首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
OBJECTIVES: To determine the serum and synovial fluid concentrations of ceftiofur sodium after intraarticular (IA) and intravenous (IV) administration and to evaluate the morphologic changes after intraarticular ceftiofur sodium administration. STUDY DESIGN: Strip plot design for the ceftiofur sodium serum and synovial fluid concentrations and a split plot design for the cytologic and histopathologic evaluation. ANIMALS: Six healthy adult horses without lameness. METHODS: Stage 1: Ceftiofur sodium (2.2 mg/kg) was administered IV. Stage 2: 150 mg (3 mL) of ceftiofur sodium (pHavg 6.57) was administered IA into 1 antebrachiocarpal joint. The ceftiofur sodium was reconstituted with sterile sodium chloride solution (pH 6.35). The contralateral joint was injected with 3 mL of 0.9% sterile sodium chloride solution (pH 6.35). Serum and synovial fluid samples were obtained from each horse during each stage. For a given stage, each type of sample (serum or synovial fluid) was collected once before injection and 12 times after injection over a 24-hour period. All horses were killed at 24 hours, and microscopic evaluation of the cartilage and synovium was performed. Serum and synovial fluid concentrations of ceftiofur sodium were measured by using a microbiologic assay, and pharmacokinetic variables were calculated. Synovial fluid was collected from the active joints treated during stage 2 at preinjection and postinjection hours (PIH) 0 (taken immediately after injection of either the ceftiofur sodium or sodium chloride), 12, and 24, and evaluated for differential cellular counts, pH, total protein concentration, and mucin precipitate quality. RESULTS: Concentrations of ceftiofur in synovial fluid after IA administration were significantly higher (P = .0001) than synovial fluid concentrations obtained after IV administration. Mean peak synovial fluid concentrations of ceftiofur after IA and IV administration were 5825.08 microg/mL at PIH .25 and 7.31 microg/mL at PIH 4, respectively. Mean synovial fluid ceftiofur concentrations at PIH 24 after IA and IV administration were 4.94 microg/mL and .12 microg/mL, respectively. Cytologic characteristics of synovial fluid after IA administration did not differ from cytologic characteristics after IA saline solution administration. White blood cell counts after IA ceftiofur administration were < or =3,400 cells/ML. The mean synovial pH of ceftiofur treated and control joints was 7.32 (range, 7.08-7.5) and 7.37 (range, 7.31-7.42), respectively. Grossly, there were minimal changes in synovium or cartilage, and no microscopic differences were detected (P = .5147) between ceftiofur-treated joints and saline-treated joints. The synovial half-life of ceftiofur sodium after IA administration joint was 5.1 hours. CONCLUSIONS: Synovial concentrations after intraarticular administration of 150 mg of ceftiofur sodium remained elevated above minimal inhibitory concentration (MIC90) over 24 hours. After 2.2 mg/kg IV, the synovial fluid ceftiofur concentration remained above MIC no longer than 8 hours. CLINICAL RELEVANCE: Ceftiofur sodium may be an acceptable broad spectrum antimicrobial to administer IA in septic arthritic equine joints.  相似文献   

2.
Objective— To compare intra-articular (IA) and bone gentamicin concentrations achieved after intra-articular administration or regional intravenous perfusion (RIP).
Study Design— Experimental study.
Animals— Twelve healthy adult horses.
Methods— Horses were assigned to 2 treatment groups (  n = 6/group  ): Group 1, 1 g gentamicin administered simultaneously in both left and right metacarpophalangeal joints and group 2, 1 g gentamicin administered simultaneously in both left and right lateral palmar veins. Serum, synovial fluid, and bone biopsy specimens were collected. Gentamicin concentrations were determined by fluorescence polarization immunoassay. Bone, synovial fluid, and serum gentamicin concentrations were compared over time and between groups using 2-way ANOVA. Significance of all tests were evaluated at   P < .05  .
Results— IA metacarpophalangeal joint administration resulted in higher concentration of gentamicin in synovial fluid than RIP administration. Synovial fluid concentration remained above minimum inhibitory concentration (MIC) for common pathogens for over 24 hours with IA and RIP administration. Bone gentamicin concentration remained above MIC for 8 hours with both methods; there was no significant difference in gentamicin concentration in bone with either method. Neither IA nor RIP administration had a significant effect on serum concentration of gentamicin.
Conclusions— In normal horses, there is no difference in bone gentamicin concentration obtained with IA or RIP administration.
Clinical Relevance— Based on MIC for common equine pathogens, administration of gentamicin intra-articularly or by regional intravenous perfusion should be useful for treatment of osteomyelitis.  相似文献   

3.
OBJECTIVE: To evaluate the pharmacokinetic-pharmacodynamic parameters of enrofloxacin and a low dose of amikacin administered via regional IV limb perfusion (RILP) in standing horses. ANIMALS: 14 adult horses. PROCEDURES: Standing horses (7 horses/group) received either enrofloxacin (1.5 mg/kg) or amikacin (250 mg) via RILP (involving tourniquet application) in 1 forelimb. Samples of interstitial fluid (collected via implanted capillary ultrafiltration devices) from the bone marrow (BMIF) of the third metacarpal bone and overlying subcutaneous tissues (STIF), blood, and synovial fluid of the radiocarpal joint were collected prior to (time 0) and at intervals after tourniquet release for determination of drug concentrations. For pharmacokinetic-pharmacodynamic analyses, minimum inhibitory concentrations (MICs) of 16 microg/mL (amikacin) and 0.5 microg/mL (enrofloxacin) were applied. RESULTS: After RILP with enrofloxacin, 3 horses developed vasculitis. The highest synovial fluid concentrations of enrofloxacin and amikacin were detected at time 0; median values (range) were 13.22 microg/mL (0.254 to 167.9 microg/mL) and 26.2 microg/mL (5.78 to 50.0 microg/mL), respectively. Enrofloxacin concentrations exceeded MIC for approximately 24 hours in STIF and synovial fluid and for 36 hours in BMIF. After perfusion of amikacin, concentrations greater than the MIC were not detected in any samples. Effective therapeutic concentrations of enrofloxacin were attained in all samples. CONCLUSIONS AND CLINICAL RELEVANCE: In horses with orthopedic infections, RILP of enrofloxacin (1.5 mg/kg) should be considered as a treatment option. However, care must be taken during administration. A dose of amikacin > 250 mg is recommended to attain effective tissue concentrations via RILP in standing horses.  相似文献   

4.
This study investigated the pharmacokinetics of ceftiofur after intravenous regional limb perfusion (IVRLP). Six horses were involved in 3 IVRLP sessions. For each session, operators with varying clinical experience placed the tourniquet. A wide-rubber tourniquet was applied in the antebrachium as 2 g of ceftiofur in a total volume of 100 mL was injected into the cephalic vein. Plasma and metacarpophalangeal synovial fluid samples were obtained to evaluate perfusate leakage and synovial fluid concentrations of ceftiofur over 24 h. Overall, mean plasma concentrations were not significantly different before and after tourniquet removal. Mean synovial fluid ceftiofur concentrations were significantly higher 5 min and 8 h after tourniquet removal versus 24 h, after which values above the minimum inhibitory concentration (MIC) (1 μg/mL) were not detected. Concentrations above the MIC were detected in 72% and 50% of the horses at 5 min and 8 h, respectively. Overall, higher synovial fluid concentrations were obtained for the operator with the most recent clinical experience performing IVRLP.  相似文献   

5.
OBJECTIVE: To compare gentamicin concentrations achieved in synovial fluid and joint tissues during IV administration and continuous intra-articular (IA) infusion of the tarsocrural joint in horses. ANIMALS: 18 horses with clinically normal tarsocrural joints. PROCEDURE: Horses were assigned to 3 groups (6 horses/group) and administered gentamicin (6.6 mg/kg, IV, q 24 h for 4 days; group 1), a continuous IA infusion of gentamicin into the tarsocrural joint (50 mg/h for 73 hours; group 2), or both treatments (group 3). Serum, synovial fluid, and joint tissue samples were collected for measurement of gentamicin at various time points during and 73 hours after initiation of treatment. Gentamicin concentrations were compared by use of a Kruskal-Wallis ANOVA. RESULTS: At 73 hours, mean +/- SE gentamicin concentrations in synovial fluid, synovial membrane, joint capsule, subchondral bone, and collateral ligament of group 1 horses were 11.5 +/- 1.5 microg/mL, 21.1 +/- 3.0 microg/g, 17.1 +/- 1.4 microg/g, 9.8 +/- 2.0 microg/g, and 5.9 +/- 0.7 microg/g, respectively. Corresponding concentrations in group 2 horses were 458.7 +/- 130.3 microg/mL, 496.8 +/- 126.5 microg/g, 128.5 +/- 74.2 microg/g, 99.4 +/- 47.3 microg/g, and 13.5 +/- 7.6 microg/g, respectively. Gentamicin concentrations in synovial fluid, synovial membrane, and joint capsule of group 1 horses were significantly lower than concentrations in those samples for horses in groups 2 and 3. CONCLUSIONS AND CLINICAL RELEVANCE: Continuous IA infusion of gentamicin achieves higher drug concentrations in joint tissues of normal tarsocrural joints of horses, compared with concentrations after IV administration.  相似文献   

6.
Septic arthritis was induced in one antebrachiocarpal joint of seven horses by the intra-articular injection of 1 mL Staphylococcus aureus suspension containing a mean of 10(5) colony-forming units. Twenty-four hours after inoculation, four horses were treated by regional perfusion with 1 g of gentamicin sulfate, and three horses received 2.2 mg/kg gentamicin sulfate intravenously (IV) every 6 hours. Synovial fluid was collected for culture and cytology at regular intervals, and the synovial membranes were collected for culture and histologic examination at euthanasia 24 hours after the first treatment. Gentamicin concentration in the septic synovial fluid after three successful perfusions was 221.2 +/- 71.4 (SD) micrograms/mL; after gentamicin IV, it was 7.6 +/- 1.6 (SD) micrograms/mL. The mean leukocyte count in the inoculated joints decreased significantly by hour 24 in the successfully perfused joints. Terminal bacterial cultures of synovial fluid and synovial membranes were negative in two horses with successfully perfused joints. S. aureus was isolated from the infected joints in all three horses treated with gentamicin IV.  相似文献   

7.
OBJECTIVE: To evaluate the clinical effects and pharmacokinetics of vancomycin in plasma and synovial fluid after intraosseous regional limb perfusion (IORLP) in horses and to compare results with those obtained after IV regional limb perfusion (IVRLP). ANIMALS: 6 horses. PROCEDURES: 1 forelimb of each horse received vancomycin hydrochloride (300 mg in 60 mL of saline [0.9% NaCl] solution) via IORLP; the contralateral limb received 60 mL of saline solution (control). Solutions were injected into the medullary cavity of the distal portion of the third metacarpal bone. Synovial fluid from the metacarpophalangeal (MTCP) and distal interphalangeal (DIP) joints and blood were collected prior to perfusion and 15, 30, 45, 65, and 90 minutes after beginning IORLP, and synovial fluid from the MTCP joint only and blood were collected 4, 8, 12, and 24 hours after beginning IORLP. Plasma urea and creatinine concentrations and clinical appearance of the MTCP joint region and infusion sites were determined daily for 7 days. Results were compared with those of a separate IVRLP study. RESULTS: Clinical complications were not observed after IORLP. Mean vancomycin concentration in the MTCP joint was 4 microg/mL for 24 hours after IORLP. Compared with IORLP, higher vancomycin concentrations were detected in the DIP joint after IVRLP. Compared with IVRLP, higher vancomycin concentrations were detected in the MTCP joint for a longer duration after IORLP. CONCLUSIONS AND CLINICAL RELEVANCE: IORLP with 300 mg of vancomycin in a 0.5% solution was safe and may be clinically useful in horses. Intravenous and intraosseous routes may be better indicated for infectious processes in the DIP and MTCP joints, respectively.  相似文献   

8.
OBJECTIVE: To evaluate clinical variables, regional concentrations, and pharmacokinetics of vancomycin in the synovial fluid of distal forelimb joints of horses after IV regional limb perfusion. ANIMALS: 6 horses. PROCEDURE: Vancomycin was administered via IV regional limb perfusion to the distal portion of the forelimbs of anesthetized horses. Drug (300 mg of vancomycin hydrochloride in 60 mL of saline [0.9% NaCl] solution) was infused into 1 forelimb, whereas the contralateral limb served as a control and was perfused with 60 mL of saline solution. Solutions were injected into the lateral digital vein after digital exsanguination. Synovial fluid from the metacarpophalangeal (MTCP) and distal interphalangeal (DIP) joints and systemic blood were collected prior to perfusion and 15, 30, 45, 65, and 90 minutes after initiation of the infusion. Synovial fluid from the MTCP joint and blood were also obtained at 4, 8, 12, and 24 hours after infusion. Plasma urea and creatinine concentrations, degree of lameness, and certain clinical variables involving the MTCP joint and infusion site were assessed for 7 days. Results were compared between the vancomycin treatment and control groups. RESULTS: No complications or significant differences in renal function, lameness, or clinical variables were observed between groups. Vancomycin concentrations exceeded 4 microg/mL in MTCP joints for approximately 20 hours. Higher concentrations were reached in DIP joints than in MTCP joints. CONCLUSIONS AND CLINICAL RELEVANCE: IV regional limb perfusion with 300 mg of vancomycin as a 0.5% solution was safe and may be useful in horses as treatment for distal limb infections.  相似文献   

9.
OBJECTIVE: To determine the pharmacokinetics of voriconazole following IV and PO administration and assess the distribution of voriconazole into body fluids following repeated PO administration in horses. ANIMALS: 6 clinically normal adult horses. PROCEDURES: All horses received voriconazole (10 mg/kg) IV and PO (2-week interval between treatments). Plasma voriconazole concentrations were determined prior to and at intervals following administration. Subsequently, voriconazole was administered PO (3 mg/kg) twice daily for 10 days to all horses; plasma, synovial fluid, CSF, urine, and preocular tear film concentrations of voriconazole were then assessed. RESULTS: Mean +/- SD volume of distribution at steady state was 1,604.9 +/- 406.4 mL/kg. Systemic bioavailability of voriconazole following PO administration was 95 +/- 19%; the highest plasma concentration of 6.1 +/- 1.4 microg/mL was attained at 0.6 to 2.3 hours. Mean peak plasma concentration was 2.57 microg/mL, and mean trough plasma concentration was 1.32 microg/mL. Mean plasma, CSF, synovial fluid, urine, and preocular tear film concentrations of voriconazole after long-term PO administration were 5.163 +/- 1.594 microg/mL, 2.508 +/- 1.616 microg/mL, 3.073 +/- 2.093 microg/mL, 4.422 +/- 0.8095 microg/mL, and 3.376 +/- 1.297 microg/mL, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that voriconazole distributed quickly and widely in the body; following a single IV dose, initial plasma concentrations were high with a steady and early decrease in plasma concentration. Absorption of voriconazole after PO administration was excellent, compared with absorption after IV administration. Voriconazole appears to be another option for the treatment of fungal infections in horses.  相似文献   

10.
OBJECTIVE: To determine the effect of intra-articular gentamicin-impregnated polymethylmethacrylate (PMMA) beads inserted in the equine tarsocrural joint on the synovial fluid, synovial lining, and cartilage, and to determine the peak and sustainable gentamicin concentrations in synovial fluid and plasma. STUDY DESIGN: Pharmacokinetic, cytologic, and histologic study of the effect of gentamicin-impregnated PMMA on normal equine tarsocrural joints. ANIMALS: Five healthy adult horses. METHODS: Gentamicin-impregnated PMMA bead strands (3 strands each of 40 beads, with each strand containing 100 mg gentamicin) were surgically inserted into one radiographically normal tarsocrural joint in 5 horses. Each horse had both joints flushed with 1 L of lactated Ringer's solution before bead administration. Synovial fluid total protein concentration, white blood cell (WBC) count, gentamicin concentration, synovial histology, cartilage integrity, and cartilage glycosaminoglycan (GAG) concentrations were determined. RESULTS: Gentamicin concentration (mean +/- SEM peak concentration, 27.9 +/- 2.27 microg/mL) occurred in the first 24 hours and remained above 2 microg/mL for 9 days. Gentamicin concentrations in control joints and the plasma remained below detectable levels. The synovial fluid WBC count for treated joints was increased compared with control joints for 72 hours, but was similar at day 6. The synovial protein concentration in gentamicin-treated joints remained increased for 21 days. Synovium in treated joints had diffuse synovitis, whereas control joints had less fibrovascular proliferation. Superficial cartilage erosion was present in all treated joints. There was no difference in the GAG content of treated and control joint cartilage. CONCLUSIONS: Short-term implantation of gentamicin (300 mg)-impregnated PMMA beads can provide therapeutic levels of gentamicin (>2 microg/mL) in the normal tarsocrural joint for 9 days; however, gentamicin-impregnated PMMA beads induce synovitis and superficial cartilage erosion. CLINICAL RELEVANCE: Temporary intra-articular administration of antibiotic-impregnated PMMA may be an effective way to treat septic joints that require constant high concentrations of antibiotics.  相似文献   

11.
Regional perfusion of carpal tissues by forced intramedullary administration of fluids was evaluated in 10 horses. Results of subtraction radiography after perfusion with a contrast medium demonstrated that perfusate was delivered to the carpal tissues by the venous system. Perfused India ink was distributed uniformly in the antebrachiocarpal and middle carpal synovial membranes. Histologically, the ink was within the venules of the synovial villi. Immediately after perfusion with gentamicin sulfate (1 g), the gentamicin concentrations in the synovial fluid and synovial membrane of the antebrachiocarpal joint were 349 +/- 240 micrograms/mL and 358 +/- 264 micrograms/g, respectively. When gentamicin concentrations in the synovial fluid of the antebrachiocarpal joint and serum were measured 0, 0.5, 1, 4, 8, 12, and 24 hours after carpal perfusion, the mean peak gentamicin concentration in the synovial fluid was 589 +/- 429 micrograms/mL. At hour 24, the mean gentamicin concentration in the synovial fluid was 4.8 +/- 2.0 micrograms/mL. The resulting peak gentamicin concentration in the serum was 23.7 +/- 14.5 micrograms/mL immediately after the perfusion; it decreased below the desired trough level of 1 micrograms/mL between hours 4 and 8.  相似文献   

12.
Synovial fluid white blood cell (WBC) count and total protein (TP) concentration were evaluated in the midcarpal joints of horses to not only determine the effects of needle aspiration, infusion with saline, and infusion with a combination of N-acetyl-d-glucosamine, hyaluronan, and sodium chondroitin sulfate (GHCS) at two different doses to evaluate the latter for safety, but to also provide information on saline injection as a control in joints. The midcarpal joints from 24 horses were used for this study. One midcarpal joint served as an untreated control, in which only synovial fluid was aspirated, whereas the opposite joint received either 2.5 mL isotonic saline (n = 8 horses), 2.5 mL of GHCS (n = 8 horses), or 7.5 mL of GHCS (n = 8 horses). Synovial fluid WBC and TP concentration were measured on days 1, 3, 5, 7, 14, and 21. Needle aspiration caused a transient increase in synovial fluid WBC and TP levels after 1 day. Instillation of fluid (2.5 mL), whether saline or GHCS, caused significantly higher WBC and TP concentrations. GHCS at a dose of 7.5 mL created an elevation in TP level for an additional 48 hours; however, after 48 hours, WBC and TP were at concentrations that were not statistically different from controls. Even though an increase in WBC and TP concentrations occurred because of intra-articular saline and GHCS administration, these results were transient demonstrating that GHCS is no different than saline on synovial fluid, WBC, and TP parameters and that as previously described short-term elevation in synovial fluid inflammatory parameters should be expected when saline is used as a control.  相似文献   

13.
OBJECTIVE: To determine synovial fluid gentamicin concentrations and evaluate adverse effects on the synovial membrane and articular cartilage of tarsocrural joints after implantation of a gentamicin-impregnated collagen sponge. ANIMALS: 6 healthy adult mares. PROCEDURES: A purified bovine type I collagen sponge impregnated with 130 mg of gentamicin was implanted in the plantarolateral pouch of 1 tarsocrural joint of each horse, with the contralateral joint used as a sham-operated control joint. Gentamicin concentrations in synovial fluid and serum were determined for 120 hours after implantation by use of a fluorescence polarization immunoassay. Synovial membrane and cartilage specimens were collected 120 hours after implantation and evaluated histologically. RESULTS: Median peak synovial fluid gentamicin concentration of 168.9 microg/mL (range, 115.6 to 332 microg/mL) was achieved 3 hours after implantation. Synovial fluid gentamicin concentrations were < 4 microg/mL by 48 hours. Major histologic differences were not observed in the synovial membrane between control joints and joints implanted with gentamicin-impregnated sponges. Safranin-O fast green stain was not reduced in cartilage specimens obtained from treated joints, compared with those from control joints. CONCLUSIONS AND CLINICAL RELEVANCE: Implantation of a gentamicin-impregnated collagen sponge in the tarsocrural joint of horses resulted in rapid release of gentamicin, with peak concentrations > 20 times the minimum inhibitory concentration reported for common pathogens that infect horses. A rapid decrease in synovial fluid gentamicin concentrations was detected. The purified bovine type I collagen sponges did not elicit substantial inflammation in the synovial membrane or cause mechanical trauma to the articular cartilage.  相似文献   

14.
OBJECTIVE: To determine the pharmacokinetics of fluconazole in horses. ANIMALS: 6 clinically normal adult horses. PROCEDURE: Fluconazole (10 mg/kg of body weight) was administered intravenously or orally with 2 weeks between treatments. Plasma fluconazole concentrations were determined prior to and 10, 20, 30, 40, and 60 minutes and 2, 4, 6, 8, 10, 12, 24, 36, 48, 60, and 72 hours after administration. A long-term oral dosing regimen was designed in which all horses received a loading dose of fluconazole (14 mg/kg) followed by 5 mg/kg every 24 hours for 10 days. Fluconazole concentrations were determined in aqueous humor, plasma, CSF, synovial fluid, and urine after administration of the final dose. RESULTS: Mean (+/- SD) apparent volume of distribution of fluconazole at steady state was 1.21+/-0.01 L/kg. Systemic availability and time to maximum plasma concentration following oral administration were 101.24+/-27.50% and 1.97+/-1.68 hours, respectively. Maximum plasma concentrations and terminal half-lives after IV and oral administration were similar. Plasma, CSF, synovial fluid, aqueous humor, and urine concentrations of fluconazole after long-term oral administration of fluconazole were 30.50+/-23.88, 14.99+/-1.86, 14.19+/-5.07, 11.39+/-2.83, and 56.99+/-32.87 microg/ml, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Bioavailability of fluconazole was high after oral administration to horses. Long-term oral administration maintained plasma and body fluid concentrations of fluconazole above the mean inhibitory concentration (8.0 mg/ml) reported for fungal pathogens in horses. Fluconazole may be an appropriate agent for treatment of fungal infections in horses.  相似文献   

15.
OBJECTIVE: To compare isolated limb retrograde venous injection (ILRVI) and isolated limb infusion (ILI) for delivery of amikacin to the synovial fluid of the distal interphalangeal and metacarpophalangeal joints and to evaluate the efficacy of use of an Esmarch tourniquet in standing horses. ANIMALS: 6 healthy adult horses. PROCEDURES: Horses were randomly assigned in a crossover design. In ILRVI, the injection consisted of 1 g of amikacin diluted to a total volume of 60 mL administered during a 3-minute period. In ILI, the infusion consisted of 1 g of amikacin diluted to 40 mL administered during a 3-minute period followed by administration of boluses of diluent (82 mL total) to maintain vascular pressure. During ILI, the infusate and blood were circulated from the venous to the arterial circulation in 5-mL aliquots. Synovial fluid and serum samples were obtained to determine maximum amikacin concentrations and tourniquet leakage, respectively. RESULTS: Both techniques yielded synovial concentrations of amikacin > 10 times the minimum inhibitory concentration (MIC) for 90% of isolates (80 microg/mL) and > 10 times the MIC breakpoint (160 microg/mL) of amikacin-susceptible bacteria reported to cause septic arthritis in horses. These values were attained for both joints for both techniques. Esmarch tourniquets prevented detectable loss of amikacin to the systemic circulation for both techniques. CONCLUSIONS AND CLINICAL RELEVANCE: Both techniques reliably achieved synovial fluid concentrations of amikacin consistent with concentration-dependent killing for bacteria commonly encountered in horses with septic arthritis. Esmarch tourniquets were effective for both delivery techniques in standing horses.  相似文献   

16.
OBJECTIVE: To compare plasma and synovial fluid endothelin-1 (ET-1) and nitric oxide (NO) concentrations in clinically normal horses and horses with joint disease. ANIMALS: 36 horses with joint disease, and 15 horses without joint disease. PROCEDURE: Horses with joint disease were assigned to 1 of the 3 groups (ie, synovitis, degenerative joint disease [DJD], or joint sepsis groups) on the basis of findings on clinical and radiographic examination and synovial fluid analysis. Endothelin-1 and NO concentrations were measured in plasma from blood samples, collected from the jugular vein and ipsilateral cephalic or saphenous vein of the limb with an affected or unaffected joint, as well as in synovial fluid samples obtained via arthrocentesis from the involved joint. RESULTS: Plasma ET-1 concentrations between affected and unaffected groups were not significantly different. Median concentration and concentration range of ET-1 in synovial fluid obtained from the joint sepsis group (35.830 pg/mL, 7926 to 86.614 pg/mL; n = 7) were significantly greater than values from the synovitis (17.531 pg/mL, 0.01 to 46.908 pg/mL; 18), DJD (22.858 pg/mL, 0.01 to 49.990 pg/mL; 10), and unaffected (10.547 pg/mL, 0.01 to 35.927 pg/mL; 10) groups. Plasma and synovial fluid NO concentrations between affected and unaffected groups were not significantly different. CONCLUSIONS AND CLINICAL RELEVANCE: Endothelin-1 is locally synthesized in the joints of horses with various types of joint disease. Synovial fluid concentrations of ET-1 varied among horses with joint disease, with concentrations significantly higher in the synovial fluid of horses with joint sepsis. These results indicate that ET-1 may play a role in the pathophysiologic mechanism of joint disease in horses.  相似文献   

17.
OBJECTIVE: To compare concentrations of gentamicin in serum and bronchial lavage fluid after IV and aerosol administration of gentamicin to horses. ANIMALS: 9 healthy adult horses. PROCEDURE: Gentamicin was administered by aerosolization (20 ml of gentamicin solution [50 mg/ml]) and IV injection (6.6 mg of gentamicin/kg of body weight) to each horse, with a minimum of 2 weeks between treatments. Samples of pulmonary epithelial lining fluid were collected by small volume (30 ml) bronchial lavage 0.5, 4, 8, and 24 hours after gentamicin administration. Serum samples were obtained at the same times. All samples were analyzed for gentamicin concentration, and cytologic examinations were performed on aliquots of bronchial lavage fluid collected at 0.5, 8, and 24 hours. RESULTS: Gentamicin concentrations in bronchial lavage fluid were significantly greater 0.5, 4, and 8 hours after aerosol administration, whereas serum concentrations were significantly less at all times after aerosol administration, compared with IV administration. Neutrophil counts in bronchial lavage fluid increased from 0.5 to 24 hours, regardless of route of gentamicin administration. CONCLUSIONS AND CLINICAL RELEVANCE: Aerosol administration of gentamicin to healthy horses resulted in gentamicin concentrations in bronchial fluid that were significantly greater than those obtained after IV administration. A mild inflammatory cell response was associated with aerosol delivery of gentamicin and repeated bronchial lavage. Aerosol administration of gentamicin may have clinical use in the treatment of bacterial bronchopneumonia in horses.  相似文献   

18.
OBJECTIVE: To determine the plasma pharmacokinetics and synovial fluid concentrations after oral administration of single and multiple doses of celecoxib in Greyhounds. ANIMALS: 7 adult Greyhounds. PROCEDURES: Dogs received celecoxib (median dose, 11.8 mg/kg [range, 11.5 to 13.6 mg/kg], PO, q 24 h) for 10 days. Blood samples were collected prior to administration of celecoxib and serially for 24 hours after the 1st and 10th doses were administered. A synovial joint catheter was placed into a stifle joint in each dog for collection of synovial fluid samples. Concentrations of celecoxib in plasma and synovial fluid were quantified by use of a validated liquid chromatography/mass spectrometry method. Identification of hydroxy- and carboxyl-celecoxib in plasma and synovial fluid was also performed. Pharmacokinetic parameters were determined by use of noncompartmental analysis. RESULTS: Administration of multiple doses of celecoxib resulted in a significant decrease (40%) in median area under the curve (AUC) values and a corresponding decrease in median maximum concentrations (Cmax; 2,620 to 2,032 ng/mL) between the 1st and 10th doses. Synovial fluid concentrations were less than the corresponding plasma concentrations at all times except 24 hours after administration of the 10th dose of celecoxib. CONCLUSIONS AND CLINICAL RELEVANCE: Celecoxib distributes into the synovial fluid of Greyhounds. Although the exact mechanism for the decreases in AUC and Cmax is not known, results suggested that the plasma pharmacokinetics of celecoxib are different after administration of multiple doses in Greyhounds. These findings warrant further investigation on the absorption, distribution, metabolism, and elimination of celecoxib in Greyhounds and other breeds of dogs.  相似文献   

19.
OBJECTIVE: To determine whether iontophoretic administration of dexamethasone to horses results in detectable concentrations in synovial fluid, plasma, and urine. ANIMALS: 6 adult mares. PROCEDURE: Iontophoresis was used to administer dexamethasone. Treatments (4 mA for 20 minutes) were administered to a tarsocrural joint of each mare. The drug electrode contained 3 ml of dexamethasone sodium phosphate at a concentration of 4 or 10 mg/ml. Samples of synovial fluid, blood, and urine were obtained before and 0.5, 4, 8, and 24 hours after each treatment. All samples were tested for dexamethasone using an ELISA. Synovial fluid also was evaluated for dexamethasone, using high-performance liquid chromatography. RESULTS: The lower and upper limits of detection for dexamethasone in synovial fluid with the ELISA were 0.21 and 1.5 ng/ml, respectively. Dexamethasone administered at a concentration of 10 mg/ml was detected by the ELISA in synovial fluid of 5 mares from 0.5 to 24 hours and in urine of 4 mares from 0.5 to 8 hours after each treatment, but it was not detected in plasma. Mean synovial fluid concentration of dexamethasone was 1.01 ng/ml. Dexamethasone administered at a concentration of 4 mg/ml was detected by the ELISA in urine of 2 mares at 0.5 and 4 hours after treatment, but it was not detected in synovial fluid or plasma. CONCLUSIONS AND CLINICAL RELEVANCE: Iontophoresis cannot be considered an effective method for delivery of dexamethasone to synovial fluid of horses, because drug concentrations achieved in this study were less than therapeutic concentrations.  相似文献   

20.
The concentration of gentamicin in plasma and synovial fluid of normal adult horses was measured periodically for 24 hours after IV (2.2 mg/kg of body weight), intra-articular (IA; 150 mg), and simultaneous IV and IA administrations. Gentamicin also was buffered with sodium bicarbonate (3 mEq) and then was administered IA and simultaneously IV and IA. Synovial fluid specimens were obtained via an indwelling catheter placed into the antebrachiocarpal joint. The peak mean plasma gentamicin concentration (8.30 micrograms/ml) after IV administration was significantly (P less than 0.05) greater than that (0.69 microgram/ml) after IA administration of gentamicin and that (0.55 microgram/ml) after administration of gentamicin buffered with sodium bicarbonate. Gentamicin concentration greater than a therapeutic concentration was not attained in the plasma after IA administration of buffered or unbuffered gentamicin. The peak mean synovial fluid concentration (1,828 micrograms/ml) after IA administration of unbuffered gentamicin was significantly (P less than 0.05) greater than that (2.53 micrograms/ml) after IV administration and significantly (P less than 0.05) less than that (5,720 micrograms/ml) after simultaneous IV and IA administration. The peak mean synovial fluid concentration after IA administration of buffered gentamicin, with and without simultaneous IV administration (2,128 and 2,680 micrograms/ml, respectively), was not significantly different than that after IA treatment with unbuffered gentamicin. Mean synovial fluid concentration did not differ significantly between groups after IA administration of gentamicin in any combination at postinjection hours 8, 12, and 24, but remained significantly (P less than 0.05) greater than that at the same times after IV administration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号