated diet groups than in the heated diet groups. Higher feed intake was observed in the non-heated diet groups than in the heated diet groups. These results suggest higher performance of non-heated squid and krill meal as the protein source of the red sea bream diet. Further, the suitability of the diet type (e.g., squid and krill) might depend on the feeding period and/or developmental stage of fish.  相似文献   

14.
An 8‐week feeding experiment was conducted to determine the quantitative l ‐lysine requirement of juvenile black sea bream Sparus macrocephalus (initial mean weight: 9.13 ± 0.09 g, SD) in eighteen 300‐L indoors flow‐through circular fibreglass tanks provided with sand‐filtered aerated seawater. The experimental diets contained six levels of l ‐lysine ranging from 20.8 to 40.5 g kg?1 dry diet at about 4 g kg?1 increments. All the experiment diets were formulated to be isoenergetic and isonitrogenous. Each diet was assigned to triplicate groups of 20 fish in a completely randomized design. Weight gain and specific growth rate (SGR) increased with increasing levels of dietary lysine up to 32.5 g kg?1 (P < 0.05) and both showed a declining tendency thereafter. Feed efficiency ratio and protein efficiency ratio was poorer for fish fed the lower lysine level diets (P < 0.05) and showed no significant differences among other treatments (P > 0.05). All groups showed high survival (above 90%) and no significant differences were observed. The whole body crude protein and crude lipid contents were significantly affected (P < 0.05) by dietary lysine level, while moisture and ash showed no significant differences. The composition of muscle and liver also presented similar change tendency. Total essential amino acid and lysine contents in muscle both obtained the highest value when fish fed 32.5 g kg?1 lysine diet (P < 0.05). Serum protein, cholesterol and free lysine concentration were affected by different dietary treatments (P < 0.05), triacylglyceride and glucose contents were more variable and could not be related to dietary lysine levels. Dietary lysine level significantly affected condition factor and intraperitoneal fat ratio of juvenile black sea bream (P < 0.05) except for hepatosomatic index. There were no significant differences in white blood cell count and red blood cell count (P > 0.05), however, haemoglobin level was significantly influenced by different diets (P < 0.05). Analysis of dose (lysine level)‐response (SGR) with second order polynomial regression suggested the dietary lysine requirement of juvenile black sea bream to be 33.2 g kg?1 dry diet or 86.4 g lysine kg?1 protein.  相似文献   

15.
The potential of three different protein resources (pea protein isolate, PPI; pea protein concentrate, PPC; enzyme treated poultry protein, ETPP) as fish meal (FM) alternative protein in diets for juvenile black sea bream, Acanthopagrus schlegelii. (initial average weight 7.90 ± 0.13 g) was evaluated. Seven isonitrogenous and isoenergetic diets were formulated to replace FM at 0% (T0, control diet), 8% (designated as T1‐T3) and 16% (designated as T4‐T6) using PPI, PPC and ETPP respectively. Each diet was randomly assigned to triplicate groups of 25 juvenile fish for 8 weeks. At the end of the feeding period, survival rate was not significantly affected by dietary treatments. Growth performance in T6 (16% ETPP) group was significantly inferior to T0 group, however, weight gain and specific growth rate in other treatments showed no significant differences (> 0.05). Mean feed intake, feed efficiency ratio and protein efficiency ratio were also poorer in fish fed in T6 than those of fish fed with the control diet respectively. Apparent digestibility coefficients (ADCs) of dry matter and crude protein for fish fed ETPP diets were significant lower than those of fish fed with the control diet, whereas ADCs of lipid were unaffected by dietary treatments. ADC's of dietary Leu, Ile, His and Lys was also significantly influenced. There were no marked variations in proximate compositions of dorsal muscle. With regard to plasma characteristics, significant difference was observed in triacylglycerol content. Ammonia concentration in plasma tended to increase in alternative protein diets as substitution level increased. There were significant differences in aspartate aminotransferase activities among groups, but alanine aminotransferase levels were unaffected by treatments. In conclusion, the present study demonstrated that PPI and PPC were potential protein sources for using in juvenile black sea bream diet. However, the substitution level of FM by ETPP should be limited within 16%.  相似文献   

16.
The aim of the study reported here was to evaluate the efficiency of a natural antioxidant substance in gilthead sea bream (Sparus aurata) feeds. An olive oil by-product, olive mill vegetation water (VW), contains polyphenols, which have a strong antioxidant activity. A 147-day growth trial was conducted (monofactorial balanced, 4 × 3) with diet as the experimental factor. Two diets [isonitrogenous (crude protein 40%) and isoenergetic (gross energy = 18MJ kg−1 on a dry weight basis] were formulated with 1 and 5% of VW (VW1, VW5); the control diet did not contain VW. A total of 600 juvenile gilthead sea breams (mean body weight 114.1 ± 5.7 g) were utilised. Production parameters and somatic indexes were calculated at the end of the growth trial. Antioxidant activity in fish fillets was investigated using TBARS and DPPH assays. A number of haematological parameters and digestive enzyme patterns were measured in fish in the middle and at the end of the experiment. The TBARS values showed slight delays in the development of oxidation in the fillet of fish fed with VW. There was no statistical difference between fish fed with the experimental diet and the control group, except for maltase activity, which increased with increasing VW in the feed. We found that the use of VW in a gilthead sea bream diet did not have any detrimental effects on gilthead sea bream production and physiological parameters and slightly improved the conservation of the fish fillets.  相似文献   

17.
A feeding trial was conducted to evaluate the effect of replacing fish meal protein with fermented soybean meal (FSM) on the growth performance, feed utilization, amino acid profile, body composition, morphological parameters, activity of antioxidant and digestive enzymes of black sea bream (Acanthopagrus schlegeli) juvenile. Five isonitrogenic and isolipidic diets were prepared with levels of 0 (control), 80, 160, 240 and 320 g kg?1 FSM. Triplicate groups (40 fish per tank) of juvenile black sea bream with initial weight of 1.17 ± 0.04 g were hand‐fed to visual satiation at three meals per day for 8 weeks. The fish fed diets containing different levels of FSM had no significant differences regarding survival and specific growth rate compared with control group. Feed and protein efficiency ratios of fish fed diet containing 320 g kg?1 FSM were significantly lower than those of control group. Daily feed intake and daily protein intake of fish fed diet containing 240–320 g kg?1 were significantly higher than those of control group. Hepatosomatic index and condition factor of fish were not affected by different dietary FSM level. Fish fed diets containing 240–320 g kg?1 FSM had significantly higher visceral somatic index than control group. Whole body proximate and amino acid compositions of fish were not affected by dietary FSM level. The activity of digestive enzymes in the intestine was not affected by dietary FSM level. The activity of glutathione peroxidase in liver was significantly higher for fish fed the diet containing 160 g kg?1 FSM compared with control group. This study showed that up to 40% fish meal in the diets of juvenile black sea bream could be replaced by fermented soybean meal with supplementation of methionine, lysine and taurine.  相似文献   

18.
An 8‐week growth trial was conducted to evaluate the effects of different levels of tributyrin supplementation in a high‐soya bean meal diet on juvenile black sea bream (11.30 ± 0.16 g). The positive control (PC) diet contained 45% fishmeal and 20% soya bean meal, while the negative control (NC) contained 12% fishmeal and 45% soya bean meal. Graded levels of tributyrin were added to the NC diet at 0.05% (TB 0.05), 0.1% (TB 0.1), 0.2% (TB 0.2), 0.4% (TB 0.4) and 0.8% (TB 0.8). Ultimately, the fish fed the PC diet had a higher weight gain and specific growth rate than the fish fed other diets. The fish fed the NC diet had the lowest growth, and TB 0.05–TB 0.2 diets increased growth performance while TB 0.4–TB 0.8 diets caused reduction in growth. Dietary tributyrin supplementation improved protease activity and enhanced antioxidant capacity. Compared with the fish fed the NC diet, the fish fed the tributyrin‐supplemented diets had improved gut morphology and structure, and the results were similar to those of the fish fed the PC diet. Furthermore, the analysis of the dose response with second‐order polynomial regression indicated that the optimum tributyrin supplementation for juvenile black sea bream is 2.24 g/kg in the 45% soya bean meal diet.  相似文献   

19.
A 12‐week growth trial was performed to evaluate the effect of lupin seed meal as a protein source in diets for gilthead sea bream (Sparus aurata) juveniles. Six experimental diets were formulated to be isonitrogenous and isoenergetic and to contain 10%, 20% and 30% of raw lupin (Lupinus angustifolius) seed meal protein or 20% and 30% lupin (L. angustifolius) seed meal processed by infrared radiation (micronized) in place of fish meal protein, the only protein source of the control diet. Fish accepted all diets well and no significant differences in feed utilization among groups were noticed during the trial. Final weight of fish fed the experimental diets was identical or higher than the control group. Final weight of fish fed diets including 20% micronized lupin protein was even significantly higher than that of fish fed the fish meal‐based control diet. Moreover, at the same dietary lupin seed meal protein inclusion levels, final weight of fish fed diets including micronized lupin was significantly higher than with raw lupin. A trend was also noticed for a decrease of final weight with the increase in lupin seed meal in the diets. At the end of the trial no significant differences in proximate whole‐body composition, hepatosomatic and visceral indices were observed among groups. It is concluded that lupin seed meal can replace up to 30% fish meal protein in diets for gilthead sea bream juveniles with no negative effects on growth performance. Furthermore, micronization of lupin seeds improves its dietary value for gilthead sea bream juveniles. At the same dietary lupin inclusion levels, diets including micronized lupin seeds promote significantly higher growth rates than raw lupin seeds.  相似文献   

20.
The effect of dietary amylose/amylopectin (AM/AP) ratio on growth, feed utilization, digestive enzyme activities, plasma parameters, and postprandial blood glucose responses was evaluated in juvenile obscure puffer, Takifugu obscurus. Five isonitrogenous (430 g kg?1 crude protein) and isolipidic (90 g kg?1 crude lipid) diets containing an equal starch level (250 g kg?1 starch) with different AM/AP ratio diets of 0/25, 3/22, 6/19, 9/16 and 12/13 were formulated. Each experimental diet was fed to triplicate groups (25 fish per tank), twice daily during a period of 60 days. After the growth trial, a postprandial blood response test was carried out. Fish fed diet 6/19 showed best growth, feed efficiency and protein efficiency ratio. Hepatosomatic index, plasma total cholesterol concentration, liver glycogen and lipid content, and gluconokinase, pyruvate kinase and fructose-1,6-bisphosphatase activities were lower in fish fed highest AM/AP diet (12/13) than in fish fed the low-amylose diets. Activities of liver and intestinal trypsin in fish fed diet 3/22 and diet 6/19 were higher than in fish fed diet 9/16 and diet 12/13. Activities of liver and intestinal amylase and intestinal lipase, and starch digestibility were negatively correlated with dietary AM/AP ratio. Fish fed diet 3/22 and diet 6/19 showed higher plasma total amino acid concentration than fish fed the other diets, while plasma urea nitrogen concentration and activities of alanine aminotransferase and aspartate aminotransferase showed the opposite trend. Equal values were found for viscerosomatic index and condition factor, whole body and muscle composition, plasma high-density and low-density lipoprotein cholesterol concentrations, and activities of lipase and hexokinase and glucose-6-phosphatase in liver. Postprandial plasma glucose and triglyceride peak value of fish fed diet 12/13 were lower than in fish fed the low-amylose diets, and the peak time of plasma glucose was later than in fish fed the other diets. Plasma glucose and triglyceride concentrations showed a significant difference at 2 and 4 h after a meal and varied between dietary treatments. According to regression analysis of weight gain against dietary AM/AP ratio, the optimum dietary AM/AP ratio for maximum growth of obscure puffer was 0.25. The present result indicates that dietary AM/AP ratio could affect growth performance and feed utilization, some plasma parameters, digestive enzyme as well as hepatic glucose metabolic enzyme activities in juvenile obscure puffer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号