首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 316 毫秒
1.
The effects of animal density and water temperature on the culture of the mysid, Mysidopsis almyra (Bowman), in a static water system were evaluated. An initial set of experiments tested the effects of mysid density on production. Densities of 25, 37.5, 50, 100 and 200 mysids L–1 were placed in trays with 20 L of sea water. Temperatures were maintained at 26 ± 2 °C. A second set of experiments was conducted in the same system at three different temperatures (18 ± 1, 22 ± 1 and 26 ± 2 °C) using a mysid density of 50 mysids L–1 (1000 mysids tray–1). All experiments had a duration of 30 days. The mysids in all trials were cultured at 20 ± 2‰ salinity and fed Artemia nauplii enriched with marine fatty acids. There was a positive correlation between production and mysid densities up to populations of 100 mysids L–1; maximum production was 273 ± 99 hatchlings day–1. At a population density of 200 mysids L–1, high mortality and low production were recorded 4 days after the start of the experiment. The experiments testing different temperatures showed that mysid production was higher at 22 ± 1 °C, although this result was not significant (P > 0.05). Growth rates and hatchling survival after 7 days were significantly higher (P < 0.05) at 26 ± 2 °C compared to survival and growth at 18 or 22 °C.  相似文献   

2.
A feeding experiment was conducted to investigate the effect of Bacillus subtilis bacterium, on larval growth and development rate of Macrobrachium rosenbergii (de Man) during February 28 to April 8, 2005 in University Putra Malaysia hatchery. Newly hatched larvae of M. rosenbergii were reared with two dietary treatments consisting of newly hatched Artemia salina nauplii with B. subtilis (108 cells ml−1), and newly hatched A. salina nauplii without B. subtilis carried out in triplicate in 60‐L aquarium (50 L−1). After trial, the larvae that fed B. subtilis‐treated Artemia naupli were found to have higher survival and a faster rate of metamorphosis than larvae that were fed with nontreated Artemia naupli. There were significant differences between B. subtilis‐treated Artemia naupli and nontreated Artemia diet in larval growth and development rate of metamorphosis (P < 0.05). Larval survival after 40 days was significantly greater (P < 0.05) in the B. subtilis‐treated groups (55.3 ± 1.02) compared with the nontreated groups (36.2 ± 5.02%).  相似文献   

3.
Growth rate, soluble-protein content and digestive-enzyme activities were studied in Litopenaeus vannamei (Boone, 1931) early post-larvae under six feeding regimens, which included combinations of freshly hatched Artemia nauplii, an artificial diet and algae. Growth (0.11 mg DW day−1) and soluble-protein content (61.8 μg protein larvae−1 at PL10) of post-larvae fed mixed diets were significantly higher (P < 0.05). An artificial diet used alone or co-fed with algae caused the lowest growth (0.03–0.05 mg DW day−1) and soluble-protein content (13.7–15.5 μg protein larvae−1 at PL10). Trypsin-like activity was higher (up to 10 times) in post-larvae fed Artemia nauplii and an artificial diet alone or plus algae. The artificial diet stimulated chymotrypsin activity, apparently in response to squid meal present in this diet. Amylase activity increased when post-larvae were fed the artificial diet. This was apparently related more to the origin of the starch than to the total carbohydrate level of the diet. No obvious relationship was found between enzyme activity and growth in any feed combination. Based on growth and soluble-protein content, we determined that partial substitution (50%) of Artemia nauplii by artificial diet and the use of algae co-fed beyond the first post-larval stage benefits growth and the nutritional state of L. vannamei post-larvae.  相似文献   

4.
This investigation examined the effects on growth and survival of seahorses Hippocampus abdominalis Leeson 1827 fed a 25% body weight (wet weight) daily ration of live Artemia sp. enriched with Algamac‐3050, frozen mysids Amblyops kempi or a combination of live enriched Artemia and frozen mysids. After 3 months there was no difference in seahorse length, wet weight, condition factor (CF), or food conversion ratios (FCR) between the treatments. Mean daily specific growth rate (SGR) was higher for the Artemia‐only treatment than for the mysid‐only treatment (P<0.05). FCRs ranged from 6.14 g to 8.72 g dry weight of food required to give a 1‐g dry weight increase in seahorses. There was no difference in survival between treatments. Fatty acid analysis revealed that mysids had a higher percentage composition of EPA, 20 : 5n‐3, and DHA, 22 : 6n‐3, but a lower composition of AA, 20 : 4n‐6, than enriched Artemia. Percentage n‐3 highly unsaturated fatty acids (HUFAs) in mysid levels were approximately twice that of Artemia. Proximate analysis revealed mysids to be higher than the enriched Artemia in protein and fats, and lower in water content. This experiment demonstrates that, although no growth advantage was derived from the use of frozen mysids, they can be used successfully as an alternative food to live enriched Artemia for H. abdominalis. The use of frozen mysids is highly recommended in commercial seahorse culture if the seahorses are to be sold into the live aquarium trade, as this may increase their chances of survival after sale.  相似文献   

5.
Growth rate, soluble protein content, osmotic stress and digestive enzyme activity were studied in early Litopenaeus schmitti postlarvae under different feeding regimens, by partially or completely replacing Artemia nauplii with Moina micrura. Growth was significantly higher in the postlarvae fed with a mixture of M. micrura, Artemia nauplii and algae (0.030 mg dry weight (dw) larva?1 day?1, 17.4 ± 2.1% day?1), together with the postlarvae fed on Artemia nauplii and algae (0.027 mg dw larva?1 day?1, 18.3 ± 1.9% day?1). Complete replacement of Artemia nauplii by M. micrura produced the lowest growth rate (0.018 mg dw larva?1 day?1, 14.3 ± 1.6% day?1) and induced the highest protease and α‐amylase activities and lower soluble protein contents. No significant difference among the treatments could be detected in postlarval resistance to osmotic stress. Based on the growth results, soluble protein content, enzymatic activity and osmotic stress resistance, we determined that the partial replacement of Artemia nauplii by M. micrura did not affect the growth, the soluble protein content and the nutritional state in the postlarvae of L. schmitti. To our knowledge, this is the first reported use of M.micrura as feed for early postlarvae of L. schmitti.  相似文献   

6.
The effects of several food items on larvae production and survival ofthe mysid Mysidopsis almyra were compared. A total of sixdiets were used. The diets were: 1) phytoplankton (Isochrysisgalbana), 2) an artificial diet (Liqualife®, Cargill,Minneapolis, MN), 3) a mixed diet composed of both zooplankton (mostlycopepods)and phytoplankton, 4) 750 mg g–1 of HUFA enrichedArtemia nauplii and 250 mgg–1 of the artificial diet, 5) newly hatchedArtemia nauplii (24-hour incubation at 28°C) and 6) newly hatched Artemia naupliienriched with HUFA (SELCO®, INVE Inc., Ghent, Belgium) for 12 hours. Mysidsfed HUFA enriched Artemia nauplii (diet 6) had the highestproduction and survival rates, although not significant (P > 0.05), comparedto diets 3, 4 and 5, while the phytoplankton and the artificial diet hadsignificantly lower production and survival rates (p > 0.05).  相似文献   

7.
Two consecutive experiments were conducted to study the effects of stocking density on growth, food utilization, production and farming profitability of Nile tilapia (Oreochromis niloticus) fingerlings (initial mean weight: 16.2 ± 0.2 g) fed Azolla, as a main component in diet. In experiment 1, fish were hand‐fed twice daily with three isonitrogenous (28.5% crude protein) and isocaloric (14.5 kJ g−1) diets A30, A35 and A40 containing 30%, 35% and 40%Azolla, respectively, for 90 days. Diets were formulated by mixing Azolla with locally available by‐products. No significant differences were found in growth parameters and production (P>0.05). Total investment cost was significantly higher with A30 (P<0.05), but same profitability values were obtained with all diets (P>0.05). In experiment 2, three stocking densities, 1, 3 and 5 m−2, were assigned to three treatments T1, T2 and T3 respectively. Fish were hand‐fed twice daily with diet A40. The final mean weight (89.53–115.12 g), the mean weight gain (0.81–1.10 g day−1), the specific growth rate (1.90–2.20% day−1) and the apparent food conversion ratio (1.29–1.58) were affected by stocking density, with significant difference (P<0.05) at 5 m−2, compared with the other densities. Stocking density did not affect survival rate (P>0.05). Yield and annual production increased with increasing stocking density, ranging from 7.10 ± 0.90 to 25.01 ± 1.84 kg are−1 and 28.79 ± 3.66 to 101.42 ± 7.48 kg are−1 year−1, respectively, with significant differences between all densities (P<0.05). Higher stocking density resulted in higher gross return and lower cost of fish production, with significant variations (P<0.05). The net return increased with increasing stocking density (P<0.05). However, both densities of 3 and 5 m−2 produced the same profitability values. On the basis of growth values and economic return, it was concluded that Nile tilapia could be raised at a density of 3 fish m−2 with A40 to improve production and generate profit for nutritional security and poverty alleviation in rural areas.  相似文献   

8.
The nematode Panagrellus redivivus (Linné) has been suggested as a source of live food in the rearing of larval fish and shrimp species. This study tested the use of P. redivivus in the early rearing of the bottom‐feeding catfish Synodontis petricola (Matthes). A comparison of feeding rates of 5000–10 000 nematodes larva−1 day−1 showed that fish receiving 5000 nematodes larva−1 day−1 grew faster than those fed a dry diet, but slower than treatments fed 200 and 600 Artemia larva−1 day−1. Enrichment of nematodes with SuperSelco® improved fish growth relative to a non‐enriched control treatment, with both treatments receiving 5000 nematodes larva−1 day−1. In the first two trials, feeding commenced 2 days after hatching. In the third study, fish were fed nematodes 6 days after hatching and there was no difference in growth between Artemia‐fed fish (600 Artemia larva−1 day−1) and fish fed 5000 nematodes larva−1 day−1. Thus, it is suggested to feed S. petricola at a nematode density of at least 10 000nematodes larva−1 day−1 in order to achieve growth comparable to that of fish fed Artemia, or, alternatively, to feed 5000 nematodes larva−1 day−1 to improve growth relative to that achieved with a dry diet. Furthermore, nematodes may be enriched with essential fatty acids to improve the growth of S. petricola larvae.  相似文献   

9.
Two studies were conducted to evaluate the effects of unilateral eyestalk ablation and diet on the reproductive performance of wild populations of Farfantepenaeus aztecus. In both studies, females in two treatments were unilaterally ablated while those in the control treatment were not. Shrimp in the non‐ablated treatment and one of the unilaterally ablated treatments received frozen bloodworms (8% BW day−1) and frozen squid (12% BW day−1). The bloodworm component of the diet of the third unilateral ablation treatment was replaced with frozen adult enriched Artemia sp. Ablated female population spawning per night, in both studies, was higher than non‐ablated spawning (8.5 and 8.9 vs. 2.6%; 7.4 and 7.5 vs. 2.7% respectively; P<0.05). Replacement of bloodworms with adult enriched Artemia sp. had no negative effect on the number of eggs spawned per ablated female (124 000 vs. 115 000 eggs spawn−1; 144 000 vs. 151 000 eggs spawn−1 respectively; P>0.05). The life span of ablated females fed adult enriched Artemia sp. was 8 and 40 days longer than ablated females fed bloodworms for the first and second studies respectively. Replacement of bloodworms with adult enriched Artemia sp. resulted in higher hatch and larval survival rates (Nauplius 1 to Zoea 1) (55.0% vs. 46.9% and 44.8% vs. 37.2%), respectively, P<0.05.  相似文献   

10.
This work tested the effect of using different live and frozen feed on the growth performance of Syngnathus typhle. It was divided into two experiments. In Experiment I Artemia and Atlantic ditch shrimp (Palaemonetes varians) larvae were used as live diets, whilst in Experiment II frozen mysids Mesopodopsis slabberi and frozen P. varians were used. At the end of the first experiment juvenile pipefish grew significantly more when fed P. varians (P < 0.05) with an overall Weight Gain (WG) of 914.8 ± 79.3% bw day?1, compared to Artemia fed fish (WG = 683.2 ± 14.7%). Both mean Specific Growth Rate (SGR) and survival were similar between dietary treatments and did not vary significantly (P > 0.05). In Experiment II juveniles were weaned with frozen diets but no significant differences were found between the two tested diets in all parameters tested. Final WG was 516.5 ± 63.3% and 566 ± 17.6%, and Feed Conversion Ratio (FCR) was 30 ± 1.5% and 28.2 ± 1.2% for animals fed P. varians and M. slabberi respectively. Results indicate that P. varians is an adequate diet to use during initial stages of the S. typhle life cycle and should be considered as a frozen diet for subsequent life stages of this species as an alternative to currently known natural diets.  相似文献   

11.
The proteolytic digestive activity and growth of Parachromis dovii larvae during the ontogeny were evaluated in a recirculation system using two feeding strategies during a 28-day period. Larvae were reared using two feeding protocols (three replicates each): (A) Artemia nauplii (at satiation), fed from exogenous feeding [8 days after hatching (DAH)] until 15 DAH followed by nauplii substitution by formulated feed (20 % day?1) until 20 DAH and then formulated feed until 28 DAH; (B) formulated feed (100 % BW daily) from exogenous feeding until 28 DAH. Levels of acid (pepsin type) and alkaline digestive proteases as well as growth and survival of larvae were measured along the feeding period. Survival was high and similar between treatments: 98.9 ± 0.0 for Artemia, 97.3 ± 0.0 % for formulated feed. The specific growth rate for length and weight was higher in larvae fed with Artemia nauplii than in larvae reared with formulated feed: 3.4 ± 0.1 versus 1.8 ± 0.1 % day?1 for body length (P = 0.009) and 12.2 ± 0.1 versus 6.5 ± 0.3 % day?1 for body weight (P = 0.002). The acid and alkaline proteolytic activity was detected, in both treatments, from the beginning of the experiment, at 8 DAH. The total enzymatic activity (U larva?1) for acid and alkaline proteases was higher in larvae reared with Artemia after 12 DAH, whereas the specific enzymatic activity was similar for both enzyme types in the two treatments. The results suggest that P. dovii larvae were capable to digest formulated diets from the beginning of exogenous feeding and that they could be reared with formulated feeds. However, the formulated feed used should be nutritionally improved because of the poor growth obtained in this research.  相似文献   

12.
The effects of several food items on larvae production and survival ofthe mysid Mysidopsis almyra were compared. A total of sixdiets were used. The diets were: 1) phytoplankton (Isochrysisgalbana), 2) an artificial diet (Liqualife®, Cargill,Minneapolis, MN), 3) a mixed diet composed of both zooplankton (mostlycopepods)and phytoplankton, 4) 750 mg g?1 of HUFA enrichedArtemia nauplii and 250 mgg?1 of the artificial diet, 5) newly hatchedArtemia nauplii (24-hour incubation at 28°C) and 6) newly hatched Artemia naupliienriched with HUFA (SELCO®, INVE Inc., Ghent, Belgium) for 12 hours. Mysidsfed HUFA enriched Artemia nauplii (diet 6) had the highestproduction and survival rates, although not significant (P > 0.05), comparedto diets 3, 4 and 5, while the phytoplankton and the artificial diet hadsignificantly lower production and survival rates (p > 0.05).  相似文献   

13.
High mortality frequently occurs in larval mass production of Korean rockfish, Sebastes schlegeli Hilgendorf. Nutritional deficiencies in live feeds, rotifers and Artemia nauplii, fed to larvae could be a reason. A series of experiments was carried out to evaluate the effect of nutritional enrichment of live feeds by ω‐yeast, Spirulina powder and Super SelcoTM on survival and growth rates in rockfish larvae. Preference of rockfish larvae for the live feeds was determined by analysis of stomach contents. In addition, the effect of green water produced by the use of Chlorella ellipsoidea and Spirulina powder on the growth performance of larvae was evaluated. Larvae fed rotifers nutritionally enriched with Super Selco showed significantly higher survival rates than those fed rotifers enriched with ω‐yeast. Larvae fed rotifers that were nutritionally enriched with both Super Selco and Spirulina together exhibited improved growth and survival rates. Larvae fed Artemia nauplii nutritionally enriched with Spirulina powder showed significantly higher survival than larvae fed Artemia nauplii without enrichment. When larvae were fed rotifers, Artemia nauplii or the mixture of rotifers and Artemia nauplii, the second and last group showed significantly higher survival than the first group. Fatty acid composition in live feeds was improved by enrichment of ω‐yeast and larvae fed this feed showed higher survival and growth rates compared with larvae fed non‐enriched feeds. No positive effect of green water in the tank produced with C. ellipsoidea or Spirulina powder was observed on survival and growth rates for larvae fed nutritionally enriched rotifers with Super Selco and Spirulina powder. However, when the larvae were fed Artemia nauplii that were nutritionally enriched with ω‐yeast and Spirulina powder, green water obtained by adding Spirulina powder to the tanks resulted in significantly higher growth rates of larvae than was obtained by adding C. ellipsoidea.  相似文献   

14.
Twoexperiments were conducted to determine the effects ofArtemia sp. or mysids on growth and survival ofS. officinalis hatchlings, and their effect throughout thelife cycle. For experiment I, for the first 20 days, one group was fed adultArtemia sp. and the other was fed mysid shrimp(Paramysis nouvelli). Eggs laid by females in both groupswere counted and weighed, and hatchlings were weighed, to determine differencesin both groups. For experiment II, during the first 10 days, one group was fedArtemia sp. and the other was fed mysids (P.nouveli). After the period of differentiated feeding, the 2 groupsinexperiment I were fed grass shrimp (Paleomonetes varians)to 70 days old, and dead crabs (Carcinus maenas)afterwards. Cuttlefish in experiment II were fed grass shrimp from day 10 untilthe end of the experiment. For both experiments, hatchlings fed mysids grewsignificantly bigger (p < 0.01) and survival was higher. For experiment I,eggs laid by females fed mysids and the hatchlings born from these eggs werebigger (p < 0.001) compared to the group fed Artemiasp.initially. Individual fecundity was slightly higher for females in the groupfedArtemia sp. (163 eggs female–1) than forthe group fed mysids (144 eggs female–1). Egg laying startedatthe age of 125 days and lasted 45 days in both groups. Time between first egglaying day and first hatchlings to be born was 21 days. The last female to die(after spawning) in both groups was 167 days (less than 6 months old).  相似文献   

15.
Microbound feeds have been well accepted by shrimps and farmers in many penaeid shrimp hatcheries. The present study focused on an adequate level of replacement of Artemia nauplii and microalgae by a microbound diet for rearing Litopenaeus setiferus (Burkenroad) larvae. A microbound diet (MBD) consisting of fishmeal, squid meal, shrimp meal, yeast meal and soybean meal was used. The first experiment was designed to obtain the optimum level of MBD to complete the live feeding schedule, from Protozoea (PZIII) to Mysis (MIII). The experimental levels of the microbound diet tested were 2, 4, 6 and 8 mg MBD L?1 day?1. The next step was to determine the Artemia nauplii replacement level from PZI to MIII by MBD. These experiments were carried out either in the presence (Experiment 2) or in the absence of algae (Experiment 3). Four replacement levels were tested: 0% (4 mg MBD L?1 day?1: 1 Artemia nauplii mL?1), 40% (5.5 mg MBD L?1 day?1: 0.6 Artemia nauplii), 60% (6.5 mg MBD L?1 day?1: 0.4 Artemia nauplii) and 100% (8 mg MBD L?1 day?1: 0 Artemia nauplii). In all experiments growth, survival, development, quality index (QI) and performance index (PI), were used to determine the optimum concentration of microbound diet. Results showed that 6 mg MBD L?1 day?1 can be recommended as a complement to live food for L. setiferus larvae from PZIII to MIII. In the presence of algae, maximum growth and survival may be obtained in 40–60% (5.5–6.5 mg MBD L?1 day?1) of Artemia nauplii replacement levels. In the absence of algae, the Artemia nauplii replacement resulted in slower development, less salinity resistance, lower growth and lower survival than was obtained in larvae fed with algae.  相似文献   

16.
Heterobranchus longifilis larvae were reared over a 35 d period to evaluate the effects of stocking densities and feeding regimes on growth and survival. In experiment 1, larvae (12.3?±?2.1 mg) were stocked into glass aquaria at densities of 1, 2, 5, 10, 15, 20, and 25 larvae L?1. Larvae were fed on Artemia nauplii ad libitum. Significant variations in terms of growth performance and feed utilization occurred at all levels of density treatments. Specific growth rate (SGR), body weight gain (BWG), and feed efficiency (FE) of the larvae decreased significantly as density increased. However, survival rate increased with the increase of stocking density. In experiment 2, larvae (13.4?±?1.1 mg) stocked at a density of 15 larvae L?1, in the same conditions as experiment 1, were fed on three different regimes: Artemia nauplii; 35%?protein beef brain; and 35%?protein commercial catfish feed (CN+). SGR, BWG, and coefficient of variation (CV) of larvae fed on Artemia nauplii were significantly higher than those fed on beef brain and CN+. The survival rate of larvae fed on beef brain was significantly higher (88.40?±?9.75%) than those of Artemia (69.21?±?6.69%) and CN+ (40.40?±?6.22%). The results of this study suggest that the optimum stocking density is 15 larvae L?1 and the beef brain can be used as alternative feed to Artemia in rearing H. longifilis larvae.  相似文献   

17.
The nematode Panagrolaimus sp. was tested as live feed to replace Artemia nauplii during first larval stages of whiteleg shrimp Litopenaeus vannamei. In Trial 1, shrimp larvae were fed one of four diets from Zoea 2 to Postlarva 1 (PL1): (A) Artemia nauplii, control treatment; (NC) nematodes enriched in docosahexaenoic acid (DHA) provided by the dinoflagellate Crypthecodinium cohnii; (N) non‐enriched nematodes; and (Algae) a mixture of microalgae supplemented in C. cohnii cells. In Trial 2, shrimp were fed (A), (NC) and a different treatment (NS) with nematodes enriched in polyunsaturated fatty acids (PUFAs) provided by the commercial product S.presso®, until Postlarva 6 (PL6). Mysis 1 larvae fed nematodes of the three dietary treatments were 300 μm longer (3.2 ± 0.3 mm) than control larvae. At PL1, control shrimp were 300 μm longer (4.5 ± 0.3 mm) than those fed DHA‐enriched or PUFAs‐enriched nematodes. No differences were observed in length and survival at PL6 between control larvae and those fed DHA‐enriched nematodes (5.1 ± 0.5 mm; 33.1%–44.4%). Shrimp fed microalgae showed a delay in development at PL1. This work is the first demonstration of Panagrolaimus sp. suitability as a complete substitute for Artemia in rearing shrimp from Zoea 2 to PL6.  相似文献   

18.
This study was designed to test the effect of soy protein (SPC), wheat gluten (WHG) and potato protein (PPC), in vitro and in vivo digestibility of protein and energy in the juveniles Litopeneaus vannamei. A completely random design was used with nine 400‐L tanks (with three repetitions by treatment). Ten respirometric chambers (500 mL) were used for energy distribution. In vitro digestibility for SPC (8.8%) was higher than for PPC (5.8%) and for WHG (4.3%, P < 0.05). Diets’ degree of hydrolysis ranged between 0.75% and 1.2%, with lowest value in potato protein concentrate diet (0.75 ± 0.09%, P < 0.05). No significant differences were obtained in apparent digestibility coefficient (ADC) for protein (63.4–74.1%). ADC for amino acids ranged between 80% and 90%. Daily growth coefficient ranged from 0.86% to 1.1% day−1, being the best in soybean protein concentrate diet (SPCd) (P < 0.05). Significant differences on heat increment were observed (P < 0.05); highest value was in wheat gluten diet (1.0 ± 0.1 kJ shrimp day−1) that coincided with a peak of trypsin specific activity (16.5 ± 3.7 mU mg protein−1). Highest retained energy for growth was observed in shrimp fed SPCd (0.7 ± 0.03 kJ day−1, P < 0.05). Muscle collagen content presented a minimum of bands with SPCd, whereas shrimp post‐mortem collagenase activity was not affected by any of the three diets (P > 0.05).  相似文献   

19.
This paper presents the preliminary results of different trials carried out with two species of mysids from Gran Canaria: Leptomysis lingvura (G.O. Sars, 1866) and Paramysis nouvel. Experiments lasting 21 days showed significantly higher fecundity and survival in L. lingvura than in P. nouveli (P<0.05). We also report the biochemical profile of both species fed 48‐h‐Artemia nauplii enriched with Easy‐DHA‐Selco® for 7 days. A comparison of our results with those of for Artemia and rotifers, organisms frequently used as live food in aquaculture, showed that mysids have a high percentage of protein per dry mass (73.38% in P. nouveli, and 74.19% in L. lingvura). Furthermore, the percentage of docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and arachidonic acid (AA) in total fatty acids was higher in both species than that reported by Roo and colleagues for rotifers and Artemia. In addition to the content of these fatty acids, their ratios between them are also important for normal growth and larval development. We found that the ratio, DHA:EPA, was 0.85 0.02 and 0.89 0.01; the ratio, DHA: AA, 6.25 0.26 and 4.74 0.14; and the ratio, EPA:AA, 7.32 0.26 and 5.32 0.2, respectively, for P. nouveli and L. lingvura in cultures and these ratios do not significantly differ (P>0.05) from organisms in the wild. Here, we argue that as mysids are prey for many commercially important fish, cephalopods and rays, it is likely that the biochemical composition of mysids in their natural environment is “optimal” for these predators. Therefore, we studied the lipid profile of both species as they naturally occur in their environment. The results indicate that these mysids could be used to develop high quality live fish food.  相似文献   

20.
The effects of feeding two alternative live prey Hyalella azteca (freshwater gammarids) and Hyale media (marine gammarids) to Octopus maya hatchlings were compared with feeding adult Artemia sp., traditionally used during the first weeks of the life cycle. Hatchlings were fed ad libitum these three live preys during the first 15 days, and a paste elaborated with fresh squid and shrimp during the next 15 days when hatchling can be fed prepared diets. Weight (g) and specific growth rates (% day?1) were determined every 15 days. Octopus maya hatchlings fed with marine gammarids grew larger (6.9 ± 0.2% day?1) compared with hatchlings fed Artemia sp. or freshwater gammarids (4.8 ± 0.2% and 5.0 ± 0.3% day?1 respectively). Survival was also higher (92.2 ± 6.8%) for hatchlings fed marine gammarids, than for those fed Artemia sp. (74.5 ± 23.8%) or freshwater gammarids (41.2 ± 21.2%). The content of acylglycerides, cholesterol and proteins in O. maya fed marine gammarids suggested a better nutrient assimilation by the hatchlings. Also, polyunsaturated fatty acids levels (EPA and DHA) were more abundant in marine gammarids, possibly contributing to the higher growth rates observed. This is the first study revealing a successful use of marine gammarids as alternative prey for octopus hatchlings culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号