首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
To analyze the effects of mesoscale eddies, sea surface temperature (SST), and gear configuration on the catch of Atlantic bluefin (Thunnus thynnus), yellowfin (Thunnus albacares), and bigeye tuna (Thunnus obesus) and swordfish (Xiphias gladius) in the U.S. northwest Atlantic longline fishery, we constructed multivariate statistical models relating these variables to the catch of the four species in 62 121 longline hauls made between 1993 and 2005. During the same 13‐year period, 103 anticyclonic eddies and 269 cyclonic eddies were detected by our algorithm in the region 30–55°N, 30–80°W. Our results show that tuna and swordfish catches were associated with different eddy structures. Bluefin tuna catch was highest in anticyclonic eddies whereas yellowfin and bigeye tuna catches were highest in cyclonic eddies. Swordfish catch was found preferentially in regions outside of eddies. Our study confirms that the common practice of targeting tuna with day sets and swordfish with night sets is effective. In addition, bluefin tuna and swordfish catches responded to most of the variables we tested in the opposite directions. Bluefin tuna catch was negatively correlated with longitude and the number of light sticks used whereas swordfish catch was positively correlated with these two variables. We argue that overfishing of bluefin tuna can be alleviated and that swordfish can be targeted more efficiently by avoiding fishing in anticyclonic eddies and in near‐shore waters and using more light sticks and fishing at night in our study area, although further studies are needed to propose a solid oceanography‐based management plan for catch selection.  相似文献   

2.
The distribution pattern of albacore, Thunnus alalunga, in the Indian Ocean was analyzed based on catch data from the Taiwanese tuna longline fishery during the period 1979–85. The Taiwanese tuna fishery began operating in the Indian Ocean in 1967. We used a geographic information system to compile a fishery and environmental database and statistically explored the catch per unit effort (CPUE) distribution of albacore. Our results indicated that immature albacore were mainly distributed in areas south of 30°S although some displayed a north–south seasonal migration. Mature albacore, which were mainly concentrated between 10°S and 25°S, also showed a north–south migration. Within 10°S and 30°S, the separation of mature, spawning, and immature albacore life history stages roughly coincided with the boundaries of the three oceanic current systems in the Indian Ocean. The optimal environmental variables for CPUE prediction by stepwise discriminant analysis differed among life history stages. For immature albacore, the sea surface variables sea surface temperature (SST), chlorophyll concentration and surface salinity were significant. For mature albacore, SST was significant, while for spawning albacore, the sub‐surface variables temperature at 100 m and oxygen at 200 m were significant. Spawning albacore evidently prefer deep oceanographic conditions. Our results on the oceanographic conditions preferred by different developmental stages of albacore in the Indian Ocean were compatible with previous studies found in the Pacific Ocean.  相似文献   

3.
中西太平洋金枪鱼围网黄鳍金枪鱼渔获时空分析   总被引:3,自引:4,他引:3  
沈建华  崔雪森 《海洋渔业》2006,28(2):129-135
中西太平洋的金枪鱼围网渔业目前的年产量约在1×106t左右,其中黄鳍金枪鱼占有很重要的地位。本文通过对围网捕获的黄鳍金枪鱼渔获数据进行时间序列以及空间位置变化等时空分析,试图找出其变化规律以及趋势。结果表明,20世纪70年代以来,随着渔船数的增加,中西太平洋围网捕获的黄鳍金枪鱼渔获量分布,从太平洋岛屿近海逐渐向太平洋热带中部海域扩展。渔获量经度重心随着中西太平洋金枪鱼围网渔业的发展有向东移动的趋势,70年代在128°E附近,到80年代在145°E左右,90年代在152°E左右,近年在155°E左右。而黄鳍金枪鱼渔获量纬度重心位于赤道区域,70年代在3°30′N附近,80年代在0°30′N左右,90年代在0°40′S左右,近年在1°20′S左右。经纬度5°×5°小区范围内10年内的最高总产量则从70年代的8×104t,增加到90年代超过20×104t。渔获量空间分布除了随着渔业发展向外海扩展以外,还受到被称为南方涛动的ENSO现象的明显影响,一般来说渔获量经度中心在厄尔尼诺年比较偏东,在拉尼娜年比较偏西,渔获量纬度重心在厄尔尼诺年或次年比较偏南,在拉尼娜次年比较偏北。此外,黄鳍金枪鱼渔获量经度重心在厄尔尼诺年变化比较大,渔获量纬度重心在厄尔尼诺年或次年变化比较大。  相似文献   

4.
Catch composition, catch rates, hooking location, and status at release at haulback were monitored during 81 experimental sets (launches and hauling fishing per day) in a commercial pelagic longline fishery targeting tuna in the equatorial South Atlantic Ocean. Circle hooks (size 18/0, 0° offset) and J-style hooks (size 9/0, 10° offset) with squid baits were deployed in an alternating fashion. The catch composition was not significantly different for most species between the two types of hooks, except for bigeye tuna, which showed a significantly higher proportion of catches on the circle hook (p ? 0.001) and for sailfish, pelagic stingray, and leatherback sea turtle, which had higher catch rates on the J-style hook (p = 0.018, p ? 0.001, and p = 0.044, respectively). Bigeye and yellowfin tuna showed significantly higher rates of survival at the time of gear retrieval with circle hooks, and circle hooks hooked bigeye tuna, yellowfin tuna, swordfish, and sailfish significantly more often externally than internally. Our results suggest that the use of size 18/0, 0° offset circle hooks in the equatorial pelagic longline fishery may increase the survival of bycatch species at the time of gear retrieval with minimal effects on the catches of target species.  相似文献   

5.
《水生生物资源》2000,13(4):233-240
Since 1991, fishing operations on tuna schools associated with drifting Fish Aggregating Devices (FADs) have become widespread in the purse seine fishery in the Gulf of Guinea. In the offshore South Sherbro area (0–5° N, 10–20° W), FAD-associated catches represent about 75 % of the total catch. This FAD fishery exploits concentrations of skipjack mixed with a smaller amount of bigeye and yellowfin tuna of similar size (46 cm), and some large yellowfin. Catches on unassociated tuna schools are mainly composed of large yellowfin in breeding phase and skipjack. Here we studied tuna diet in relation with the aggregation mode (FAD-associated or unassociated tuna schools), species, and size. The stomach contents of around 800 fish were analysed. Numerous empty stomachs were found, especially in fish caught under FADs. Diets were similar for all small-size tuna sharing the same aggregation type. Small tuna mainly feed on Vinciguerria nimbaria (Photichthyidae), a mesopelagic fish of the micronekton, whereas large tuna mainly feed on Scombridae, mixed with Cubiceps pauciradiatus (Nomeidae) when they were caught in unassociated schools. The feeding habits of tuna are discussed with emphasis on the behavior of V. nimbaria. Estimations of the daily ration of similarly sized tuna with the same aggregation mode were very close. The low estimated rations for small, FAD-associated tuna show that logs do not have a trophic function, but rather are a refuge. In contrast, FADs seem to influence the diet of large tuna because of the Scombridae prey that probably is associated to the FAD.  相似文献   

6.
The physical environment directly influences the distribution, abundance, physiology and phenology of marine species. Relating species presence to physical ocean characteristics to determine habitat associations is fundamental to the management of marine species. However, direct observation of highly mobile animals in the open ocean, such as tunas and billfish, is challenging and expensive. As a result, detailed data on habitat preferences using electronic tags have only been collected for the large iconic, valuable or endangered species. An alternative is to use commercial fishery catch data matched with historical ocean data to infer habitat associations. Using catch information from an Australian longline fishery and Bayesian hierarchical models, we investigate the influence of environmental variables on the catch distribution of yellowfin tuna (Thunnus albacares). The focus was to understand the relative importance of space, time and ocean conditions on the catch of this pelagic predator. We found that pelagic regions with elevated eddy kinetic energy, a shallow surface mixed layer and relatively high concentrations of chlorophyll a are all associated with high yellowfin tuna catch in the Tasman Sea. The time and space information incorporated in the analysis, while important, were less informative than oceanic variables in explaining catch. An inspection of model prediction errors identified clumping of errors at margins of ocean features, such as eddies and frontal features, which indicate that these models could be improved by including representations of dynamic ocean processes which affect the catch of yellowfin tuna.  相似文献   

7.
Skipjack tuna (Katsuwonus pelamis) ranks third among marine resources that sustain global fisheries. This study delimits the spatiotemporal habitat of the species in the south‐western Atlantic Ocean, based on operational oceanography. We used generalized additive models (GAMs) and catch data from six pole‐and‐line fishing vessels operating during 2014 and 2015 fishing seasons to assess the effect of environmental variables on catch. We also analysed Modis sensor images of sea surface temperature (SST) and surface chlorophyll‐α concentration (SCC) to describe fishing ground characteristics in time and space. Catch was positively related to thermocline depth (24–45 m), SST (22–24.5°C), SCC (0.08–0.14 mg/m³) and salinity (34.9–35.8). Through SST images, we identified that thermal fronts were the main surface feature associated with a higher probability to find skipjack. Also, we state that skipjack fishery is tightly related to shelf break because bottom topography drives the position of fronts in this area. Ocean colour fronts and plankton enrichment were important proxies, accessible through SCC, used to delineate skipjack fishing grounds. Catch per unit effort (CPUE) was higher towards summer (median 14 t/fishing day) due to the oceanographic characteristics of the southern region. High productivity in this sector of the Brazilian coast defines the main skipjack feeding areas and, as a consequence, the greatest abundance and availability for fishing.  相似文献   

8.
A survey of yellowfin tuna, Thunnus albacares , fishing ground was carried out on board of the Chinese longliners from September 15 to December 12, 2005 in the tropical high seas of the Indian Ocean. The depth at which each yellowfin tuna was hooked was estimated using a stepwise regression analysis of theoretical hook depth and observed average hook depth measured using a temperature depth recorder. Water temperature, salinity, chlorophyll  a , dissolved oxygen and thermocline, which are important variables influencing yellowfin tuna habitats, were measured in the survey. Catch rates of yellowfin tuna were then analyzed with respect to depth, temperature, salinity, chlorophyll  a , dissolved oxygen and thermocline. We suggest that the optimum ranges of swimming depth, water temperature, chlorophyll  a and dissolved oxygen concentration for yellowfin tuna are 100.0–179.9 m, 15.0–17.9°C, 0.090–0.099  μ g L−1, 2.50–2.99 mg L−1, respectively; that salinity has less influence on the vertical distribution of adult yellowfin tuna; and that yellowfin tuna are mainly distributed within the thermocline in the high seas of the Indian Ocean. Our results match the yellowfin tuna's vulnerability to deep longline fishing gear well.  相似文献   

9.
We evaluated the behavior of skipjack (Katsuwonus pelamis), yellowfin (Thunnus albacares) and bigeye tuna (T. obesus) associated with drifting fish aggregating devices (FADs) in the equatorial central Pacific Ocean. A total of 30 skipjack [34.5–65.0 cm in fork length (FL)], 43 yellowfin (31.6–93.5 cm FL) and 32 bigeye tuna (33.5–85.5 cm FL) were tagged with coded transmitters and released near two drifting FADs. At one of the two FADs, we successfully monitored the behavior of all three species simultaneously. Several individuals remained around the same FAD for 10 or more days. Occasional excursions from the FAD were observed for all three species, some of which occurred concurrently for multiple individuals. The detection rate was higher during the daytime than the nighttime for all the species, and the detection rate for bigeye tuna was higher than for yellowfin or skipjack tuna. The swimming depth was deeper during the daytime than nighttime for all species. The fish usually remained shallower than 100 m, but occasionally dived to around 150 m or deeper, most often for bigeye and yellowfin tuna during the daytime. The swimming depth for skipjack tuna was shallower than that for bigeye and yellowfin tuna, although the difference was not large, and is probably not sufficient to allow the selective harvest of skipjack and yellowfin tuna by the purse seine fishery. From the detection rate of the signals, bigeye tuna is considered to be more vulnerable to the FAD sets than yellowfin and skipjack tuna.  相似文献   

10.
The Atlantic bluefin tuna (Thunnus thynnus) population in the western Atlantic supports substantial commercial and recreational fisheries. Despite quota establishment and management under the auspices of the International Commission for the Conservation of Atlantic Tunas, only small increases in population growth have been estimated. In contrast to other western bluefin tuna fisheries indices, contemporary estimates of catch per unit effort (CPUE) in the southern Gulf of St. Lawrence have increased rapidly and are at record highs. This area is characterized by the Cold Intermediate Layer (CIL) that is defined by waters <3°C and located at depths of 30–40 m in September. We investigated the influence of several in situ environmental variables on the bluefin tuna fishery CPUE using delta‐lognormal modelling and relatively extensive and consistent oceanographic survey data, as well as dockside monitoring and mandatory logbook data associated with the fishery. Although there is considerable spatial and temporal variation of water mass characteristics, the amount of available habitat in the southern Gulf of St. Lawrence (assuming a > 3°C thermal ambit) for bluefin tuna has been increasing. The percentage of the water column occupied by the CIL was a significant environmental variable in the standardization of CPUE estimates. There was also a negative relationship between the spatial extents of the CIL and the fishery. Properties of the CIL account for variation in the bluefin tuna CPUE and may be a factor in determining the amount of available feeding habitat for bluefin tuna in the southern Gulf of St. Lawrence.  相似文献   

11.
近十年来,越南将南海的金枪鱼资源作为其"外向型"渔业的重要支撑,不断增加捕捞强度,产量逐年升高。本文总结了越南发展南海金枪鱼渔业的过程,分析了南海金枪鱼资源的开发趋势。越南现代化的金枪鱼捕捞技术主要来自日本,使用的渔具主要有金枪鱼延绳钓、手钓、刺网和小型围网,捕捞的种类主要为鲣鱼、黄鳍金枪鱼和大眼金枪鱼,主要作业区域在西沙群岛南部海域和南沙群岛海域。越南2009年金枪鱼的产量已达到5.9×104t,计划2015年达到30×104t。根据越南海洋渔业研究所(RIMF)的评估,南海中西部的金枪鱼资源量为66~67×104t,可捕量23.3×104t,其中鲣鱼的可捕量21.6×104t,黄鳍金枪鱼和大眼金枪鱼的可捕量1.7×104t。随着全球金枪鱼捕捞配额的缩减和越南"外向型"渔业经济的发展,越南将继续加强对南海金枪鱼资源的开发。  相似文献   

12.
13.
To provide target strength (TS) information for estimating the body length of yellowfin tuna Thunnus albacares and its abundance around fish aggregating devices, TS was measured ex situ and in situ. In the ex situ TS measurements, two cameras synchronized with a 200 kHz echosounder were used to obtain the precise orientation of the yellowfin tuna under free swimming conditions. The ex situ TS (dB re 1 m2)–fork length (FL, cm) regression was: TS = 27.06 log (FL) − 85.04. Ex situ TS was found to reach its maximum in the tilt angle range of −15° to −20° after excluding TS samples with insignificant correlation to the tilt angle. The angle between the vertebra and the swim bladder was approximately 25° according to X-ray images, supporting the above tilt range. The relationship between the swim bladder volume (V SB, ml) and the fork length was: V SB = 0.000213 FL3. The results from the in situ TS measurements indicated that the tilt angle was highly concentrated between −10° and 15°. The results from a calculation using the ex situ TS–FL equation with the fork length from biological sampling agreed strongly with the average in situ TS.  相似文献   

14.
中西太平洋金枪鱼围网渔获物组成分析   总被引:7,自引:6,他引:1  
根据 2 0 0 4年 7月 2 8日至 9月 1日在中西太平洋海域的金枪鱼围网生产调查结果 ,以及“金汇 2号”2 0 0 3年全年的生产数据 ,对中西太平洋金枪鱼围网渔获物组成进行了初步分析。结果显示 ,渔获物种类有鲣鱼 (Katsuwonuspelamis)、黄鳍金枪鱼 (Thunnusalbacares)和大眼金枪鱼 (Thunnusobesus)等 19种 ;渔获物重量组成中鲣鱼占 70 .5 1% ,黄鳍金枪鱼占 2 6 .92 % ,其它鱼类占 2 .5 6 % ;鲣鱼的叉长范围为 2 7~ 81cm ,优势叉长组为 4 0~ 5 0cm ,占 4 1% ;黄鳍金枪鱼叉长范围为 32~ 16 5cm ,优势叉长组为 5 0~ 70cm ,占 33% ,另一优势叉长组为 110~ 130cm ,占 2 0 % ;渔获物重量组成存在海域差异 ,在 16 2°E以东海域鲣鱼比例高于以西海域 ,黄鳍金枪鱼则是在 16 2°E以西海域的比例较高。  相似文献   

15.
The environmental processes associated with variability in the catch rates of bigeye tuna in the Atlantic Ocean are largely unexplored. This study used generalized additive models (GAMs) fitted to Taiwanese longline fishery data from 1990 to 2009 and investigated the association between environmental variables and catch rates to identify the processes influencing bigeye tuna distribution in the Atlantic Ocean. The present findings reveal that the year (temporal factor), latitude and longitude (spatial factors), and major regular longline target species of albacore catches are significant for the standardization of bigeye tuna catch rates in the Atlantic Ocean. The standardized catch rates and distribution of bigeye tuna were found to be related to environmental and climatic variation. The model selection processes showed that the selected GAMs explained 70% of the cumulative deviance in the entire Atlantic Ocean. Regarding environmental factors, the depth of the 20 degree isotherm (D20) substantially contributed to the explained deviance; other important factors were sea surface temperature (SST) and sea surface height deviation (SSHD). The potential fishing grounds were observed with SSTs of 22–28°C, a D20 shallower than 150 m and negative SSHDs in the Atlantic Ocean. The higher predicted catch rates were increased in the positive northern tropical Atlantic and negative North Atlantic Oscillation events with a higher SST and shallow D20, suggesting that climatic oscillations affect the population abundance and distribution of bigeye tuna.  相似文献   

16.
A need to improve larval rearing techniques led to the development of protocols for catecholamine‐induced settlement of flat oyster, Ostrea angasi, larvae. To further refine these techniques and optimize settlement percentages, the influence of salinity or temperature on development of O. angasi larvae was assessed using epinephrine‐induced metamorphosis. Larvae were reared between salinities of 15–35 and temperatures between 14.5 and 31°C. The greatest percentage survival, growth, development occurred when larvae were reared between 26 and 29°C and between salinities of 30 and 35. Larvae reared outside this salinity and temperature range exhibited reduced growth, survival and/or delayed development. Short‐term (1 h) reduction in larval rearing temperature from 26°C to 23.5°C significantly increased larval metamorphosis without affecting larval survival. Short‐term (1 h) increase in larval rearing temperature from 26°C to 29 and 31°C decreased larval survival and metamorphosis. To ensure repeatability in outcomes, tests showed that larvae sourced from different estuaries did not vary significantly in their metamorphic response to short‐term temperature manipulation and epinephrine‐induced metamorphosis.  相似文献   

17.
This study sought to determine the optimal temperature(s) for aquaculture of juvenile red‐spotted grouper Epinephelus akaara (Temminck & Schlegel) (mean initial BW: 3.1 g). Growth performance, insulin‐like growth factor 1 (IGF‐1) expression and thermal stress responses (plasma cortisol, glucose, and hepatic heat shock protein 60 expression) were evaluated at three constant temperatures (24°C, 26°C and 28°C) in a 2‐week trial. At the end of the trial, final BW was significantly higher at 26°C and 28°C than at 24°C (p < 0.05); a quadratic regression analysis of final BW showed the optimum temperature for growth was 27.5°C (p < 0.05, R2 = 0.806). The highest hepatic IGF‐1 expression was observed at 26°C (p < 0.05). On the other hand, hepatic heat shock protein 60 expression was highest at 28°C (p < 0.05), suggesting thermal stress. In conclusion, temperature optima, which support excellent growth but induce minimal thermal stress, was 26°C. This fine information within a narrow temperature range is expected to give empirical information for red‐spotted grouper farmers to sustain maximal production efficiency with avoiding thermal stress and to determine the future location of production, especially in consideration of arising seawater temperatures.  相似文献   

18.
刘勇  陈新军 《海洋渔业》2007,29(4):296-301
黄鳍金枪鱼是中西太平洋金枪鱼围网渔业中的重要捕捞种类之一。本文根据2003年中西太平洋金枪鱼围网生产统计及其表温数据,利用频次统计分析和地理信息软件Marine Explorer 4.0对黄鳍金枪鱼产量和单位日产量(CPUE)的时空分布进行分析,探讨其与海水表温的关系。结果显示,产量和CPUE最高的是2月份,其次是9月份,5月份为最低。高产量的范围为140~160°E、0°~5°S;CPUE高值区分布在130°E、0°~15°S,140°~160°E、0°~15°S和175°W、0°~15°S;产量经纬度重心分别为150°30′E和3°48′S。产量主要分布在海表温为28~31℃的海域,产量比重高达95.45%,其中29~30℃产量为最高,占69.54%。  相似文献   

19.
中西太平洋金枪鱼围网鲣鱼渔获量时空分布分析   总被引:8,自引:6,他引:8  
中西太平洋的金枪鱼围网渔业目前的年产量约在100×104t左右,其中鲣鱼占有很重要的地位。本文通过对20世纪70年代以来围网捕获的鲣鱼渔获数据进行时间序列以及空间位置变化等时空分析,试图找出其变化规律以及趋势。结果表明,从20世纪70年代以来,随着渔船数的增加,中西太平洋的围网捕获的鲣鱼渔获量分布,从太平洋岛屿近海逐渐向太平洋热带中部海域扩展。渔获量经度重心随着中西太平洋金枪鱼围网渔业的发展有向东移动的趋势,70年代在128°E附近变化,80年代在144°E左右,90年代在153°E左右,近年在158°E左右变化。而鲣鱼渔获量纬度重心位于赤道区域,70年代在2°N附近,80年代在1°30′S左右,90年代在2°50′S左右,近年在2°55′S左右变化。经纬度5°×5°单个小区范围内10年内的最高总产量则从70年代的11×104t,增加到90年代超过了69×104t。渔获量空间分布除了随着渔业发展向外海向赤道以南扩展以外,还受南方涛动(ENSO)现象的明显影响,一般来说在相邻的数年中渔获量经度中心在厄尔尼诺年比较偏东,在拉尼娜年比较偏西。  相似文献   

20.
We investigate the impact of oceanographic variability on Pacific bluefin tuna (Thunnus orientalis: PBF) distributions in the California Current system using remotely sensed environmental data, and fishery‐dependent data from multiple fisheries in a habitat‐modeling framework. We examined the effects of local oceanic conditions (sea surface temperature, surface chlorophyll, sea surface height, eddy kinetic energy), as well as large‐scale oceanographic phenomena, such as El Niño, on PBF availability to commercial and recreational fishing fleets. Results from generalized additive models showed that warmer temperatures of around 17–21°C with low surface chlorophyll concentrations (<0.5 mg/m3) increased probability of occurrence of PBF in the Commercial Passenger Fishing Vessel and purse seine fisheries. These associations were particularly evident during a recent marine heatwave (the “Blob”). In contrast, PBF were most likely to be encountered on drift gillnet gear in somewhat cooler waters (13–18°C), with moderate chlorophyll concentrations (0.5–1.0 mg/m3). This discrepancy was likely a result of differing spatiotemporal distribution of fishing effort among fleets, as well as the different vertical depths fished by each gear, demonstrating the importance of understanding selectivity when building correlative habitat models. In the future, monitoring and understanding environmentally driven changes in the availability of PBF to commercial and recreational fisheries can contribute to the implementation of ecosystem approaches to fishery management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号