首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seedlings of different provenances of Scots pine (Pinus sylvestris L.), lodgepole pine (Pinus contorta Dougl., var. latifolia Engelm.) and Norway spruce (Picea abies (L.) Karst.) were planted in three Scots pine shelterwoods (125, 65 and 43 stems ha−1) and a clear-cut, all in northern Sweden. The sites were mounded and planting took place during 2 consecutive years (1988 and 1989). The solar radiation experienced by the individual seedlings was determined using a simulation model. Height development of the seedlings was examined during their first 6 years after planting. During the final 3 years of the study, height growth of Norway spruce was relatively poor, both in the shelterwoods and the clear-cut area. Height growth of lodgepole pine was significantly greater than that of Scots pine, both in the shelterwoods and the clear-cut. In contrast to Norway spruce, Scots pine and lodgepole pine displayed significantly greater height growth in the clear-cut than in the shelterwoods. For all three species in the shelterwoods, regression analyses showed that height growth was more strongly correlated with the distance to the nearest tree than with the amount of radiation reaching the ground, i.e. growth was reduced in the vicinity of shelter trees. Therefore, we conclude that the significant reduction in height growth of seedlings of Scots pine and lodgepole pine in Scots pine shelterwoods was partially caused by factors associated with the distance to the nearest shelter tree. Because the substrate was a nitrogen-poor sandy soil, we suggest that root competition for mineral nutrients, especially nitrogen, accounts for the reduction in height growth.  相似文献   

2.
Damage to planted conifer seedlings by the pine weevil, Hylobius abietis (L.), is considered to be less severe in shelterwoods than in clear-cuttings. To evaluate possible reasons for this reduction, this study investigated the relationship between seedling damage and pine weevil population density in the presence and absence of shelter trees. Assessments of seedling damage throughout a full growth season and absolute population density estimates were made at a fresh clear-cutting and an adjacent shelterwood (1 ha each). A grid of 100 pitfall traps was placed over each area, and population estimates were made using the mark–recapture technique. Pine weevil damage to seedlings was about twice as high in the clear-cutting, whereas pine weevil density was estimated to be higher in the shelterwood or about the same in the two treatments (~14?000 weevils ha?1). Existing differences in microclimate between the shelterwood and clear-cutting did not seem to be the cause of the differences in damage levels. Thus, the hypothesis that seedling damage is reduced in shelterwoods because of increased availability of alternative food remains a candidate for further testing.  相似文献   

3.
The study was focused on severe forest regeneration problems that are typical for highly productive peatlands. The aim of the study was to give recommendations for practical forestry on how to renew the forests. Experiments with different forest regeneration methods on highly productive peatlands were set up in nine mature Norway spruce (Picea abies (L.) Karst.) forests in northern, central and southern Sweden. The treatments in the study were natural regeneration in shelterwoods (at densities of 140 and 200 stems ha‐1), planting of bare‐root spruce seedlings after site preparation (mounding) in the shelterwoods and on clearcuts, and planting without site preparation on clearcuts.

Judging from the extent of windthrow in the denser shelterwoods and the stocking of natural regeneration under remaining shelter trees 4–5 years after final cut, shelterwood regeneration is a promising method. On clearcuts, planting without site preparation resulted in poor seedling survival, large extent of damage to the seedlings and small height increment. Planting in mounds on the clearcuts was much more successful. The best survival of planted seedlings was observed in the shelterwoods. Both the denser and the sparse shelterwoods seemed to give satisfactory protection to the seedlings.

Final recommendations on the most suitable forest renewal method(s) will be made in about five years after the removal of the shelter trees.  相似文献   

4.
The aim of the study was to address the question of whether shelterwood cutting should be discouraged as a forest regeneration method in Norway spruce (Picea abies (L.) Karst.) forests on highly productive peatlands due to a higher risk of windthrow in such forests. The total extent of windthrow was observed during six years after shelterwood cutting in nine spruce forests on fertile peatlands in north, central and south Sweden. Shelterwoods at densities of 140 and 200 stems ha‐1 were studied. At the end of the six year study period, 43% of all trees in the sparser shelterwoods and 38% of the trees in the denser shelterwoods had blown down. With respect to results from recent studies of the development of naturally regenerated and planted seedlings under the shelter trees, the extent of windthrow was regarded acceptable. Analysis of wind data from national weather stations close to the experiments showed that the acceptable extent of windthrow could not be explained by low frequencies of high winds during the shelterwood period. On the contrary, according to the wind observations made at the weather stations selected in central and south Sweden, the annual number of days with high winds (>21 ms‐1) during the six years after the shelter‐wood cutting was larger than the average high wind frequency for the last 40 years. Observations of maximum wind speeds show that the mean annual gale force during the shelterwood period was higher than the long term average. Thus, the results from this study do not justify avoidance of shelterwood cutting in spruce peatland forests because of the risk of windthrow. Each of the shelterwoods in the experiment was located close to a large clearcut, and the shelterwood cuttings were carried out as heavy thinnings. For further reduction of windthrow, denser shelterwoods and no clearcutting in adjacent stands are suggested when using shelterwood systems in practical forestry.  相似文献   

5.

Hylobius abietis (L.) (Coleoptera:Curculionidae) is the major insect pest of forest regeneration in Europe, where adult weevils kill conifer seedlings by feeding on the bark. This study demonstrates that pine weevils also feed extensively in the crowns of mature coniferous trees. Crown feeding primarily took place during a limited period immediately after the migration to new breeding sites (roots of freshly cut coniferous trees). The weevils reached the crowns mainly by flight and tended to concentrate on trees in freshly cut-over areas. The proportion of sexually mature females successively increased during the crown-feeding period, indicating that they require a certain period of maturation feeding. The pine weevils fed on twigs of 3-20 mm thickness, and they consumed about 0.2-0.3% (200 cm2) of the total bark surface in the crowns of mature Scots pine trees. Calculations suggested that the amount of food consumed in the trees surrounding a fresh clear-cutting should have met the nutrient requirements of the weevil population in the area during the maturation feeding period. In the crowns of shelterwood trees, about 50 cm2 of the bark was consumed per tree (0.63 m2 ha-1). This level of consumption is not believed to be high enough to relieve the feeding pressure on seedlings and thereby explain the low level of damage usually found under shelterwoods.  相似文献   

6.

It has been suggested that reduced damage by the pine weevil ( Hylobius abietis ) under shelter trees might result from more food being available under shelter trees than on clear-cuttings. The shelter trees provide an extra supply of bark on branches and roots. Moreover, shelter trees favour some species in the ground vegetation (e.g. bilberry, Vaccinium myrtillus ) that could be used as food by the weevil. Two similarly designed field experiments, studied whether the amount of pine weevil feeding on planted conifer seedlings was affected by the availability of other food sources. In the first experiment, fresh pine branches were placed weekly on the ground for 6 weeks on a fresh clear-cutting in southern Sweden. This significantly reduced the amount of feeding on seedlings in treated 20 2 20 m plots. In the second experiment, damage tended to increase after mechanical removal of field vegetation (mainly bilberry), but the effect was not statistically significant. In conclusion, extra food in the form of coniferous bark could relieve seedlings from pine weevil damage; however, any effect of this kind due to the presence of field-layer vegetation remains to be demonstrated. Finally, there may be long-term population effects because of the extra food that the shelter trees provide for the reproductive weevils.  相似文献   

7.

Three stands in Sweden were followed for 7 yrs to study the survival and growth of Norway spruce [Picea abies (L.) Karst.] regeneration after shelterwood removal with single- and double-grip harvester systems. The height of all seedlings within circular plots was recorded before and after final cutting. The tallest seedling and one randomly selected seedling on each circular plot were permanently marked and their annual height growth was measured each year during the period 1993-1999. No significant differences between single- and double-grip harvester systems were found with respect to their effects on regeneration density, survival or annual height growth. The annual height growth of the individual seedlings after shelterwood removal was significantly correlated with seedling height before shelterwood removal. Significant differences were found in annual height growth between seedlings with high and low vitality. Logging damage did not affect the annual height growth. Several practical conclusions were drawn. First, the choice of harvester system does not affect seedling height growth or survival after shelterwood removal. Secondly, the removal of a 200 m3 shelterwood with 200 stems ha-1 does not seem to constitute a serious problem for seedling survival and growth. Finally, estimated vitality and seedling height both seem to be fairly good predictors of postrelease survival and growth.  相似文献   

8.
The objective of this study was to compare the survival and volume of conifer stands at 26 years of age with their status at planting. Survival, growth and damage were studied in eight clear felled stands regenerated in 1972. Five of the areas were planted with Norway spruce (Picea abies (L.) Karst.) and three with Scots pine (Pinus sylvestris L.). The plantings were examined in 1972 and 1974. In 1974, the number of living undamaged planted seedlings was low (10–15%). However, the number of undamaged seedlings was supplemented by naturally regenerated conifer and birch seedlings. The total number of undamaged seedling in 1974 was equivalent to 20–30% of the number of seedlings planted. In 1998, the main species in three stands had changed from Norway spruce to Scots pine, and in one stand from Norway spruce to birches. Actual volume in 1998 for the stands was compared to stand volume generate according to five scenarios based on recommended and actual seedling number in 1972 and 1974. The actual volume was 64% of that expected if the recommended number of trees had been planted. Naturally regenerated Scots pine and Norway spruce increased stand density in 1998. The actual volume was 37% higher than the average volume in the surrounding county. On average, 36% of the trees were damaged. More than 50% of the total damage was caused by moose (Alces alces L.). For Scots pine, moose or other browsing animals damaged 30% of the trees. The results of this study indicate that the 1998 volume was higher than expected, considering the low number of undamaged seedlings in 1974. This was mainly due to the large amount of naturally regenerated plants. In addition, the results indicate that the volume could have been higher if the initial conditions had been better. Despite the low number of undamaged seedlings in 1974, seven of the eight studied stands produced a higher volume than the average stand for the region. In practise, high numbers of seedlings should be planted on scarified areas. In most cases there will be a supply of naturally regenerated seedlings.  相似文献   

9.

Logging-related damage to forest regeneration is a problem during final cutting in the shelterwood system. In order to compare the effects of logging methods, damage to natural Norway spruce [Picea abies (L.) Karst.] regeneration caused by single- (SGH) and double-grip harvester (DGH) systems was studied in three shelterwoods (132-234 m3 ob ha-1) in Sweden. Between 38 and 65% of the original seedlings (6 400-25 400 ha-1  相似文献   

10.

Harvesting costs have a significant influence on the application and potential use of the shelterwood system. These costs are strongly related to the time needed for the logging operations. In this study, which was carried out in Norway spruce [Picea abies (L.) Karst.] stands in northern Sweden, the effective time (E 0) of a single-grip harvester in shelterwood cutting, thinning of shelterwoods and clearcutting was measured. Based on these data the costs of shelterwood harvestings and clearcutting were calculated and compared. It was found that (1) the time per tree in shelterwood cutting and thinning of shelterwoods was greater than in clearcutting, (2) the time per cubic metre was higher in sparse shelterwoods than in dense shelterwoods, (3) most of this increase was due to longer driving time because fewer trees were harvested, and (4) the longer time and higher logging costs in the shelterwood system (compared with the clearcutting system) were mostly related to the establishment of the shelterwood. It was concluded that the shelterwood alternative is especially competitive when it is desirable to maximize the share of saw logs at the expense of pulpwood.  相似文献   

11.

A study was undertaken to evaluate the effect of Scots pine (Pinus sylvestris) shelterwood density and timing of removal on the regeneration of forests with improved wood quality. This paper focuses on the effect of scarification and seedfall on the success of natural regeneration of Scots pine under two shelterwood densities and in a clear-cut. Wood quality aspects will be addressed later in the study. After 4 yrs, natural regeneration of Scots pine under a 200 stems ha-1 shelterwood reached 90000 seedlings ha-1, 53000 under a 160 stems ha-1 shelterwood and 3700 in a clear-cut. The high natural regeneration under the densest shelterwood resulted from a high seedfall, slower invasion by competing vegetation, consequent prolonged recruitment and low mortality. Since mortality largely decreased for both shelterwood densities and recruitment seems to continue, the success of regeneration should be maintained in the future if proper release operations are conducted. The latter could begin when seedlings reach a height of about 0.5 m and the cover should be maintained until they reach a height of about 6 m. Therefore, it may be possible to use 200 stems ha-1 Scots pine shelterwoods in southern Sweden to obtain dense stands and thus improve wood quality (stem taper, wood density, etc.).  相似文献   

12.
Abstract

The pine weevil Hylobius abietis L. is major threat to forest regeneration in the Nordic countries. The persistence of the deltamethrin insecticide used against pine weevil on Norway spruce seedlings was studied after the seedlings were dipped or sprayed. Insecticide application was timed to occur either before or after frozen storage. Bioassays with the stems of Norway spruce seedlings were used to determine the effect of the insecticide against feeding by the pine weevil. The measures of the control effect were reduction in area of gnawed bark and the state of health of the pine weevils. The concentration of deltamethrin decreased rapidly in seedlings, especially after spraying treatment, which did not efficiently protect seedlings against the pine weevil 6 weeks after planting. There were no signs of degradation of deltamethrin or of an effect on seedling height after frozen storage. In bioassay, the amount of deltamethrin that efficiently prevented feeding by the pine weevil was 5.5 µg g?1 fresh weight. After one growing season in the field, about 1.76–2.24 µg g?1 (13–15% of the initial level) of dipped deltamethrin remained in the seedlings. In seedlings treated by spraying, 0.93–0.98 µg g?1 (7–8% of the initial level) of the deltamethrin remained. According to bioassays, these amounts were no longer sufficient to protect seedlings from feeding by the pine weevil. Therefore, in the first summer, dipping was a significantly more efficient method of application for control of pine weevils.  相似文献   

13.
Feeding by pine weevil (Hylobius abietis L.) causes severe damage to newly planted conifer seedlings in most parts of Scandinavia. We investigated the effect of planting time and insecticide treatment on pine weevil damage and seedling growth. The main objective was to study if planting in early autumn on fresh clear-cuts would promote seedling establishment and reduce the amount of damage caused by pine weevil the following season. The experiment was conducted in southern Sweden and in south-eastern Norway with an identical experimental design at three sites in each country. On each site, Norway spruce seedlings with or without insecticide treatment were planted at four different planting times: August, September, November and May the following year. In Sweden, the proportion of untreated seedlings that were killed by pine weevils was reduced when seedlings were planted at the earliest time (August/September) compared to late planting in November, or May the following year. This pattern was not found in Norway. The average length of leading shoot, diameter growth and biomass were clearly benefited by planting in August in both countries. Insecticide treatment decreased the number of seedlings killed or severely damaged in both Norway and Sweden.  相似文献   

14.
Photosynthetic performance and root respiration were measured for seedlings of Scots pine and Norway spruce under constant conditions in an open gas exchange system in the laboratory. Measurements were carried out after root exposure to ‐20, ‐5 and 0°C and subsequent longtime storage in darkness at +1 or +4°C. Stomatal conductance in relation to net photosynthetic rates was also investigated after the same treatment of seedlings. Root respiration was low for seedlings whose root system had been exposed to ‐20°C, Scots pine showing lower rates than Norway spruce. This was probably an indication of root damage. At least for one provenance of Scots pine, respiration rates were higher for seedlings stored at +1 than at +4°C. Photosynthetic performance was also lowest for seedlings whose roots had been exposed to +20°C compared to higher temperatures, the difference being more clear‐cut for Norway spruce than for Scots pine. Storage at +1 gave slightly higher photosynthetic rates than at +4°C. There was a close relation between stomatal conductance measured on individual needles and photosynthetic performance measured on the whole seedling.  相似文献   

15.
The nature of interference of bracken with Scots pine and Norway spruce seedling establishment was considered in three field experiments. In a seeding experiment, it was found that Scots pine germination was highest on exposed mineral soil and lowest when intact bracken litter and humus were present, suggesting adverse effects of litter and humus on pine regeneration probably due to phytotoxicity. In a second experiment, smothering by bracken caused high mortality of Scots pine seedlings while Norway spruce seedlings were relatively unaffected. Mortality for both Scots pine and Norway spruce seedlings was low when planted in a adjacent Scots pine-bilberry stand with no bracken. Annual shoot growth of Norway spruce was higher in bracken than in Scots pine-bilberry vegetation while no differences in shoot growth between these two vegetation types occurred for Scots pine. In a third experiment, activated carbon was added to the ground under Norway spruce seedlings planted in bracken to adsorb possible phytotoxic compounds released by bracken. The addition of carbon had no effect on seedling mortality or growth rate, indicating that the seedlings were not susceptible to allelochemicals released by bracken. Since large Norway spruce seedlings were relatively unaffected by bracken interference in this study, artificial regeneration with containerized Norway spruce seedlings is suggested to achieve an acceptable conifer tree establishment on clear-cuts invaded by bracken.  相似文献   

16.
Abstract

An experiment was established in 1978 in two Norway spruce [Picea abies (L.) Karst.] plantations in southern Sweden to study yield after mortality in patches with and without supplementarily planted (SP) seedlings. Gaps of different sizes were created by removing the originally planted seedlings. The gaps were either left unplanted or a supplementary planting was performed with one of four species [Norway spruce, Scots pine (Pinus sylvestris L.), lodgepole pine (Pinus contorta Dougl.) or hybrid larch (Larix deciduas Mill×L. Leptolepis Gord.)] 2 (at Knäred) or 6 years (at Ullasjö) after the original plantation. In 2002, most of the SP Scots pine, lodgepole pine and hybrid larch seedlings were dead or severely damaged by roe deer and moose. Survival was high among SP Norway spruces, but they had slower growth than the originally planted spruces. Growth was lower at Ullasjö than at Knäred. In Ullasjö, growth was lower in small gaps than in large gaps. Trees in original regeneration in areas surrounding unplanted gaps were larger than trees surrounding gaps with SP seedlings, which in turn were larger than originally planted trees in plots without gaps. In conclusion, because the original plantation surrounding unplanted gaps used a large part of the open space and growth of SP seedlings was slow, supplementary planting resulted in an insignificant growth increase. However, supplementary planting may increase the timber quality of trees surrounding the gaps, although this effect remains to be quantified.  相似文献   

17.
Damage caused by pine weevil (Hylobius abietus L.) to planted seedlings and cuttings of Norway spruce (Picea abies (L.) Karst.) was studied at five clearcut sites in south-eastern Sweden. The main objective was to compare the two types of stock in terms of attack frequency and mortality due to pine weevil feeding. Cuttings and seedlings with the same initial stem-base diameter (4 mm) were compared. Two sites were harvested and scarified shortly before planting, two were harvested shortly before planting, but were not scarified, and one was harvested 2 years before and scarified the autumn before planting. The total mortality 5 years after planting was highest, greater than 90%, at the new, non-scarified sites, and lowest, 23%, at the old, scarified site. More than 90% of the mortality was caused by pine weevil feeding. Attack frequency and pine weevil induced mortality were significantly higher among seedlings than among cuttings. Mortality due to pine weevil damage was 4–43% higher in seedlings than in cuttings after the fifth year. Of the cuttings and seedlings that were attacked in the first year, a significantly higher frequency of the seedlings were girdled. The higher resistance of cuttings to pine weevil damage may partly explain the more rapid growth of cuttings reported in other studies. However, the causes of their higher resistance need to be further investigated. The thicker bark and needles on the stem base of the cuttings could be important in this respect.  相似文献   

18.
19.
Conidia of Gremmeniella abietina infected and caused disease symptoms in annual shoots of both Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) seedlings. In Norway spruce shoots the infection remained largely latent, with only a few seedlings showing symptoms. Mycelial growth inside the shoots was faster in Scots pine than in Norway spruce and was favoured by low temperature in both hosts. The shoots of Norway spruce seedlings had higher endophyte populations than those of Scots pine, and the populations were decreased by low temperatures. Reductions in the normal epiphytic or endophytic flora by acid mist treatments seemed to favour the development of G. abietina.  相似文献   

20.
One‐year‐old container‐grown seedlings were planted in spring on clear cut areas: the Norway spruce (Picea abies) on a moist upland site (Myrtillus‐type) and Scots pine (Pinus sylvestris) on a dryish upland site (Vaccinium‐type). While still in the nursery, half of the seedlings of each species had been inoculated during the previous summer, with a uninucleate Rhizoctonia sp., a root dieback fungus. At outplanting all the seedlings appeared healthy and had a normal apical bud, although the height of the inoculated seedlings was less than that of the uninoculated control seedlings. At the end of the first growing season after planting, the mortality of inoculated Scots pine and Norway spruce seedlings was 25 and 69%, respectively. After two growing seasons the mortality of inoculated seedlings had increased to 38% for Scots pine and 93% for Norway spruce. The mortality of control seedlings after two growing seasons in the forest was 2% for Scots pine and 13% for Norway spruce. After outplanting the annual growth of inoculated seedlings was poor compared with the growth of control seedlings. These results show that, although Rhizoctonia‐affected seedlings are alive and green in the nursery, the disease subsequently affects both their survival and growth in the forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号