首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Morphological differences between old-growth trees and saplings of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) may extend to differences in needle anatomy. We used microscopy with image analysis to compare and quantify anatomical parameters in cross sections of previous-year needles of old-growth Douglas-fir trees and saplings at the Wind River Canopy Crane site in Washington and at three sites in the Cascade Mountains of Oregon. We also compared needle anatomy across a chronosequence of 10-, 20-, 40- and 450-year-old Douglas-fir trees from the Wind River site. Anatomy differed significantly between needles of old-growth trees and saplings at all sites, suggesting a developmental change in needle anatomy with increasing tree age. Compared with needles of old-growth trees, needles of saplings were longer and had proportionately smaller vascular cylinders, larger resin canals and few hypodermal cells. Astrosclereids, which sequester lignin in their secondary cell walls and occupy space otherwise filled by photosynthetic cells, were scarce in needles of saplings but abundant in needles of old-growth trees. Needles of old-growth trees had an average of 11% less photosynthetic mesophyll area than needles of saplings. The percentage of non-photosynthetic area in needles increased significantly with increasing tree age from the chronosequence of 10-, 20-, 40- and 450-year-old trees at the Wind River site. This reduction in photosynthetic area may contribute to decreased growth rates in old trees.  相似文献   

2.
There is abundant evidence that evergreen conifers living at high elevations or at high latitudes have longer-lived needles than trees of the same species living elsewhere. This pattern is likely caused by the influence of low temperature in combination with related factors such as a short growing season and low nutrient availability. Because it is not known to what degree such patterns result from phenotypic versus genotypic variation, we evaluated needle longevity for common-garden-grown lowland populations of European Scots pine (Pinus sylvestris L.) of wide latitudinal origin and Norway spruce (Picea abies L.) of wide elevational origin. Nine-year-old trees of 16 Scots pine populations ranging in origin from 47 degrees to 60 degrees N were studied in Kórnik, Poland (52 degrees N) and 18-year-old trees of 18 Norway spruce populations ranging in origin from 670 to 1235 m elevation in southwestern Poland were studied near Morawina, Poland (51 degrees N, 180 m elevation). There was no tendency in either species for populations from northern or high elevation origins to retain needles longer than other populations. All of the Scots pine populations had between 2.5 to 3.0 needle age cohorts and all of the Norway spruce populations had between 6.4 and 7.2 needle age cohorts. Thus, extended needle retention in Scots pine and Norway spruce populations in low-temperature habitats at high elevations and high latitudes appears to be largely an environmentally regulated phenotypic acclimation.  相似文献   

3.
JOHANSSON  M .-B. 《Forestry》1995,68(1):49-62
Needle litter from 14 stands of Scots pine (Pinus silvestris,L.), 13 stands of Norway spruce (Picea abies (L.) Karst.) andleaf litter from three stands of white birch (Betula pubescensEhrh.) were analysed for chemical composition. The concentrationsof the elements N, P, K, Ca, Mg and Mn as well as solid organiccomponents (lignin, cellulose and hemicelluloses) and solubleswere determined. When the average chemical compositions werecompared the Scots pine needle litter was clearly the most nutrient-poorlitter type. Of the solid organic-chemical components the ligninfraction dominated in the spruce and birch litter whereas thecellulose dominated in the pine needle litter. When Norway spruce and Scots pine were growing in adjacent standson soils with the same bedrock origin the spruce litter hadsignificantly higher concentrations of nutrients (N, P, K, Ca,Mg, Mn) than the pine needle litter. At sites where Norway spruceand white birch were growing in adjacent stands, the birch leaflitter had generally higher concentrations of nutrients. However, significant or nearly significant differences were onlyobtained for Mg (P = 0.002), K (P = 0.056) and N (P = 0.087),probably due to the few replicates of stands compared. Concerningorganic chemical components, the spruce needle litter had significantlyhigher concentrations of lignin and mannan than all the otherlitters and lower levels of ethanol-soluble substances, celluloseand galactan than the pine needle litter. Further, it had lowerconcentrations of water solubles, rhamnan and xylan than thebirch litter. No relationships were established between the nutrient statusof the conifer litters and the site index H100 (the dominantheight of the trees at a reference age of 100 years) of thestands. Concentrations of solid carbohydrates in the litterswere, however, positively correlated with site index (P <0.001). Further, the concentration of nitrogen in the pine needlelitter was negatively correlated with the latitude of the sites(P < 0.01). The influence of litter chemistry on the decompositionof litter and nutrient cycling of forests is discussed.  相似文献   

4.

Scots pine ( Pinus sylvestris L.) and Norway spruce [ Picea abies (L.) Karst.] seedlings were exposed to high phosphorus (HP) or low phosphorus (LP) availability for one growing season in the open field, and to combined P availability and elevated ozone (O 3 ) concentrations (0, 55, 110 and 210 ppb for Scots pine and 0, 40, 75 and 150 ppb for Norway spruce, respectively) for 28 days in controlled laboratory chambers. Compared with HP, the LP treatment reduced Scots pine current-year (C) shoot and root dry masses and Norway spruce total dry mass, whereas the highest O 3 concentrations increased the magnesium concentration of Scots pine C needles and P concentrations of the C needles of both tree species. Chlorophyll a, a+b and carotenoid concentrations of Scots pine C needles were significantly higher in the LP treatment compared with HP under the highest O 3 concentration (210 ppb). In the mesophyll tissue of C needles of both tree species, LP treatment increased the size of mitochondria and elevated O 3 -induced granulation of chloroplast stroma and disintegration of cytoplasm. Exposure to elevated O 3 concentrations increased swelling of chloroplast thylakoids and reduced the amount of vacuolar tannin in the LP Scots pine C needles. The results suggest disturbances in needle photosynthetic machinery due to acute exposure to the combination of elevated O 3 and low P availability. However, clear additive effects were found only in needle P concentrations < 1 mg g -1 in short-term O 3 exposure.  相似文献   

5.
Studies were carried out in 1999, 2005 and 2007 in the area of Kunda cement plant in Northeast Estonia on sample plots 3 km W and 2.5 and 5 km E of Kunda. As control stands, two plots for pine and spruce were established in Lahemaa National Park (34-38 km W of Kunda). The selected pine and spruce stands were 75-85-year-old Myrtillus site type, of 0.7-0.8 density and II quality class, with moderately dense or sparse understorey. The values concerning needle density and number of needle scars were higher for shoots formed in the period of higher pollution than for the shoots grown under a considerably lower pollution load. Although the cement dust pollution has notably decreased from year to year, the number of needle pairs per 1 cm of the shoot was 1.8-2.1 times greater in the shoots formed in 1998 than in those formed in 2003, whereas the changes were statistically reliable. Possibly the low temperatures at the time of shoot and needle formation affected the density of needles on all sample plots, and thus the number of needles on shoots formed in 2003 was many times smaller. After the significant fall in the pollution load since 1996 the length growth of needles intensified around Kunda cement plant, at the same time no changes occurred in the length growth of needles in the control area. As compared to the data from 1998, the length growth of pine needles had improved, especially 2.5 and 5 km E from the cement plant, needles being respectively 1.5 and 1.1 cm longer than 6 years ago. The stimulation of the growth of pine and spruce needles 2.5 and 5 km E of the cement plant may be a sign of a positive effect of reduced doses of cement dust in soil. The greater length of pine and spruce needles is the reason for the larger biomass of the needles.  相似文献   

6.
The peroxidase activity (EC 1.11.1.7) in homogenates from Scots pine needles (Pinus sylvestries L.) were studied in relation to needle age and sampling locations around two different sources of industrial air pollution. Increased enzyme activity was associated with both increased needle age and proximity to the emission sources. Fluorine contamination in one of the cases was not correlated with enhanced enzyme activity. Enzyme activity levels were considered in relation to variations between trees and between different parts of the same trees.  相似文献   

7.
The effect of soil scarification on decomposition of green Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) needles and mineral nutrient release was investigated. The treatments studied were ploughing, disk trenching, mound on inverted humus and untreated control. The study was conducted on two clear‐felled sites with different ground moisture conditions, located in south Sweden. The needles decomposed and released their contents of N and Ca considerably faster on scarified areas than on untreated ones. For P, Mg and especially K, only minor differences between scarified and untreated areas were established. At the wet site, needle decomposition and nutrient mineralization were generally affected to the same extent by all three scarification methods studied. At the dry to fresh site, mounding and ploughing enhanced needle decomposition and nutrient mineralization more than disk trenching. The effect of different scarification methods on the long‐term production capacity of soils is discussed.  相似文献   

8.
油松受松毛虫危害后恢复能力的研究   总被引:3,自引:0,他引:3       下载免费PDF全文
油松经人工模拟失去一定的量的1年生针叶后对第2年高生长,针叶长度有明显的影响:失杏越多,影响越大,经2a后其后高生长虽仍有差异,但均可恢复到正常生长状态,而失去少量2-3年生针叶后的油松具有有补偿和超补偿效应,失去1年生针叶后油松不具有补偿和超补偿效应。  相似文献   

9.
Norway spruce trees in the subalpine forests of the European Alps are frequently attacked by the needle rust Chrysomyxa rhododendri. The obligate parasite undergoes a complex life cycle with a host shift between rhododendrons (Rhododendron sp.) and Norway spruce [Picea abies (L.) Karsten] and causes a yellowing and defoliation of the current-year needles in summer. Infected trees show several anatomical, morphological and physiological modifications, including a decrease in pigment content and net photosynthesis of infected needles, lower biomass production and reduced radial and height growth. The consequences are diminished timber yield and cripple growth. Because of repeated heavy infections in recent years, forest managers report increasing difficulties in both natural regeneration and afforestation at high elevation sites, where rhododendrons occur. This review gives a summary of the present knowledge about the effects of C. rhododendri infections on Norway spruce, including so far unpublished findings and with particular attention to the phenomena of resistant trees. Implications for subalpine forests and counter strategies are discussed.  相似文献   

10.
Harvest residue decomposition can significantly contribute to nutrient and heavy metal exports to receiving water courses. This study monitors the nutrient and heavy metal dynamics in decaying Sitka spruce and lodgepole pine harvest residue needles on Atlantic blanket peat forests in the west of Ireland. Using the litterbag method, harvest residue was placed both within and between furrows in two uncut forest and two clear-cut sites. On the clear-cut sites, the litterbags were positioned outside the harvest residue piles (i.e. brash windrows). Over the 2-year monitoring period, the needles decomposed slower at the clear-cut sites than the uncut forest sites, with mass losses of 46–55 and 58–77 %, respectively. Approximately 20 % less phosphorous (P) was released from the decaying needles at the clear-cut sites, while nitrogen (N) was released only at the uncut sites. Tree species was a significant factor contributing to nutrient and heavy metal release and accumulation patterns, with higher concentrations of aluminium (Al), nickel (Ni), cadmium (Cd) and zinc (Zn) in the decaying spruce needles than in pine. Conversely, the spruce needles showed accelerated depletion of calcium (Ca) and magnesium (Mg) relative to the pine. The harvest residue needle positioning (inside furrow/between furrows) and the site soil characteristics contributed significantly to Al transformations in spruce needles and iron (Fe) in both spruce and pine needles, with more accumulation occurring inside the furrows where Al and Fe contents of the peat were high. Manganese (Mn) was released from the needles in three of the four sites with a total release of over 90 % within 2 years. In the remaining site, where the Mn content of the peat was high, an accumulation of Mn in the needles was observed. The decomposition of needles on blanket peat catchments may be a significant source of P to receiving water courses, owing to their fast release of P, but not a likely source for N export.  相似文献   

11.
Chrysomyxa rhododendri (DC.) De Bary is a needle rust with a host shift between Rhododendron sp. and Norway spruce (Picea abies (L.) Karst.), penetrating only the new developing flushes of the conifer. Because little is known about its effects on trees, we investigated several parameters related to photosynthesis in artificially infected 3-year-old Norway spruce seedlings. The potential efficiency of photosystem II (PSII; derived from chlorophyll fluorescence measurements) was reduced in infected current-year needles as soon as disease symptoms were visible, about three weeks after inoculation. Two weeks later, photosynthetic O(2) evolution (P(max)) of infected needles was less than 20% of control needles, whereas respiratory O(2) uptake (R(D)) was about three times higher than that of control needles. Nonstructural carbohydrate concentrations were about 60% of control values in all parts of the shoots of infected trees. Photosynthetic inhibition was associated with marked decreases in chlorophyll concentration and chlorophyll a/b ratio but only a small reduction in carotenoid concentration. In infected trees, P(max) of noninfected 1-year-old and 2-year-old needles was 50 and 80% higher than in the corresponding age class of needles of control trees. Estimation of potential daily net dry mass production, based on P(max), R(D), specific leaf area, carbon content and needle biomass, indicated that seedlings infected once were able to produce 60%, and those infected twice only 25%, of the dry mass of controls. We conclude that afforestation and regeneration of Norway spruce is seriously impaired in regions where seedlings are frequently attacked by Chrysomyxa.  相似文献   

12.
Seasonal shoot dynamics of Japanese mountain stone pine (Pinus pumila Regel.) growing at six sites with different altitudes and slope aspects on the Kiso mountain range in central Japan were investigated. The shoots followed a similar growth pattern at all sites; current shoots elongated rapidly during June and July, and the current needles grew during July and August. Final lengths of the current shoots and needles decreased with increasing altitude. Current-shoot lengths were also shorter at the windward sites than at the leeward sites. At all sites, leaf senescence occurred intensively between mid-August and mid-September. Needle longevity, i.e., the age of the oldest living needle attached to a shoot, increased with increasing altitude. Fascicle density, i.e., the number of current needle fascicles on a unit shoot length, was greater at higher altitudes and windward sites than at lower altitudes and leeward sites. Seasonal dynamics of the P. pumila shoots were characterized by simultaneous replacement of old needles with new needles in the early autumn, thus avoiding any loss of canopy photosynthetic production during the growing season. Increases in needle longevity and fascicle density were associated with declining air temperature and increasing wind exposure. Needle longevity and fascicle density were characteristics of adaptive plasticity in P. pumila that prevent a reduction in growth potential in the stressful conditions of alpine regions.  相似文献   

13.
To cope with environmental stress, plants are equipped with antioxidative (e.g., ascorbate, glutathione and alpha-tocopherol) and photoprotective (e.g., xanthophyll cycle pigments) defense systems. We investigated the defense capacities of three tree age classes (mature, sapling and seedling) of Norway spruce (Picea abies (L.) Karst.) at a field site near the timberline. Biochemical data were expressed on both a needle dry mass and a surface area basis. Compared with current-year needles, previous-year needles contained higher mass- and area-based concentrations of chlorophylls and alpha-tocopherol, and a larger xanthophyll cycle pool that was in a more epoxidized state. Total glutathione concentration was lower, the glutathione pool was more reduced and the ascorbate pool was more oxidized in previous-year needles than in current-year needles. Needle concentrations of glutathione and alpha-tocopherol increased and chlorophyll concentration decreased with increasing tree age when expressed on a surface area basis. On a dry mass basis, these trends were reversed or nonexistent. The ascorbate pool was more reduced and the glutathione pool was more oxidized in needles of mature trees than in needles of saplings and seedlings. The proportion of protective xanthophyll cycle pigments decreased and the de-epoxidation state increased with increasing tree age. We conclude that tree age and the basis of expression of antioxidant concentration--surface area or dry mass--are important in scaling from seedlings to large trees.  相似文献   

14.
The superoxide dismutase (SOD EC 1.15.1.1) activity in Scots pine (Pinus sylvestris) and Norway spruce (Picea abies L. Karst.) needles in urban and rural trees of northern Finnish populations was studied. Enzyme activity was higher in pine than in spruce needles. Two pine clones from eastern Finland and Lapland revealed great differences in specific SOD enzyme activity.  相似文献   

15.
Spring needle cast (SNC) in Tasmania is defined by the early casting of pine needles and appears in 6‐ to 7‐year‐old pine plantations after canopy closure. The severity of SNC can vary significantly among trees growing within the same plantation. Fungal communities were surveyed in a Pinus radiata family trial, using DNA extraction from needles, PCR with fungal‐specific primers and sequencing to detect the presence of fungal species. Samples were taken at the same time as the trees were scored for disease severity. Trees with contrasting levels of SNC disease severity have significantly different needle fungal communities, but family pedigree and different ages of needle are not clearly distinguished by their fungal communities. All common fungal pathogens previously implicated in causing SNC were identified from the study, but of these, only Lophodermium pinastri was correlated with high levels of disease. Several species of Teratosphaeriaceae were detected, and one of these was also strongly associated with needle cast.  相似文献   

16.
Bauer G  Schulze ED  Mund M 《Tree physiology》1997,17(12):777-786
Mineral nutrition of Norway spruce (Picea abies (L.) Karst.) and beech (Fagus sylvatica L.) was investigated along a transect extending from northern Sweden to central Italy. Nitrogen (N) concentrations of needles and leaves in stands growing on acid soils did not differ significantly between central Italy and southern Sweden (1.0 +/- 0.1 mmol N g(-1) for needles and 1.9 +/- 0.14 mmol N g(-1) for leaves). In both species, foliar N concentrations were highest in Germany (1.2 mmol N g(-1) for needles and 2.0 mmol N g(-1) for leaves) and decreased by 50% toward northern Sweden (0.5 mmol N g(-1)). Both species showed constant S/N and P/N ratios along the transect. Calcium, K and Mg concentrations generally reflected local soil conditions; however, Mg concentrations reached deficiency values in Germany. Leaf area per unit dry weight varied significantly along the transect with lowest values for Norway spruce recorded in northern Sweden and Italy (3.4 m(2) kg(-1)) and a maximum in central Europe (4.7 m(2) kg(-1)). A similar pattern was observed for beech. Despite the low variation in foliar N concentrations on the large geographic scale, local and regional variations in N concentrations equalled or exceeded the variation along the entire continental transect. Furthermore, nutrient contents (i.e., nutrient concentration x dry weight per needle or leaf) showed a greater variation than nutrient concentrations along the transect. Nitrogen contents of Norway spruce needles reached minimum values in northern Sweden (2.4 micro mol N needle(-1)) and maximum values in Denmark (5.0 micro mol N needle(-1)). The N content of beech leaves was highest in Denmark (242 micro mol N leaf(-1)). At the German site, foliar N content rather than N concentration reflected the seasonal dynamics of foliar growth and N storage of the two species. During foliage expansion, there was an initial rapid increase in N content and a decrease in N concentration. This pattern lasted for about 2 weeks after bud break and was followed by 6 weeks during which dry weight and N content of the foliage increased, resulting in a further decrease in N concentration. During summer, dry weight and N content of mature needles of Norway spruce increased further to reach a maximum in autumn, whereas N concentration remained constant. In spring, reallocation of N from 1- and 2-year-old needles was 1.5 and 1.0 micro mol N needle(-1), respectively. This remobilized N was a major source of N for the development of new needles, which had an N content of 1.5 micro mol N needle(-1) after bud break. The seasonal remobilization of N from old foliage decreased with increasing needle age. Needle N content and dry weight decreased progressively with age (1 micro mol N needle(-1) between age classes 2 and 5), whereas N concentrations remained constant. For Norway spruce, annual stemwood production was correlated with needle N content but not with foliar N concentration or with the total amount of N in the canopy. Interspecific and geographical differences in plant nutrition are discussed on the basis of competitive demands for C and N between growth of foliage and wood.  相似文献   

17.
In spring, tubular wax structures were observed on the needle surfaces of new Norway spruce needles and also on previous-year needles. In young plants, as in mature trees, the fusing and eroding of the wax tubes on needles of increasing age had taken place in relation to their exposure, particularly to wind and precipitation. The quantity of needle wax and certain fractions of the extracted wax differed in mature trees at two field sites and in young clonal plants. No difference in wax quantity and only small differences in wax composition occurred among young plants which had undergone different treatments (fumigation with O3, SO2, ambient air, filtered air, or planting at the sites). Environmental effects on wax structure, wax quantity and the presence of certain compounds in the wax were identified.  相似文献   

18.
Phenotypic plasticity in needle morphology with increasing tree size and age was investigated by comparing four age classes of red spruce (Picea rubens Sarg.) ranging from juvenile (3-12 years old) to mature (over 100 years old). With increase in tree age there were significant increases in leaf mass per unit area (LMA), mesophyll and vascular bundle area as a percentage of total needle cross-sectional area, and stomatal density. Within the vascular bundle, both xylem cross-sectional area and tracheid lumen area increased significantly, whereas air space as a percentage of total cross-sectional area decreased. These morphological changes were associated with a significant decrease in photosynthetic capacity and stomatal conductance, and an increase in (13)C enrichment. Although both photosynthetic capacity and whole-tree conductance decreased significantly between age classes 3 and 12 years, they did not differ between age classes 53 and 127 years, even though needle (13)C enrichment was significantly greater in the 127-year age class. Thus there appear to be compensatory mechanisms that maintain photosynthetic capacity as trees increase in size and vascular complexity, which in red spruce and other species, may affect leaf hydraulic conductance. Although increased LMA may contribute to reduced photosynthetic capacity in red spruce, similar relationships are not seen in other conifers.  相似文献   

19.
Pollution often causes visible symptoms of foliar injury. The injury is sometimes associated with an increase in the accessibility of toxic elements to plants as a result of acidification of the soil. We investigated the distribution of elements (N, P, K, Ca, Mg, Mn, S, Fe, B, Cu, Zn, Al, F, Pb, Cd, Cr, Ni and Co) in healthy current-year needles of Scots pine (Pinus sylvestris L.) growing at an unpolluted control site and at a site polluted mainly by SO(2), HF and Al(3+) from a fertilizer factory established in 1917. Needles from both sites were sampled before the appearance of visible injury and cut into five sections of equal length (tip, base and three middle parts). The mean concentrations of major nutrients were 20-30% lower in needles at the polluted site than in needles at the control site, whereas the concentrations of aluminum and fluorine were higher in needles at the polluted site. An increase in concentration from needle base to tip was detected for N, Fe, B, and Al at both sites and for Mn only at the polluted site. Fluoride accumulated in the tips of needles only at the polluted site, which could explain the necroses of needle tips at this site. The distribution of elements along the length of the needles was influenced by pollution, element mobility and the distal accumulation of toxic elements.  相似文献   

20.
The acquired thermotolerance of first-year seedlings of jack pine (Pinus banksiana Lamb.) hardened at 36, 38, 40 or 42 degrees C for 90, 180 or 360 minutes and of black spruce (Picea mariana (Mill.) B.S.P.) hardened at 34, 36, 38 or 40 degrees C for 30, 90, 180 or 360 minutes was determined by comparison of needle damage to that of non-hardened seedlings (25 degrees C) following exposure to temperatures of 49 and 47.5 degrees C, respectively. Compared to seedlings kept at 25 degrees C, heat injury sustained from exposure to high temperatures was markedly reduced following hardening for 180 minutes at 36 and 38 degrees C in jack pine and black spruce, respectively. Increasing the exposure time at 36 degrees C in jack pine, and at 36 to 40 degrees C in black spruce, also reduced needle damage. The duration of increased thermotolerance was investigated in jack pine, black spruce and white spruce (Picea glauca (Moench) Voss) by comparing heat injury from high temperatures in non-hardened seedlings and in seedlings hardened at 38 degrees C for 180 minutes a day for either 1, 3 or 6 days. In all three species, the duration of acquired thermotolerance increased with the number of days of heat hardening. For jack pine and white spruce seedlings hardened at 38 degrees C for 6 days, increased thermotolerance persisted for at least 14 and 10 days, respectively, after the end of the hardening treatment. In contrast, the thermotolerance of black spruce seedlings hardened at 38 degrees C for 6 days remained elevated for only 4 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号