首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measuring ammonia(NH3)volatilization from urea-fertilized soils is crucial for evaluation of practices that reduce gaseous nitrogen(N)losses in agriculture.The small area of chambers used for NH3volatilization measurements compared with the size of field plots may cause significant errors if inadequate sampling strategies are adopted.Our aims were:i)to investigate the effect of using multiple open chambers on the variability in the measurement of NH3volatilization in urea-amended field plots and ii)to define the critical period of NH3-N losses during which the concentration of sampling effort is capable of reducing uncertainty.The use of only one chamber covering 0.015%of the plot(51.84 m2)generates a value of NH3-N loss within an expected margin of error of 30%around the true mean.To reduce the error margin by half(15%),3–7 chambers were required with a mean of 5 chambers per plot.Concentrating the sampling efforts in the first two weeks after urea application,which is usually the most critical period of N losses and associated errors,represents an efficient strategy to lessen uncertainty in the measurements of NH3volatilization.This strategy enhances the power of detection of NH3-N loss abatement in field experiments using chambers.  相似文献   

2.
Use of nitrogen (N) fertilizer is underway to increase in Sub-Saharan Africa (SSA). The effect of increasing N rates on ammonia (NH3) volatilization—a main pathway of applied-N loss in cropping systems—has not been evaluated in this region. In two soils (Alfisols, ALF; and Andisols, AND) with maize crop in the East African highlands, we measured NH3 volatilization following urea broadcast at six rates (0–150 kg N ha?1) for 17 days, using a semi-open static chamber method. Immediate irrigation and urea deep placement were tested as mitigation treatments. The underlying mechanism was assessed by monitoring soil pH and mineral N (NH4+ and NO3?) concentrations. More cumulative NH3-N was volatilized in ALF than in AND at the same urea-N rate. Generally, higher urea-N rates increased proportional NH3-N loss (percent of applied N loss as NH3-N). Based on well-fitted sigmoid models, simple surface urea application is not recommended for ALF, while up to 60 kg N ha?1 could be adopted for AND soils. The susceptibility of ALF to NH3 loss mainly resulted from its low pH buffering capacity, low cation exchange capacity, and high urease activity. Both mitigation treatments were effective. The inhibited rise of soil pH but not NH4+ concentration was the main reason for the mitigated NH3-N losses, although nitrification in the irrigation treatment might also have contributed. Our results showed that in acidic soils common to SSA croplands, proportional NH3-N loss can be substantial even at a low urea-N rate; and that the design of mitigation treatments should consider the soil’s inherent capacity to buffer NH3 loss.  相似文献   

3.
Ammoniacal fertilizers are susceptible to ammonia (NH3) volatilization, and multiple methods have been introduced to quantify loss. Methods to quantify differences in NH3 loss are important for evaluating the effectiveness of treatments. Recent research hypothesized that opening chamber enclosures resulted in nitrogen (N) loss (16–30%). Thus, the recovery efficiency of static diffusion chambers used in laboratory experiments was investigated. Chambers with a sand–calcium carbonate (CaCO3) mixture received ammonium-N (NH4-N) solutions. Three time intervals were used to determine if variation in enclosure opening influenced recovery. Acid trap percent recovery and a mass balance approach were used. No differences in cumulative NH3 volatilization were measured from either acid traps or using a mass balance approach. No differences were measured in percent recovery based on N application rate, sample interval, or their interaction, and mean percent N recovery was 99.0%. Thus, diffusion chambers can be reliably used to measure differences in NH3 volatilization.  相似文献   

4.
Intensification of homegardens in the Nuba Mountains may lead to increases in C and nutrient losses from these small‐scale land‐use systems and potentially threaten their sustainability. This study, therefore, aimed at determining gaseous C and N fluxes from homegarden soils of different soil moisture, temperature, and C and N status. Emissions of CO2, NH3, and N2O from soils of two traditional and two intensified homegardens and an uncultivated control were recorded bi‐weekly during the rainy season in 2010. Flux rates were determined with a portable dynamic closed chamber system consisting of a photo‐acoustic multi‐gas field monitor connected to a PTFE coated chamber. Topsoil moisture and temperature were recorded simultaneously to the gas measurements. Across all homegardens emissions averaged 4,527 kg CO2‐C ha?1, 22 kg NH3‐N ha?1, and 11 kg N2O‐N ha?1 for the observation period from June to December. Flux rates were largely positively correlated with soil moisture and predominantly negatively with soil temperature. Significant positive, but weak (rs < 0.34) correlations between increasing management intensity and emissions were noted for CO2‐C. Similarly, morning emissions of NH3 and increasing management intensity were weakly correlated (rs = 0.17). The relatively high gaseous C and N losses in the studied homegardens call for effective management practices to secure the soil organic C status of these traditional land‐use systems.  相似文献   

5.
ABSTRACT

Ammonia (NH3) volatilization from fertilizer applications reduces efficiency and poses environmental hazards. This study used semi-open static chambers to measure NH3 volatilization from organic fertilizers (feather meal, blood meal, fish emulsion, cyano-fertilizer) to evaluate the impacts of fertilizer source, application method, and rate on NH3 volatilization. In 2014, two application rates (28 and 56 kg N ha?1) were applied to lettuce (Lactuca sativa L.). Solid fertilizers (feather meal, blood meal) were preplant applied in a subsurface band, whereas liquid fertilizers (fish emulsion, cyano-fertilizer) were applied weekly through drip irrigation beginning two weeks after transplanting. In 2015, a single application rate (28 kg N ha?1) was applied to cucumber (Cucumis sativus L.). Solid fertilizers were applied in either subsurface or surface bands. There was a significant difference in NH3 volatilization among fertilizers, but there was little difference between application rates. Liquid fertilizers had lower NH3 emissions than solid fertilizers due to their timing and placement. In 2014, blood meal at 56 kg N ha?1 and feather meal at both rates had the highest NH3 fluxes. In 2015, surface-banded blood and feather meal had the highest NH3 fluxes. Fertilizer decisions for organic systems should consider NH3 emission losses and practices for their reduction.  相似文献   

6.
Abstract

In a laboratory study, ammonia (NH3) was trapped from 10 g soil units treated with 10 mg urea‐N, 10 mg urea‐N plus 50 ug N‐(n‐butyl) thiophosphoric triamide (NBPT), or 10 mg urea‐N plus 50 ug phenyl‐phosphorodiamidate (PPD). The soil was a Dothan loamy sand with pH levels adjusted to 6.0, 6.5, and 6.9 prior to N application. After 12 days, NBPT reduced NH3 volatilization 95 to 97%, while PPD reduced it 19 to 30%. Although NH3 loss was positively related to initial soil pH, there was no interaction between pH and urease inhibitor. In a field study, NH3 was trapped in semi‐closed chambers from 134 kg N/ha surface applied to corn (Zea mays L.) 6 weeks after planting. Nine days after N application, NH3 losses were 20.5, 1.5, 1.5, and 0.2 kg N/ha from urea, urea plus 0.25% NBPT, urea plus 0.50% NBPT, and ammonium nitrate, respectively. Covariance analysis showed that percent organic matter was negatively related to NHL losses. The soil properties, initial pH, CEC, and percent sand, did not vary enough to affect NH3 volatilization. In conclusion, in both the laboratory and the field, NBPT exhibited strong control of NH3 volatilization, and could thereby prevent significant loss of surface‐applied urea‐N to crops.  相似文献   

7.
The effect of presubmergence and green manuring on various processes involved in [15N]‐urea transformations were studied in a growth chamber after [15N]‐urea application to floodwater. Presubmergence for 14 days increased urea hydrolysis rates and floodwater pH, resulting in higher NH3 volatilization as compared to without presubmergence. Presubmergence also increased nitrification and subsequent denitrification but lower N assimilation by floodwater algae caused higher gaseous losses. Addition of green manure maintained higher NH4+‐N concentration in floodwater mainly because of lower nitrification rates but resulted in highest NH3 volatilization losses. Although green manure did not affect the KCl extractable NH4+‐N from applied fertilizer, it maintained higher NH4+‐N content due to its decomposition and increased mineralization of organic N. After 32 days about 36.9 % (T1), 23.9 % (T2), and 36.4 % (T3) of the applied urea N was incorporated in the pool of soil organic N in treatments. It was evident that the presubmergence has effected the recovery of applied urea N.  相似文献   

8.
Nitrogen (N) gas losses can be reduced by using enhanced-efficiency N (EEN) fertilizers such as urease inhibitors and coating technologies. In this work, we assessed the potential of EEN fertilizers to reduce winter losses of nitrous oxide (N2O-N) and ammonia (NH3-N) from a subtropical field experiment on a clayey Inceptisol under no-till in Southern Brazil. The EEN sources used included urea containing N-(n-butyl) thiophosphoric triamide (UR+NBPT), polymer-coated urea (P-CU) and copper-and-boron-coated urea (CuB-CU) in addition to common urea (UR) and a control treatment without N fertilizer application. N2O-N and NH3-N losses were assessed by using the static chamber method and semi-open static collectors, respectively. Both N2O-N and NH3-N exhibited two large peaks with an intervening period of low soil moisture and air temperature. Although the short-term effect was limited to the first few days after application, UR + NBPT urea decreased soil N2O-N emissions by 38% relative to UR. In contrast, urease inhibitor technology had no effect on NH3-N volatilization. Both coating technologies (CuB-CU and P-CU) were ineffective in reducing N losses via N2O production or NH3 volatilization. The N2O emission factor (% N applied released as N2O) was unaffected by all N sources and amounted to only 0.48% of N applied—roughly one-half the default factor of IPCC Tier 1 (1%). Based on our findings, using NBPT-treated urea in the cold winter season in subtropical agroecosystems provides environmental benefits in the form of reduced soil N2O emissions; however, fertilizer coating technologies provide no agronomic (NH3) or environmental (N2O) advantages.  相似文献   

9.
The main objectives of the project described in the present and four following papers are:
  1. To study tree growth and nutrient status of forest soil as influenced by atmospheric depositions of S and N.
  2. To study the influence of plant growth, litter decomposition and atmospheric depositions on soil acidity.
  3. To study the influence of atmospheric deposition on the release of N2O from soil.
One field plot experiment in a Scots pine forest and one lysimeter experiment were established in 1990 on weakly podzolized soils (Cambic arenosol). The experiment was established in a young Scots pine forest. N, Mg and P were applied in a factorial design. The experiment includes 12 treatments and three blocks. Soil was collected in a long-term field experiment with acid rain and filled into lysimeters (bucket type) by horizon. Under each horizon tension lysimeters were installed. The lysimeters were under a roof to avoid input of natural precipitation. S was applied as sulphuric acid diluted to pH levels of 5.5, 4.0, 3.5 and 3.0 and applied in a quantity of 1000 mm ”rain” yr?1. Nitrogen (NH4NO3) was applied in three quantities: 0, 30 and 90 kg N ha?1 yr?1. Seedlings of Scots pine were planted in the lysimeters. Lysimeters with no trees were also established. The experiment includes four replicates.  相似文献   

10.
The effect of three sugarcane (Saccharum officinarum L.) residue-management plans on nitrogen losses in surface runoff and sub-surface leachate was studied for 3 years. The three management plans evaluated were conventional burning (CB), compost application with burning (COMB), and remaining green cane trash blanketing (GCTB) treatment. In the CB treatment, sugarcane residue was burned after harvest. The COMB treatment consisted of compost applied at ‘off bar’ with sugarcane residue burned immediately after harvest. Compost was applied in the amount of 13.4 Mg ha?1 annually. Surface runoff was collected with automatic refrigerated samplers and sub-surface leachate was collected with pan lysimeters over a period of 3 years. Total nitrogen (TN), NO3/NO2–N, and NH4–N were measured. The mean losses of nitrogen (TN, NO3/NO2–N, and NH4–N) from the COMB treatment after the burning procedure (post-harvest, years 2 and 3) were on average 2.7 times higher than those before harvest and burning (pre-harvest, year 1). Mean leaching losses of NO3/NO2–N were 0.36, 0.82, and 0.10 kg ha?1 for the CB, COMB, and GCTB treatment, respectively. The losses of NO3/NO2–N from the GCTB treatment in surface runoff and sub-surface leachate were significantly reduced compared to the CB and COMB treatment.  相似文献   

11.
On irrigated agricultural soils from semi-arid and arid regions, ammonia (NH3) volatilization and nitrous oxide (N2O) emission can be a considerable source of N losses. This study was designed to test the capture of 15N loss as NH3 and N2O from previous and recent manure application using a sandy, calcareous soil from Oman amended one or two times with 15N labeled manure to elucidate microbial turnover processes under laboratory conditions. The system allowed to detect 15N enrichments in evolved N2O-N and NH3-N of up to 17% and 9%, respectively, and total N, K2SO4 extractable N and microbial N pools from previous and recent 15N labeled manure applications of up to 7%, 8%, and 15%. One time manured soil had higher cumulative N2O-N emissions (141 µg kg?1) than repeatedly manured soil with 43 µg kg?1 of which only 22% derived from recent manure application indicating a priming effect.  相似文献   

12.
Core lysimeters containing undisturbed coarse sandy soil (from grassland) were amended with a high rate of anaerobically digested sewage sludge (equivalent to >1,000 t ha–1). Water, at a rate equivalent to the mean weekly rainfall for the soil, was applied to amended and control lysimeters for 30 weeks and the leachate analysed for anions and cations. Lysimeters were also destructively sampled at intervals throughout the experiment and soil samples were analysed for extractable NH4+-N, NO3-N and PO43–-P. Ammonium N leached for about 11 weeks from the amended lysimeters, then abruptly stopped. A similar amount of NO3-N leached, but leaching was continuing when the experiment finished. The control lysimeters leached as much NO3-N as those that were amended, but no NH4+-N. The amended lysimeters also leached NO2-N. Negligible PO43–-P, but large amounts of SO42– were leached from the amended lysimeters. Concentrations of extractable NH4+-N and PO43–-P were very high in the amended soils, but NO3-N concentrations remained low throughout the experiment, indicating that nitrification rates were low and/or that denitrification rates were high.  相似文献   

13.
Abstract

Nitrogen (N) loss in the form of volatilized ammonia (NH3) is a considerable problem when ammonium (NH4 +) forming fertilizers are applied to calcareous or alkaline soils. The volatilization of NH3 from urea phosphate (UP) and urea (U) was studied on three selected soils (Hayhook SL, Laveen L, and Latene L) with the use of a laboratory aeration system. Urea phosphate and U were each applied at rates of 0, 50, 100, and 200 mg N kg‐1 soil, either to the surface dry or in solution or mixed with the soil. The volatilized NH3 was trapped in sulfuric acid, sampled periodically, and analyzed for N with the semi microkjeldahl distillation apparatus.

The highest N loss in the form of NH3 occurred when U was applied to Hayhook soil (neutral to acidic, coarse textured, and low CaCO3 content). However, UP applied to Hayhook soil resulted in the lowest NH3‐N loss. Less NH3‐N loss was found from U application to Laveen and Latene soils (fine textured with higher CaCO3 content) than with Hayhook soil. The general trend was higher N loss when a surface application was made, either dry or in solution, than when the fertilizer was mixed with the soil. This trend showed an increase in the amount of volatilized NH3 with increasing N application rates.

Generally, UP is a potential fertilizer for supplying N and phosphorus (P) as plant nutrients with a low potential for losses due to NH3 volatilization.  相似文献   

14.
 Nitrification inhibition of soil and applied fertilizer N is desirable as the accumulation of nitrates in soils in excess of plant needs leads to enhanced N losses and reduced fertilizer N-use efficiency. In a growth chamber experiment, we studied the effects of two commercial nitrification inhibitors (NIs), 4-amino 1,2,4-triazole (ATC) and dicyandiamide (DCD), and a commonly available and economical material, encapsulated calcium carbide (CaC2) (ECC) on the nitrification of soil and applied NH4 +-N in a semiarid subtropical Tolewal sandy loam soil under upland [60% water-filled pore space (WFPS)] and flooded conditions (120% WFPS). Nitrification of the applied 100 mg NH4 +-N kg–1 soil under upland conditions was retarded most effectively (93%) by ECC for up to 10 days of incubation, whereas for longer periods, ATC was more effective. After 20 days, only 16% of applied NH4 +-N was nitrified with ATC as compared to 37% with DCD and 98% with ECC. Under flooded soil conditions, nitrates resulting from nitrification quickly disappeared due to denitrification, resulting in a tremendous loss of fertilizer N (up to 70% of N applied without a NI). Based on four indicators of inhibitor effectiveness, namely, concentration of NH4 +-N and NO3 -N, percent nitrification inhibition, ratio of NH4 +-N/NO3 -N, and total mineral N, ECC showed the highest relative efficiency throughout the 20-day incubation under flooded soil conditions. At the end of the 20-day incubation, 96%, 58% and 38% of applied NH4 +-N was still present in the soil where ECC, ATC and DCD were used, respectively. Consequently, nitrification inhibition of applied fertilizer N in both arable crops and flooded rice systems could tremendously minimize N losses and help enhance fertilizer N-use efficiency. These results suggest that for reducing the nitrification rate and resultant N losses in flooded soil systems (e.g. rice lowlands), ECC is more effective than costly commercial NIs. Received: 25 May 2000  相似文献   

15.
Gas transport in soils is usually assumed to be purely diffusive, although several studies have shown that non-diffusive processes can significantly enhance soil gas transport. These processes include barometric air pressure changes, wind-induced pressure pumping and static air pressure fields generated by wind interacting with obstacles. The associated pressure gradients in the soil can cause advective gas fluxes that are much larger than diffusive fluxes. However, the contributions of the respective transport processes are difficult to separate. We developed a large chamber system to simulate pressure fields and investigate their influence on soil gas transport. The chamber consists of four subspaces in which pressure is regulated by fans that blow air in or out of the chamber. With this setup, we conducted experiments with oscillating and static pressure fields. CO2 concentrations were measured along two soil profiles beneath the chamber. We found a significant relationship between static lateral pressure gradients and the change in the CO2 profiles (R2 = 0.53; p-value <2e-16). Even small pressure gradients between −1 and 1 Pa relative to ambient pressure resulted in an increase or decrease in CO2 concentrations of 8% on average in the upper soil, indicating advective flow of air in the pore space. Positive pressure gradients resulted in decreasing, negative pressure gradients in increasing CO2 concentrations. The concentration changes were probably caused by an advective flow field in the soil beneath the chamber generated by the pressure gradients. No effect of oscillating pressure fields was observed in this study. The results indicate that static lateral pressure gradients have a substantial impact on soil gas transport and therefore are an important driver of gas exchange between soil and atmosphere. Lateral pressure gradients in a comparable range can be induced under windy conditions when wind interacts with terrain features. They can also be caused by chambers used for flux measurements at high wind speed or by fans used for head-space mixing within the chambers, which yields biased flux estimates.  相似文献   

16.
The transport of anhydrous NH3-solubilized soil organic matter from surface to subsurface soils may affect subsurface microbial activity. In the present study we determined the impact of anhydrous NH3-N fertilizer on organic C solubilization and the propensity of solubilized C to leach with percolating water. In fertilized treatments, anhydrous NH3 was subsurface-banded at 20g N m-2 in ridge or valley areas of a ridge tillage system. In contol treatments, 0g N m-2 was banded into the valley area of a ridge tillage system. Rainfall (17 cm) was applied with a drop-type artificial rainfall simulator 3, 10, and 24 days after the fertilizer application. The treatments were replicated twice. Grid lysimeters (15 by 15 cm) were placed 75 cm below the soil surface of a Brandt silty clay loam (fine-silty over sandy or sandy skeletal mixed Pachic Udic Haploboroll). Lysimeters were used to collect percolating water temporally and spatially. The application of N fertilizer increased dissolved organic C concentrations in percolating water when rainfall was applied 3 days after the fertilizer application. However, when the rainfall was applied 24 days after the fertilizer application the dissolved organic C concentrations in percolating water was not influenced by anhydrous NH3 application. The smaller dissolved organic C concentrations in percolating water with a longer incubation time were most likely the result of microbial assimilation or respiration of solubilized C.  相似文献   

17.
Summary Poultry manure (PM) is commonly applied to cropland as a fertilizer, usually at rates determined by the nitrogen content of the manure. Limited information is available, however, on the volatilization of ammonia from poultry manure-amended soils, despite the effect these losses may have on the fertilizer value of the manure. This study was initiated to determine the influence of incorporation and residue cover on NH3 losses from PM-amended soils. In the first experiment, a dynamic flow technique was used to measure NH3 losses from 18 manures applied to a bare soil surface at a rate of 12 Mg ha-1. In the second experiment, 3 of the 18 manures were incorporated either immediately, 24 h or 72 h after application. The third experiment compared the same three manures applied to a bare soil surface or to corn or soybean residues. Surface application of the manures resulted in the loss of from 4 to 31% of the total N applied in the manures. Incorporation of the PM with soil significantly reduced NH3 loss with the greatest decrease following immediate incorporation. Crop residues either had no effect or slightly reduced NH3 volatilization losses relative to PM application to a bare soil surface. Ammonia volatilization was not well correlated with individual manure properties, but a multiple regression approach using manure pH and total N content offered some promise as a means to segregate manures of the basis of volatilization potential.  相似文献   

18.
 N2O emissions were periodically measured using the static chamber method over a 1-year period in a cultivated field subjected to different agricultural practices including the type of N fertilizer (NH4NO3, (NH4)2SO4, CO(NH2)2 or KNO3 and the type of crop (rapeseed and winter wheat). N2O emissions exhibited the same seasonal pattern whatever the treatment, with emissions between 1.5 and 15 g N ha–1 day–1 during the autumn, 16–56 g N ha–1 day–1 in winter after a lengthy period of freezing, 0.5–70 g N ha–1 day–1 during the spring and lower emissions during the summer. The type of crop had little impact on the level of N2O emission. These emissions were a little higher under wheat during the autumn in relation to an higher soil NO3 content, but the level of emissions was similar over a 7-month period (2163 and 2093 g N ha–1 for rape and wheat, respectively). The form of N fertilizer affected N2O emissions during the month following fertilizer application, with higher emissions in the case of NH4NO3 and (NH4)2SO4, and a different temporal pattern of emissions after CO(NH2)2 application. The proportion of applied N lost as N2O varied from 0.42% to 0.55% with the form of N applied, suggesting that controlling this agricultural factor would not be an efficient way of limiting N2O emissions under certain climatic and pedological situations. Received: 1 December 1997  相似文献   

19.
The fate of fertilizer N applied with different irrigation amounts in tobacco fields was quantitatively studied by applying 15N double-labelled NH4NO3 in lysimeters. The 15N (fertilizer N originating from the fertilizer applied in 2011) in tobacco plants, 15N in soils and 15N loss were observed continuously from 2011 to 2014. The results showed that 21.6% of 15N was utilized by tobacco plants, 72.1% remained in the 0–60 cm soil layer and 6.3% was lost from the soil–plant system after the first season’s harvest (2011) of flue-cured tobacco. During the four seasons from 2011 to 2014, cumulative utilization of 15N by tobacco plants was 34.3%, while 54.2% remained in the 0–60 cm soil layer, and 11.5% was lost via mechanisms such as leaching and volatilization. The fate of 15N in terms of accumulation in plants and soils or losses from the soil–plant system from 2012 to 2014 was greatly affected by the fertilizer and irrigation management strategies in 2011. The results of this investigation suggest that the major amount of fertilizer N applied during the first season remains available in the soil for utilization by tobacco plants after 4 years.  相似文献   

20.
Influence of Salinity on Nitrogen Transformations in Soil   总被引:1,自引:0,他引:1  
Laboratory experiments were carried out to study the influence of various salinity levels [1 (control), 9 (medium), 17 (high), and 27 dS m–1(strong)] on nitrogen (N) transformations in soil fertilized with urea and ammonium sulfate. Generally, soil salinization affected the normal pathway of N transformations. The results showed that salinity (medium to high) inhibited the second step of nitrification, causing nitrite (NO2 ?) accumulation in soil. The inhibition was more severe in cases of high level of salinity. The greatest salinity level caused inhibition of even the first step of nitrification, leaving more ammonium (NH4)-N accumulation in soil. Severity in nitrification inhibition was observed with increase in salinity and rate of N application, which declined with time. Ammonium accumulation with increased salinity caused N losses in the form of ammonia (NH3) volatilization. After 14 days, the NH3 losses were 1.4-, 2-, and 5-fold greater at 9, 17, and 27 dS m–1 than that of the control (1 dS m–1). After 42 days, the losses reached up to 6-fold more than the control at the greatest salinity level. Initially (up to 14 days), NH3 losses were more from urea than from ammonium sulfate, whereas at the later stages (42 days), the losses were almost equal from both the fertilizers. The overall results revealed significant adverse effects of salinity on N transformations in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号