首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To develop a species-centered definition of landscapes, I suggest using a fractal analysis of movement patterns to identify the scales at which organisms are interacting with the patch structure of the landscape. Significant differences in the fractal dimensions of movement patterns of two species indicate that the species may be interacting with the patch structure at different scales. Fractal analysis therefore permits comparisons of landscape perceptions of different species within the same environment.I tested the utility of this fractal application by analyzing the movement patterns of three species of acridid grasshoppers (Orthoptera) in a grassland mosaic. The largest species moved up to 6 times faster than the two smaller species, and species exhibited different responses to microlandscape structure within 25-m2 plots. Further, the largest species exhibited different responses to microlandscape structure in two pastures subjected to different intensities of cattle grazing. This species thus is able to integrate information on landscape structure at broad spatial scales. Fractal analysis of movement patterns revealed that the two small species had significantly more tortuous patterns than the larger species, which suggests that these species are interacting with patch structure at a finer scale of resolution than the large species. Fractal analysis can be used to identify the perceptive resolution of a species; that is, the spatial grain and extent at which they are able to perceive and respond to heterogeneity. Analysis of movement patterns across a range of spatial scale may reveal shifts in fractal dimension that reflect transitions in how species respond to the patch structure of the landscape at different scales.  相似文献   

2.
He  Fangliang  LaFrankie  James V.  Song  Bo 《Landscape Ecology》2002,17(6):559-568
Abundance and richness are the two fundamental components of speciesdiversity. They represent two distinct types of variables of which the formerisadditive when aggregated across scales while the latter is nonadditive. Thisstudy investigated the changes in the spatial patterns of abundance andrichnessof tree species across multiple scales in a tropical rain forest of Malaysiaandtheir variations in different regions of the study area. The results showedthatfrom fine to coarse scales abundance had a gradual and systematic change inpattern, whereas the change in richness was much less predictable and ahotspot in richness at one scale may become acoldspot at another. The study also demonstrated that differentmeasures of diversity variation (e.g., variance and coefficient of variation)can result in different or even contradictory results which further complicatedthe interpretation of diversity patterns. Because of scale effect the commonlyused measure of species diversity in terms of unit area (e.g.,species/m2) is misleading and of little use in comparing speciesdiversitybetween different ecosystems. Extra care must be taken if management andconservation of species diversity have to be based on information gathered at asingle scale.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

3.
4.
The relationship between fine-scale spatial patterns of forage abundance and the feeding patterns of large ungulates is not well known. We compared these patterns for areas grazed in winter by elk and bison in a sagebrush-grassland landscape in northern Yellowstone National Park. At a fine scale, the spatial distribution of mapped feeding stations in 30 m × 30 m sites was found to be random where there were no large patches devoid of vegetation. In areas similar to the mapped sites, the underlying spatial distribution pattern of biomass was also determined to be random. At a broad scale, forage biomass differed among communities across the northern range but forage quality did not. These results suggest that ungulates are feeding randomly within forage patches (fine scale) but may select feeding sites based upon forage abundance at broader, landscape scales. Contrary to what has been suggested in other systems, ungulates were not overmatching at finer scales.  相似文献   

5.
Fractals and search paths in mammals   总被引:6,自引:0,他引:6  
Bascompte  Jordi  Vilà  Carles 《Landscape Ecology》1997,12(4):213-221
The fractal index by Katz and George (1985) for thecharacterization of planar curves is applied to wolf search pathsrecorded by radio-telemetry. All the sets of paths studied showspatial patterns whose complexity is between a straight line anda true random walk. Females fractal dimensions show significantchanges throughout the year, depending on the state of their lifecycle (normal, breeding and wandering). There are alsodifferences between males and females, but not between adults andnon-adults. The results are discussed with regard to wolffood-search strategies.  相似文献   

6.
Different taxonomic groups perceive and respond to the environment at different scales. We examined the effects of spatial scale on diversity patterns of butterflies and birds in the central Great Basin of the western USA. We partitioned the landscape into three hierarchical spatial levels: mountain ranges, canyons, and sites within can yons. We evaluated the relative contribution of each level to species richness and quantified changes in species composition at each level. Using additive partitioning, we calculated the contribution of spatial level to overall species diversity. Both canyon and mountain range had significant effects on landscape-level species richness of butterflies and birds. Species composition of butterflies was more similar in space than species composition of birds, but assemblages of both groups that were closer together in space were less similar than assemblages that were further apart. These results likely reflect differences in resource specificity and the distribution of resources for each group. Additive partitioning showed that alpha diversity within canyon segments was the dominant component of overall species richness of butterflies but not of birds. As the size of a sampling unit increased, its contribution to overall species richness of birds increased monotonically, but the relationship between spatial scale and species richness of butterflies was not linear. Our work emphasizes that the most appropriate scales for studying and conserving different taxonomic groups are not the same. The ability of butterflies and birds to serve as surrogate measures of each others diversity appears to be scale-dependent.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

7.

Context

How do young birds achieve spatial knowledge about the environment during the initial stages of their life? They may follow adults, so gaining social information and learning; alternatively, young birds may acquire knowledge of the environment themselves by experiencing habitat and landscape features. If learning is at least partially independent of adults then young birds should respond to landscape composition at finer spatial scale than adults, who possess knowledge over a larger area.

Objectives

We studied the responses of juvenile, immature and adult Caspian Gull Larus cachinnans to the same habitat and landscape variables, but at several spatial scales (ranging from 2.5 to 15 km), during post-breeding period.

Methods

We surveyed 61 fish ponds (foraging patches) in southern Poland and counted Caspian gulls.

Results

Juvenile birds responded at finer spatial scales to the factors than did adults. Immature birds showed complicated, intermediate responses to spatial scale. The abundance of juvenile birds was mostly correlated with the landscape composition (positively with the cover of corridors and negatively with barriers). Adult abundance was positively related to foraging patch quality (fish stock), which clearly required previous spatial experience of the environment. The abundance of all age classes were moderately correlated with each other indicating that social behaviour may also contribute to the learning of the environment.

Conclusions

This study shows that as birds mature, they respond differently to components of their environment at different spatial scales. This has considerable ecological consequences for their distribution across environments.
  相似文献   

8.
We question whether classical experimentation is adequate for real progress in landscape or regional ecology. One cannot do classical experimentation unless one can replicate the treatment. There is conflict between the need to replicate and the need to study processes at appropriately large scales.Because of the difficulties in doing controlled field experiments at regional scales, we propose that landscape ecologists take greater advantage of natural field experiments. Natural experiments must be coordinated, standardized, and synchronized over space and through time, and will require the cooperation of multiple investigators. Distributed computer networks can help provide the automated region-wide monitoring which will supply natural experiments with pre-treatment data.Regions or landscapes need not be replicated, and indeed, cannot be. One can achieve a relational understanding between a system's response and environmental characteristics. This understanding is not definitive, but allows for the development of testable hypotheses, in the classical sense. The confounding of space, time, and/or other environmental factors in pseudoreplicated natural experiments only allows for the development of hypotheses - how-possibly explanations. Discrimination among competing hypotheses can be done at smaller scales and used to infer processes occurring at larger scales. Use of natural and controlled field experiments in complementary roles is a more promising approach than views of one or the other as methodologically inferior.  相似文献   

9.
We examine the influence of spatial scale on studies of nektonic patchiness at the north edge of the Gulf Stream by altering the grain size of acoustic cross sections and applying a patch-finding algorithm. From original pictures of 180 pixels deep by 540–1260 pixels long, we averaged depth and length, to give 9 scales ranging from fine grain (1 m vertical × 25 m horizontal sized pixels) to coarse grain (12 m × 300 m sized pixels). Measures of overall echo intensity within patches were the most predictable and showed little change with scale. Measures of variability of the echo within patches showed simple negative trends with scale and were best measured at fine spatial scales. Patch size and shape related variables have a more complex relationship with scale with differences between day and night transects more pronounced at intermediate scales. This suggests behavioral patch forming mechanisms within the nekton occur at a specific grain size (4 m vertical × 100 m horizontal) within the Gulf Stream front.  相似文献   

10.
As the concepts of landscape ecology have been incorporated into otherdisciplines, the influence of spatial patterns on animal abundance anddistribution has attracted considerable attention. However, there remains asignificant gap in the application of landscape ecology theories and techniquesto wildlife research. By combining landscape ecology techniques withtraditionalwildlife habitat analysis methods, we defined an organism-centeredperspectivefor breeding bald eagles (Haliaeetus leucocephalus) alongthe Hudson River, New York, USA. We intensively monitored four pairs ofbreedingeagles during the 1999 and 2000 breeding seasons, and collected detailedinformation on perch and forage locations. Our analysis focused on threecritical habitat elements: available perch trees, access to foraging areas, andfreedom from human disturbance. We hypothesized that eagle habitat selectionrelative to each of these elementswould vary with the spatial scale of analysis, and that these scalingrelationships would vary among habitat elements. We investigated two elementsofspatial scale: grain and local extent. Grain was defined as the minimum mappingunit; local extent was defined by the size of an analysis window placed aroundeach focal point. For each habitat element, we quantified habitat use over arange of spatial scales. Eagles displayed scale-dependent patterns of habitatuse in relation to all habitat features, including multi-scale andthreshold-like patterns. This information supports the existence ofscale-dependant relationships in wildlife habitat use and allowed for a moreaccurate and biologically relevant evaluation of Hudson River breeding eagle habitat.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

11.
Aldo Leo­pold is well known in North America as a conservationist, author, and promoter of the Land Ethic. Although Leo­polds work is rarely included in the realm of landscape ecology, he left several illustrations of an early spatial theory for conservation. While European geographer Troll published the term landscape ecology in 1939, Leo­pold was discovering the role of spatial configuration in European working landscapes, and began to apply the landscape ecology concepts to wildlife management and cooperative conservation in the US. With his own spatial language he wrote, mapped, and applied elements of pattern, process, and connectedness in the landscape. In this perspective piece I use three examples from Leo­polds work to demonstrate his contribution to spatial theory in early conservation design. First, this paper deciphers spatial elements conveyed through Leo­polds writing, drawing, and teaching in the early 1930s. Second, I re-interpret Leo­polds observations of the spatial design of remises from his visit to Silesia, Europe. Third, I show how the lessons from Silesia were applied to a landscape in Wisconsin, USA, involving both farmers and townspeople in cooperative implementation of a remise system. Collectively, a new perspective emerges on the early dialogue of landscape ecology and conservation across continents.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

12.
Predicting across scales: Theory development and testing   总被引:21,自引:0,他引:21  
Landscape ecologists deal with processes that occur at a variety of temporal and spatial scales. The ability to make predictions at more than one level of resolution requires identification of the processes of interest and parameters that affect this process at different scales, the development of rules to translate information across scales, and the ability to test these predictions at the relevant spatial and temporal scales. This paper synthesizes discussions from a workshop on Predicting Across Scales: Theory Development and Testing that was held to discuss current research on scaling and to identify key research issues.  相似文献   

13.
The ocean ‘landscape’   总被引:1,自引:1,他引:0  
The ocean has a complex physical structure at all scales in space and time, with peaks at certain wave numbers and frequencies. Pelagic ecosystems show regular progressions in size of organisms, life cycle, spatial ambit, and trophic status. Thus, physiological and ecological parameters are closely coupled to spatial and temporal physical scales.  相似文献   

14.
Effects of patch shape on the number of organisms   总被引:5,自引:0,他引:5  
This study examined effects of habitat patch shape on the abundance of organisms. The effects of patch shape were considered in terms of (1) immigration and emigration of organisms. (2) the amount of available resources in a patch and (3) spatial and temporal heterogeneity of the organisms and environment. I hypothesized that (1) the number of organisms would increase as patch shape elongates because organisms are more likely to encounter an elongated patch, (2) the number of organisms in a patch would remain constant for all patch shapes where the number of organisms in a patch was limited by the amount of resources, because patch shape does not change the patch area that is directly associated with the amount of patch resources, and (3) spatial and temporal variation of the abundance of organisms would increase as patch shape elongates because an elongated patch is more likely to interact with the variable surrounding matrix.Common millipedes,Oxidus gracilis, and their habitat, plywood boards of five shapes (width:length ratio; 11, 14, 19, 136, 1144) with an area of 900 cm2 were placed in forest and old field and the number of millipedes appearing under the boards was monitored. Significantly higher mean number of millipedes under the boards was observed at a patch with an elongated shape in the forest and the old field. A significant positive correlation was observed between perimeter length of a patch and the number of millipedes in the old field. The temporal and spatial variation of the number of millipedes was high in the old field. The spatial and temporal variation was higher for boards with elongated shape.  相似文献   

15.
Six species of resident birds were censused in patches of deciduous forest within a coniferous forest landscape in south central Sweden. Here, the forests have been subjected to active forestry for a long time, but with recently increased intensity. Although the forest cover is more or less continuous in this landscape, mature deciduous forest is now a rare element compared with the untouched forest.All censused patches were similar with regards to size, proportion and amount of deciduous trees, but were either isolated in the coniferous forest (isolated patches) or near to other deciduous patches (aggregated patches). We concentrated on six species of resident birds, with moderate area requirements, that are tied to deciduous forest and whose ecology is well-known. The Nuthatch and the Marsh tit, which both show strict year-round territoriality and have a restricted dispersal phase, were significantly more likely to be found in aggregated than in isolated patches. No effect was found for the Great tit and the Blue tit, which are less territorial outside the breeding season and have a longer dispersal phase. Moreover, the Great tit is less specialized on deciduous forest than the other species. Also, the Long-tailed tit was negatively affected by isolation, which may be due to restricted dispersal and to larger area requirements of this flock-territorial species. The Hazel grouse, finally, was not affected, but this larger bird probably uses the forest in a different way from the smaller species.Our study clearly shows that fragmentation of one type of forest (deciduous) within another can have serious detrimental effects on forest-living species and raises important issues for forest management practices and conservation within a forest landscape.  相似文献   

16.
Gap analysis: concepts,methods, and recent results*   总被引:20,自引:0,他引:20  
Rapid progress is being made in the conceptual, technical, and organizational requirements for generating synoptic multi-scale views of the earth's surface and its biological content. Using the spatially comprehensive data that are now available, researchers, land managers, and land-use planners can, for the first time, quantitatively place landscape units – from general categories such as Forests or Cold-Deciduous Shrubland Formation to more categories such as Picea glauca-Abies balsamea-Populus spp. Forest Alliance – in their large-area contexts. The National Gap Analysis Program (GAP) has developed the technical and organizational capabilities necessary for the regular production and analysis of such information. This paper provides a brief overview of concepts and methods as well as some recent results from the GAP projects. Clearly, new frameworks for biogeographic information and organizational cooperation are needed if we are to have any hope of documenting the full range of species occurrences and ecological processes in ways meaningful to their management. The GAP experience provides one model for achieving these new frameworks.  相似文献   

17.
Lugo  Ariel E. 《Landscape Ecology》2002,17(7):601-615
Humans have used Caribbean island landscapes for millennia. Theconversion of wild lands to built-up lands or to agricultural lands in thesetropical countries follows predictable patterns. Conversion of moist forestlifezones and fertile flatlands is faster than conversion of wet and rain forestlife zones and low fertility steep lands. In Puerto Rico, these trends areleading to increased built-up areas, environmental surprises, and increaseddependence on external subsidies. Changes over the past 50 yr alsoinclude a reversal in deforestation and increase in forest patch size in spiteof increasing human population density. Present forests have different speciescomposition than the original ones but are indistinguishable in physiognomy andbasic function. The reversal of deforestation and forest fragmentation trends,if accompanied by an understanding of the forces that cause the reversal, canresult in the development of tools for landscape management. Tropical landscapemanagement requires understanding and application of natural resiliencemechanisms of ecosystems, greater use of ecological engineering approaches toinfrastructure development, enforcement of zoning laws, enlightened economicdevelopment policies, and an understanding and agreement of a conservationvision among all sectors of society. Mixing species in new combinations to formnew ecosystems is a necessary step in the development of future landscapes.Landscapes have always changed over time, but we sense,somewhat uneasily, that the processes now at work are more powerfully focusedand possibly irreversible.Our present assumption is that generally tropical lands aremuch more sensitive and less resilient than those in the temperatezones....the long-term world trend in land uses is a cascadingloss in capacity (i.e., degradation) in every broad category of landuse. J.F. Richards 1990, p 176 and 177.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

18.
A case study of forest change in the Swiss lowlands   总被引:2,自引:0,他引:2  
Bürgi  Matthias 《Landscape Ecology》1999,14(6):567-576
This paper presents a regional case study of forest development and the history of forest use and management in the north-eastern lowlands of Switzerland during the 19th and 20th centuries. The analysis draws on historical documents related to forestry to consider the following aspects of forest change: forest types, growing stock, trees species composition and non-timber forest uses. Based on the data presented, three overlapping periods of forest use and management can be discerned. The period of traditional multiple use lasted until the second half of the 19th century. From the mid 19th to the mid 20th century, a period of primacy of timber production occurred. During the 20th century, the period of modern multi-impact management has developed. For these three periods, groups of main actors, their needs and interests, and how they were causing the changes in the aspects under study were defined. This procedure of defining periods and the respective groups of main actors is a critical link between landscape ecology and history, as changes in demands of the society can be directly linked with changes in land-use and land-cover.  相似文献   

19.
Beaver (Castor canadensis) impoundments are used to illustrate the effect of large animals on the boundary dynamics of patch bodies, volumetric landscape units which have surficial boundaries with upper and lower strata, and lateral boundaries with adjacent patches within the same stratum. Patch bodies created by beaver impoundments include the beaver pond, the aerobic soil beneath the pond, and the underlying anaerobic soil. Beaver herbivory in the riparian zone creates an additional patch body concentric to the pond. Beaver and water are the primary biotic and abiotic vectors mediating fluxes across lateral patch body boundaries; vegetation and microbes are the primary biotic vectors mediating fluxes across surficial patch body boundaries. Basin geomorphology affects the permeability of pond boundaries (i.e., their ability to transmit, energy and materials) by affecting the kinetic energy of water, the surface-to-volume ratio of the impoundment, and the movement of beaver between the pond and the riparian foraging zone. We suggest that: (1) permeability of lateral boundaries to abiotic vectors is a function of kinetic energy; (2) within-patch retention of particulate matter transferred by abiotic vectors across lateral boundaries is maximized by a decrease in kinetic energy; (3) lateral patch boundaries between safe refuge and a resource used by an animal vector are most permeable when they are narrow; and (4) total amount of energy and materials transferred across surficial boundaries is maximized by increasing surface area.  相似文献   

20.

Context

The spatial distribution of non-substitutable resources implies diverging predictions for animal movement patterns. At broad scales, animals should respond to landscape complementation by selecting areas where resource patches are close-by to minimize movement costs. Yet at fine scales, central place effects lead to the depletion of patches that are close to one another and that should ultimately be avoided by consumers.

Objectives

We developed a multi-scale resource selection framework to test whether animal movement is driven by landscape complementation or resource depletion and identify at which spatial scale these processes are relevant from an animal’s perspective.

Methods

During the dry season, surface water and forage are non-substitutable resources for African elephants. Eight family herds were tracked using GPS loggers in Hwange National Park, Zimbabwe. We explained habitat selection during foraging trips by mapping surface water at two scales with gaussian kernels of varying widths placed over each waterhole.

Results

Unexpectedly, elephants select areas with low waterhole density at both fine scales (< 1 km) and broad scales (5–7 km). Selection is stronger when elephants forage far away from water, even more so as the dry season progresses.

Conclusions

Elephant selection of low waterhole density areas suggests that resource depletion around multiple central places is the main driver of their habitat selection. By identifying the scale at which animals respond to waterhole distribution we provide a template for water management in arid and semi-arid landscapes that can be tailored to match the requirements and mobility of free ranging wild or domestic species.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号