首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 86 毫秒
1.
2.
OBJECTIVE: To determine the ability of a modified-live virus (MLV) bovine viral diarrhea virus (BVDV) type 1 (BVDV1) vaccine administered to heifers prior to breeding to stimulate protective immunity that would block transmission of virulent heterologous BVDV during gestation, thus preventing persistent infection of a fetus. ANIMAL: 40 crossbred Angus heifers that were 15 to 18 months old and seronegative for BVDV and 36 calves born to those heifers. PROCEDURE: Heifers were randomly assigned to control (n = 13) or vaccinated (27) groups. The control group was administered a multivalent vaccine where-in the BVDV component had been omitted. The vaccinated heifers were administered a single dose of vaccine (IM or SC) containing MLV BVDV1 (WRL strain). All vaccinated and control heifers were maintained in pastures and exposed to BVDV-negative bulls 21 days later. Thirty-five heifers were confirmed pregnant and were challenge exposed at 55 to 100 days of gestation by IV administration of virulent BVDV1 (7443 strain). RESULTS: All control heifers were viremic following challenge exposure, and calves born to control heifers were persistently infected with BVDV. Viremia was not detected in the vaccinated heifers, and 92% of calves born to vaccinated heifers were not persistently infected with BVDV. CONCLUSIONS AND CLINICAL RELEVANCE: These results document that vaccination with BVDV1 strain WRL protects fetuses from infection with heterologous virulent BVDV1.  相似文献   

3.
The aim of the experiment was to study whether bovine herpesvirus 1 (BHV1) marker vaccine batches known to be contaminated with bovine virus diarrhoea virus (BVDV) type 1 could cause BVD in cattle. For this purpose, four groups of cattle were used. The first group (n = 4 calves, the positive control group), was vaccinated with vaccine from a batch contaminated with BVDV type 2. The second group (n = 4 calves, the negative control group), was vaccinated with vaccine from a batch that was not contaminated with BVDV. The third group (n = 39 calves), was vaccinated with a vaccine from one of four batches contaminated with BVDV type 1 (seronegative experimental group). The fourth group (n = 6 seropositive heifers), was vaccinated with a vaccine from one of three batches known to be contaminated with BVDV type 1. All cattle were vaccinated with an overdose of the BHV1 marker vaccine. At the start of the experiment, all calves except those from group 4 were seronegative for BVDV and BHV1. The calves from group 4 had antibodies against BVDV, were BVDV-free and seronegative to BHV1. After vaccination, the positive control calves became severely ill, had fever for several days, and BVDV was isolated from nasal swabs and white blood cells. In addition, these calves produced antibodies to BVDV and BHV1. No difference in clinical scores of the other groups was seen, nor were BVDV or BVDV-specific antibody responses detected in these calves; however, they did produce antibodies against BHV1. The remainder of each vaccine vial used was examined for the presence of infectious BVDV in cell culture. From none of the vials was BVDV isolated after three subsequent passages. This indicates that BVDV was either absent from the vials or was present in too low an amount to be isolated. Thus vaccination of calves with vaccines from BHV1 marker vaccine batches contaminated with BVDV type 1 did not result in BVDV infections.  相似文献   

4.
A commercial vaccine containing modified-live bovine viral diarrhea virus (BVDV; types 1 and 2) was administered to one group of 22 peripubertal bulls 28 days before intranasal inoculation with a type 1 strain of BVDV. A second group of 23 peripubertal bulls did not receive the modified-live BVDV vaccine before intranasal inoculation. Ten of 23 unvaccinated bulls--but none of the vaccinated bulls--developed a persistent testicular infection as determined by immunohistochemistry and polymerase chain reaction. Results of this study indicate that administration of a modified-live vaccine containing BVDV can prevent persistent testicular infection if peripubertal bulls are vaccinated before viral exposure.  相似文献   

5.
In order to assess the efficacy of a two-step vaccination protocol with respect to foetal protection against transplacental infections with bovine virus diarrhoea virus (BVDV) with special attention to BVDV-2 seronegative heifers were vaccinated with an inactivated BVDV-1 vaccine and boostered with a modified live BVDV-1 vaccine after 4 weeks. A second group was left unvaccinated as control. Between days 30 and 120 of pregnancy the heifers of both groups were intranasally challenged with a mixture of BVDV-1 and -2. All heifers of the vaccinated group gave birth to nine clinically healthy, seronegative (precolostral) and BVDV-free calves. In contrast in the control group four BVDV viraemic underdeveloped calves were born. Additionally, one calf was stillborn and another viraemic calf was not viable and died 2 days after birth. All six calves of the control group were viraemic with BVDV-2. This study demonstrated for the first time that two-step vaccination of breeding cattle with a modified live BVDV vaccine 4 weeks after application of an inactivated BVDV vaccine was capable of providing a foetal protection against transplacental infection with BVDV-2.  相似文献   

6.
Five calves were given live intranasal vaccine against bovid herpesvirus 1 (BHV1) two days after intranasal inoculation of bovine pestivirus (BVDV). Another 5 were vaccinated in the absence of BVDV. Control unvaccinated groups were also maintained. All calves were challenged with virulent BHV1. The unvaccinated calves developed signs of infectious bovine rhinotracheitis (IBR) and both vaccinated groups showed a similar degree of clinical protection from IBR. Those given BVDV before vaccination shed up to 140 times more BHV1 (P less than 0.01) in the nasal mucus following challenge than those which had received BHV1 vaccine alone. The epidemiological significance of this is discussed.  相似文献   

7.
Susceptible calves were administered modified live virus (MLV) vaccines containing bovine herpesvirus‐1 (BHV1) and bovine viral diarrhoea type 1 (BVDV1a) strains intramuscularly, with one vaccine containing both MLV and inactivated BHV‐1 and inactivated BVDV1a. There was no evidence of transmission of vaccine (BHV‐1 and BVDV1a) strains to susceptible non‐vaccinated controls commingled with vaccinates. No vaccinates had detectable BHV‐1 in peripheral blood leucocytes (PBL) after vaccination. Each of three vaccines containing an MLV BVDV1a strain caused a transient BVDV vaccine induced viremia in PBL after vaccination, which was cleared as the calves developed serum BVDV1 antibodies. The vaccine containing both MLV and inactivated BHV‐1 induced serum BHV‐1 antibodies more rapid than MLV BHV‐1 vaccine. Two doses of MLV BHV‐1 (days 0 and 28) in some cases induced serum BHV‐1 antibodies to higher levels and greater duration than one dose.  相似文献   

8.
Five calves were given live intranasal vaccine against bovid herpesvirus 1 (BHV1) two days after intranasal inoculation of bovine pestivirus (BVDV). Another 5 were vaccinated in the absence of BVDV. Control unvaccinated groups were also maintained. All calves were challenged with virulent BHV1. The unvaccinated calves developed signs of infectious bovine rhinotracheitis (IBR) and both vaccinated groups showed a similar degree of clinical protection from IBR. Those given BVDV before vaccination shed up to 140 times more BHV1 (P<0.01) in the nasal mucus following challenge than those which had received BHV1 vaccine alone. The epidemiological significance of this is discussed.  相似文献   

9.
OBJECTIVE: To evaluate the efficacy of a modified-live virus (MLV) combination vaccine containing type 1 and type 2 bovine viral diarrhea virus (BVDV) in providing fetal protection against challenge with heterologous type 1 and type 2 BVDV. DESIGN: Prospective study. ANIMALS: 55 heifers. PROCEDURE: Heifers were vaccinated with a commercial MLV combination vaccine or given a sham vaccine (sterile water) and bred 47 to 53 days later. Heifers were challenged with type 1 or type 2 BVDV on days 75 to 79 of gestation. Clinical signs of BVDV infection, presence of viremia, and WBC count were assessed for 14 days after challenge. Fetuses were collected on days 152 to 156 of gestation, and virus isolation was attempted from fetal tissues. RESULTS: Type 1 BVDV was not isolated in any fetuses from vaccinated heifers and was isolated in all fetuses from nonvaccinated heifers challenged with type 1 BVDV. Type 2 BVDV was isolated in 1 fetus from a vaccinated heifer and all fetuses from nonvaccinated heifers challenged with type 2 BVDV. CONCLUSIONS AND CLINICAL RELEVANCE: A commercial MLV combination vaccine containing type 1 and type 2 BVDV given to the dam prior to breeding protected 100% of fetuses against type 1 BVDV infection and 95% of fetuses against type 2 BVDV infection. Use of a bivalent MLV vaccine in combination with a comprehensive BVDV control program should result in decreased incidence of persistent infection in calves and therefore minimize the risk of BVDV infection in the herd.  相似文献   

10.
This study demonstrated that the modified-live bovine viral diarrhea virus (BVDV) type 1 and 2 fractions of a multivalent vaccine protected pregnant heifers and their fetuses against virulent BVDV types 1 and 2 challenge exposures at 370 days after vaccination. All BVDV vaccinated heifers inoculated with either BVDV type 1 or 2 at approximately 62 to 94 days of gestation delivered fetuses or calves that were negative for BVDV by ear-notch immunohistochemistry and virus isolation and serum neutralization on a prenursing serum sample. In comparison, eight of nine and 10 of 10 fetuses or calves from non-BVDV-vaccinated heifers were considered persistently infected following exposure to BVDV type 1 and type 2, respectively.  相似文献   

11.
OBJECTIVE: To compare antibody responses, feedlot morbidity and mortality rates, feedlot performance, and carcass value for calves vaccinated with 1 of 2 vaccination strategies and for unvaccinated control calves. DESIGN: Randomized controlled clinical trial. ANIMALS: 451 beef steers and heifers. PROCEDURES: Calves were vaccinated with a modified-live infectious bovine rhinotracheitis virus (IBRV), bovine viral diarrhea virus types 1 (BVDV1) and 2 (BVDV2), parainfluenza type 3 virus, and bovine respiratory syncytial virus vaccine and Mannheimia haemolytica and Pasteurella multocida bacterin-toxoid at approximately 67 and 190 days of age (group 1; n = 151) or at approximately 167 and 190 days of age (group 2; 150) or were not vaccinated (control; 150). Serum antibody titers were measured at approximately 2, 67, 167, 190, and 232 days of age. Morbidity and mortality rates, feedlot performance, and carcass value were recorded for 361 calves shipped to feedlots. RESULTS: Percentages of calves seroconverting to IBRV, BVDV1, and BVDV2 were significantly higher for groups 1 and 2 than for the control group. Mean treatment costs were significantly lower for vaccinated than for control calves, and mean mortality rate was significantly higher for control calves than for group 1 calves. Feedlot performance and carcass value did not vary significantly among groups. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that vaccination of beef calves with a 5-antigen modified-live virus vaccine at 67 and 190 days of age was as effective in terms of immunologic responses as was vaccination at 167 and 190 days of age.  相似文献   

12.
A field trial was conducted to compare the serological responses in calves to eight commercial vaccines against infectious bovine rhinotracheitis virus (IBRV), parainfluenza-3 virus (PI3V), bovine respiratory syncytial virus (BRSV), and/or bovine viral diarrhea virus (BVDV). Calves given IBRV, P13V, BRSV, and BVDV vaccines had significantly higher antibodies to these viruses than unvaccinated controls; however, serological responses to killed BVDV vaccines were low. Calves with preexisting antibodies to IBRV, PI3V, BRSV, and the Singer strain of BVDV had lower seroconversion rates following vaccination than calves that were seronegative initially.

Serological responses in calves to IBRV, PI3V, BRSV, and BVDV differed among various commercial vaccines. Antibody titers to IBRV were higher in calves vaccinated with modified-live IBRV vaccines than in those vaccinated with killed IBRV vaccines. Following double vaccination with modified-live IBRV and PI3V vaccines, seroconversion rates and antibody titers to IBRV and PI3V were higher in calves vaccinated intramuscularly than in those vaccinated intranasally. Calves given Cattlemaster 4 had significantly higher titers to BRSV and PI3V, and lower titers to BVDV, than calves given Cattlemaster 3, suggesting that the addition of BRSV to Cattlemaster 4 caused some interaction among antigens.

  相似文献   

13.
OBJECTIVE: To determine the effect of maternally derived antibodies on induction of protective immune responses against bovine viral diarrhea virus (BVDV) type II in young calves vaccinated with a modified-live bovine viral diarrhea virus (BVDV) type I vaccine. DESIGN: Blinded controlled challenge study. ANIMALS: 24 neonatal Holstein and Holstein-cross calves that were deprived of maternal colostrum and fed pooled colostrum that contained a high concentration of (n = 6) or no (18) antibodies to BVDV. PROCEDURE: At 10 to 14 days of age, 6 seropositive and 6 seronegative calves were given a combination vaccine containing modified-live BVDV type I. All calves were kept in isolation for 4.5 months. Six calves of the remaining 12 untreated calves were vaccinated with the same combination vaccine at approximately 4 months of age. Three weeks later, all calves were challenged intranasally with a virulent BVDV type II. RESULTS: Seronegative unvaccinated calves and seropositive calves that were vaccinated at 2 weeks of age developed severe disease, and 4 calves in each of these groups required euthanasia. Seronegative calves that were vaccinated at 2 weeks or 4 months of age developed only mild or no clinical signs of disease. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicate that a single dose of a modified-live BVDV type-I vaccine given at 10 to 14 days of age can protect susceptible young calves from virulent BVDV type II infection for at least 4 months, but high concentrations of BVDV-specific maternally derived antibodies can block the induction of the response.  相似文献   

14.
Four calves were infected with noncytopathic (NCP) New York-1 strain of bovine viral diarrhea virus (BVDV). During the observation period of one month the calves remained clinically normal but the virus was repeatedly recovered from their pharyngeal swabbings and blood. Thirty days following infection the four calves were vaccinated, together with two uninfected calves, with a modified-live vaccine containing cytopathic (CP) BVDV, infectious bovine rhinotracheitis virus and parainfluenza-3 virus. No detrimental effects were observed after vaccination. Forty-three days after vaccination the calves were challenged by exposure either with the CP TVM-2 strain or the NCP New York-1 strain of BVDV. The vaccinated calves remained healthy throughout the 60-day observation period.  相似文献   

15.
The objective of this study was to demonstrate the efficacy of a modified-live virus (MLV) vaccine in protecting fetuses from infection with type 1 or type 2 Bovine viral diarrhea virus (BVDV) when pregnant heifers were challenged at approximately 170 d of gestation with noncytopathic field isolates. The 83 pregnant heifers had been bred naturally 4 wk after vaccination. Fetuses were collected 60 d after BVDV type 2 challenge, and newborn calves were collected before colostrum intake after BVDV type 1 challenge. Protection was determined by measuring the serum neutralizing (SN) antibody response in the fetus or calf and by virus isolation from thymus, lung, spleen, and kidney tissue samples. There was a measurable SN antibody response to BVDV in all the fetuses and calves of the control heifers, which had received a placebo vaccine. However, only 4 of 22 calves and 7 of the 28 fetuses of the MLV-vaccinated heifers demonstrated SN antibody after BVDV challenge. Type 1 BVDV was isolated from tissue samples of 5 of the 12 calves of control heifers and none of 22 calves of the MLV-vaccinated heifers challenged with type 1 BVDV. Type 2 BVDV was isolated from tissue samples of 17 of the 18 fetuses of the control heifers and 2 of the 28 fetuses of the MLV-vaccinated heifers challenged with type 2 BVDV. The results of this study demonstrate that the MLV vaccine reduces the fetal infection rate by at least 82% for BVDV type 1 and by 75% for BVDV type 2 when heifers are exposed to highly fetotrophic BVDV at 170 d of gestation.  相似文献   

16.
OBJECTIVE: To evaluate the efficacy of an adjuvanted modified-live bovine viral diarrhea virus (BVDV) vaccine against challenge with a virulent type 2 BVDV strain in calves with or without maternal antibodies against the virus. DESIGN: Challenge study. ANIMALS: 23 crossbred dairy calves. PROCEDURES: Calves were fed colostrum containing antibodies against BVDV or colostrum without anti-BVDV antibodies within 6 hours of birth and again 8 to 12 hours after the first feeding. Calves were vaccinated with a commercial modified-live virus combination vaccine or a sham vaccine at approximately 5 weeks of age and challenged with virulent type 2 BVDV 3.5 months after vaccination. Clinical signs of BVDV infection, development of viremia, and variation in WBC counts were recorded for 14 days after challenge exposure. RESULTS: Calves that received colostrum free of anti-BVDV antibodies and were vaccinated with the sham vaccine developed severe disease (4 of the 7 calves died or were euthanatized). Calves that received colostrum free of anti-BVDV antibodies and were vaccinated and calves that received colostrum with anti-BVDV antibodies and were vaccinated developed only mild or no clinical signs of disease. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that the modified-live virus vaccine induced a strong protective immune response in young calves, even when plasma concentrations of maternal antibody were high. In addition, all vaccinated calves were protected against viral shedding, whereas control calves vaccinated with the sham vaccine shed virus for an extended period of time.  相似文献   

17.
Bovine viral diarrhea virus (BVDV) persistently infected (PI) calves represent significant sources of infection to susceptible cattle. The objectives of this study were to determine if PI calves transmitted infection to vaccinated and unvaccinated calves, to determine if BVDV vaccine strains could be differentiated from the PI field strains by subtyping molecular techniques, and if there were different rates of recovery from peripheral blood leukocytes (PBL) versus serums for acutely infected calves. Calves PI with BVDV1b were placed in pens with nonvaccinated and vaccinated calves for 35 d. Peripheral blood leukocytes, serums, and nasal swabs were collected for viral isolation and serology. In addition, transmission of Bovine herpes virus 1 (BHV-1), Parainfluenza-3 virus (PI-3V), and Bovine respiratory syncytial virus (BRSV) was monitored during the 35 d observation period. Bovine viral diarrhea virus subtype 1b was transmitted to both vaccinated and nonvaccinated calves, including BVDV1b seronegative and seropositive calves, after exposure to PI calves. There was evidence of transmission by viral isolation from PBL, nasal swabs, or both, and seroconversions to BVDV1b. For the unvaccinated calves, 83.2% seroconverted to BVDV1b. The high level of transmission by PI calves is illustrated by seroconversion rates of nonvaccinated calves in individual pens: 70% to 100% seroconversion to the BVDV1b. Bovine viral diarrhea virus was isolated from 45 out of 202 calves in this study. These included BVDV1b in ranch and order buyer (OB) calves, plus BVDV strains identified as vaccinal strains that were in modified live virus (MLV) vaccines given to half the OB calves 3 d prior to the study. The BVDV1b isolates in exposed calves were detected between collection days 7 and 21 after exposure to PI calves. Bovine viral diarrhea virus was recovered more frequently from PBL than serum in acutely infected calves. Bovine viral diarrhea virus was also isolated from the lungs of 2 of 7 calves that were dying with pulmonary lesions. Two of the calves dying with pneumonic lesions in the study had been BVDV1b viremic prior to death. Bovine viral diarrhea virus 1b was isolated from both calves that received the killed or MLV vaccines. There were cytopathic (CP) strains isolated from MLV vaccinated calves during the same time frame as the BVDV1b isolations. These viruses were typed by polymerase chain reaction (PCR) and genetic sequencing, and most CP were confirmed as vaccinal origin. A BVDV2 NCP strain was found in only 1 OB calf, on multiple collections, and the calf seroconverted to BVDV2. This virus was not identical to the BVDV2 CP 296 vaccine strain. The use of subtyping is required to differentiate vaccinal strains from the field strains. This study detected 2 different vaccine strains, the BVDV1b in PI calves and infected contact calves, and a heterologous BVDV2 subtype brought in as an acutely infected calf. The MLV vaccination, with BVDV1a and BVDV2 components, administered 3 d prior to exposure to PI calves did not protect 100% against BVDV1b viremias or nasal shedding. There were other agents associated with the bovine respiratory disease signs and lesions in this study including Mannheimia haemolytica, Mycoplasma spp., PI-3V, BRSV, and BHV-1.  相似文献   

18.
A protocol is described to measure the protection of the bovine fetus against an experimental bovine virus diarrhea virus (BVDV) infection after vaccination. Two inactivated experimental vaccines were applied twice with a 3 week interval. A mixture of three different Dutch field strains was used as challenge on mainly the 82nd day of gestation to vaccinated and unvaccinated control animals. The challenge was applied 5 months after completion of the two-fold vaccinations. All calves born from unvaccinated control animals were persistently infected. The calves born from dams vaccinated with the two different inactivated BVDV vaccines were persistently infected in 78 and 60%, respectively.  相似文献   

19.
In order to assess the efficacy of a two‐step vaccination protocol with respect to foetal protection against transplacental infections with bovine virus diarrhoea virus (BVDV) with special attention to BVDV‐2 seronegative heifers were vaccinated with an inactivated BVDV‐1 vaccine and boostered with a modified live BVDV‐1 vaccine after 4 weeks. A second group was left unvaccinated as control. Between days 30 and 120 of pregnancy the heifers of both groups were intranasally challenged with a mixture of BVDV‐1 and ‐2. All heifers of the vaccinated group gave birth to nine clinically healthy, seronegative (precolostral) and BVDV‐free calves. In contrast in the control group four BVDV viraemic underdeveloped calves were born. Additionally, one calf was stillborn and another viraemic calf was not viable and died 2 days after birth. All six calves of the control group were viraemic with BVDV‐2. This study demonstrated for the first time that two‐step vaccination of breeding cattle with a modified live BVDV vaccine 4 weeks after application of an inactivated BVDV vaccine was capable of providing a foetal protection against transplacental infection with BVDV‐2.  相似文献   

20.
Six heifers were vaccinated intranasally with the live bovine herpesvirus 1 (BHV1) temperature-sensitive (ts) vaccine strain RBL106 within 3 weeks of birth. These calves most likely still had maternal antibodies against BHV1. Thereafter, these heifers were vaccinated several times with an experimental BHV1 glycoprotein-D (gD) subunit vaccine. At the age of 3 years these 6 heifers were seronegative in the BHV1 gB and gE blocking ELISAs, but had neutralizing antibodies against BHV1, probably induced by the vaccinations with the gD subunit vaccine. Five of these 6 heifers excreted BHV1 after treatment with dexamethasone. Restriction enzyme analysis of the genome of the excreted viruses revealed that all 5 isolates had a BHV1.1 genotype and that isolates of 3 heifers were not obviously different from the ts-vaccine strain. The restriction enzyme fragment pattern of the isolate of 1 heifer was clearly different from the pattern of the ts-vaccine strain. It is concluded that cattle can be seronegative against BHV1 gB and gE but can still carry BHV1 in a latent form. This finding strongly suggests that there are completely BHV1 seronegative cattle that are latently infected with BHV1. The impact of this finding on BHV1 eradication programmes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号