首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multiple signaling pathways, including Wnt signaling, participate in animal development, stem cell biology, and human cancer. Although many components of the Wnt pathway have been identified, unresolved questions remain as to the mechanism by which Wnt binding to its receptors Frizzled and Low-density lipoprotein receptor-related protein 6 (LRP6) triggers downstream signaling events. With live imaging of vertebrate cells, we show that Wnt treatment quickly induces plasma membrane-associated LRP6 aggregates. LRP6 aggregates are phosphorylated and can be detergent-solubilized as ribosome-sized multiprotein complexes. Phospho-LRP6 aggregates contain Wnt-pathway components but no common vesicular traffic markers except caveolin. The scaffold protein Dishevelled (Dvl) is required for LRP6 phosphorylation and aggregation. We propose that Wnts induce coclustering of receptors and Dvl in LRP6-signalosomes, which in turn triggers LRP6 phosphorylation to promote Axin recruitment and beta-catenin stabilization.  相似文献   

2.
Rapid chemically induced changes of PtdIns(4,5)P2 gate KCNQ ion channels   总被引:1,自引:0,他引:1  
Suh BC  Inoue T  Meyer T  Hille B 《Science (New York, N.Y.)》2006,314(5804):1454-1457
To resolve the controversy about messengers regulating KCNQ ion channels during phospholipase C-mediated suppression of current, we designed translocatable enzymes that quickly alter the phosphoinositide composition of the plasma membrane after application of a chemical cue. The KCNQ current falls rapidly to zero when phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2 or PI(4,5)P2] is depleted without changing Ca2+, diacylglycerol, or inositol 1,4,5-trisphosphate. Current rises by 30% when PI(4,5)P2 is overproduced and does not change when phosphatidylinositol 3,4,5-trisphosphate is raised. Hence, the depletion of PI(4,5)P2 suffices to suppress current fully, and other second messengers are not needed. Our approach is ideally suited to study biological signaling networks involving membrane phosphoinositides.  相似文献   

3.
Coronary artery disease (CAD) is the leading cause of death worldwide and is commonly caused by a constellation of risk factors called the metabolic syndrome. We characterized a family with autosomal dominant early CAD, features of the metabolic syndrome (hyperlipidemia, hypertension, and diabetes), and osteoporosis. These traits showed genetic linkage to a short segment of chromosome 12p, in which we identified a missense mutation in LRP6, which encodes a co-receptor in the Wnt signaling pathway. The mutation, which substitutes cysteine for arginine at a highly conserved residue of an epidermal growth factor-like domain, impairs Wnt signaling in vitro. These results link a single gene defect in Wnt signaling to CAD and multiple cardiovascular risk factors.  相似文献   

4.
Platelet-derived growth factor (PDGF) stimulates phospholipase C (PLC) activity and the phosphorylation of the gamma isozyme of PLC (PLC-gamma) in vitro and in living cells. The role of PLC-gamma in the phosphoinositide signaling pathway was addressed by examining the effect of overexpression of PLC-gamma on cellular responses to PDGF. Overexpression of PLC-gamma correlated with PDGF-induced tyrosine phosphorylation of PLC-gamma and with PDGF-induced breakdown of phosphatidylinositol 4,5-bisphosphate (PIP2). However, neither bradykinin- nor lysophosphatidic acid-induced phosphoinositide metabolism was enhanced in the transfected cells, suggesting that the G protein-coupled phosphoinositide responses to these ligands are mediated by other PLC isozymes. The enhanced PDGF-induced generation of inositol trisphosphate (IP3) did not enhance intracellular calcium signaling or influence PDGF-induced DNA synthesis. Thus, enzymes other than PLC-gamma may limit PDGF-induced calcium signaling and DNA synthesis. Alternatively, PDGF-induced calcium signaling and DNA synthesis may use biochemical pathways other than phosphoinositide metabolism for signal transduction.  相似文献   

5.
Profilin is generally thought to regulate actin polymerization, but the observation that acidic phospholipids dissociate the complex of profilin and actin raised the possibility that profilin might also regulate lipid metabolism. Profilin isolated from platelets binds with high affinity to small clusters of phosphatidylinositol 4,5-bisphosphate (PIP2) molecules in micelles and also in bilayers with other phospholipids. The molar ratio of the complex of profilin with PIP2 is 1:7 in micelles of pure PIP2 and 1:5 in bilayers composed largely of other phospholipids. Profilin competes efficiently with platelet cytosolic phosphoinositide-specific phospholipase C for interaction with the PIP2 substrate and thereby inhibits PIP2 hydrolysis by this enzyme. The cellular concentrations and binding characteristics of these molecules are consistent with profilin being a negative regulator of the phosphoinositide signaling pathway in addition to its established function as an inhibitor of actin polymerization.  相似文献   

6.
7.
The turnover of phosphatidylinositol 4,5-bisphosphate (PIP2) is believed to constitute a crucial step in the signaling pathways for stimulation of cells by a variety of bioactive substances, including mitogens, but decisive evidence for the idea has not been obtained. In the present study, a monoclonal antibody to PIP2 was microinjected into the cytoplasm of NIH 3T3 cells before or after exposure to mitogens. The antibody completely abolished nuclear labeling with [3H]thymidine induced by platelet-derived growth factor and bombesin, but not by fibroblast growth factor, epidermal growth factor, insulin, or serum. The findings strongly suggest that PIP2 breakdown is crucial in the elicitation and sustaining of cell proliferation induced by some types of mitogens such as platelet-derived growth factor and bombesin.  相似文献   

8.
The recruitment of trafficking and signaling proteins to membranes containing phosphatidylinositol 3-phosphate [PtdIns(3)P] is mediated by FYVE domains. Here, the solution structure of the FYVE domain of the early endosome antigen 1 protein (EEA1) in the free state was compared with the structures of the domain complexed with PtdIns(3)P and mixed micelles. The multistep binding mechanism involved nonspecific insertion of a hydrophobic loop into the lipid bilayer, positioning and activating the binding pocket. Ligation of PtdIns(3)P then induced a global structural change, drawing the protein termini over the bound phosphoinositide by extension of a hinge. Specific recognition of the 3-phosphate was determined indirectly and directly by two clusters of conserved arginines.  相似文献   

9.
A tenfold increase in phospholipase C activity specific for phosphatidylinositol 4,5-bisphosphate (PIP2) was immunopurified from extracts of A-431 epidermoid carcinoma cells stimulated with epidermal growth factor. This finding suggests a biochemical link between growth factor-stimulated tyrosine kinase activity and PIP2 hydrolysis.  相似文献   

10.
多效唑对绿豆黄化幼苗生长及肌醇磷脂代谢的抑制作用   总被引:5,自引:0,他引:5  
多效唑抑制绿豆黄化幼苗生长和茎尖初生分生组织细胞分裂,降低内源IAA、ABA和甾醇水平。应用放射性标记及薄层层析技术,发现多效唑抑制肌醇磷脂代谢,PI、PIP和PIP2含量均高于对照,而DAG含量低于对照。  相似文献   

11.
Many signaling, cytoskeletal, and transport proteins have to be localized to the plasma membrane (PM) in order to carry out their function. We surveyed PM-targeting mechanisms by imaging the subcellular localization of 125 fluorescent protein-conjugated Ras, Rab, Arf, and Rho proteins. Out of 48 proteins that were PM-localized, 37 contained clusters of positively charged amino acids. To test whether these polybasic clusters bind negatively charged phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] lipids, we developed a chemical phosphatase activation method to deplete PM PI(4,5)P2. Unexpectedly, proteins with polybasic clusters dissociated from the PM only when both PI(4,5)P2 and phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] were depleted, arguing that both lipid second messengers jointly regulate PM targeting.  相似文献   

12.
Class I phosphoinositide 3-kinase (PI3K) signaling pathways regulate several important cellular functions, including cellular growth, division, survival, and movement. Class IB PI3K (also known as PI3Kgamma) links heterotrimeric GTP-binding protein-coupled receptors to these pathways. Activation of class IB PI3K results in the rapid synthesis of phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P3] and its dephosphorylation product PtdIns(3,4)P2 in the plasma membrane. These two lipid messengers bind to pleckstrin homology domain-containing effectors that regulate a complex signaling web downstream of receptor activation. Characteristic features of this pathway are the regulation of protein kinases and the regulation of small guanosine triphosphatases that control cellular movement, adhesion, contraction, and secretion. Most of the ligands that activate class IB PI3K are involved in coordinating the body's response to injury and infection, and recent studies suggest that small molecule inhibitors of this enzyme may represent a novel class of anti-inflammatory therapeutic agents.  相似文献   

13.
Adaptor protein 180 (AP180) and its homolog, clathrin assembly lymphoid myeloid leukemia protein (CALM), are closely related proteins that play important roles in clathrin-mediated endocytosis. Here, we present the structure of the NH2-terminal domain of CALM bound to phosphatidylinositol-4,5- bisphosphate [PtdIns(4,5)P2] via a lysine-rich motif. This motif is found in other proteins predicted to have domains of similar structure (for example, Huntingtin interacting protein 1). The structure is in part similar to the epsin NH2-terminal (ENTH) domain, but epsin lacks the PtdIns(4,5)P2-binding site. Because AP180 could bind to PtdIns(4,5)P2 and clathrin simultaneously, it may serve to tether clathrin to the membrane. This was shown by using purified components and a budding assay on preformed lipid monolayers. In the presence of AP180, clathrin lattices formed on the monolayer. When AP2 was also present, coated pits were formed.  相似文献   

14.
15.
Li Z  Jiang H  Xie W  Zhang Z  Smrcka AV  Wu D 《Science (New York, N.Y.)》2000,287(5455):1046-1049
The roles of phosphoinositide 3-kinase (PI3K) and phospholipase C (PLC) in chemoattractant-elicited responses were studied in mice lacking these key enzymes. PI3Kgamma was required for chemoattractant-induced production of phosphatidylinositol 3,4,5-trisphosphate [PtdIns (3,4,5)P3] and has an important role in chemoattractant-induced superoxide production and chemotaxis in mouse neutrophils and in production of T cell-independent antigen-specific antibodies composed of the immunoglobulin lambda light chain (TI-IglambdaL). The study of the mice lacking PLC-beta2 and -beta3 revealed that the PLC pathways have an important role in chemoattractant-mediated production of superoxide and regulation of protein kinases, but not chemotaxis. The PLC pathways also appear to inhibit the chemotactic activity induced by certain chemoattractants and to suppress TI-IglambdaL production.  相似文献   

16.
Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex   总被引:2,自引:0,他引:2  
Deregulation of Akt/protein kinase B (PKB) is implicated in the pathogenesis of cancer and diabetes. Akt/PKB activation requires the phosphorylation of Thr308 in the activation loop by the phosphoinositide-dependent kinase 1 (PDK1) and Ser473 within the carboxyl-terminal hydrophobic motif by an unknown kinase. We show that in Drosophila and human cells the target of rapamycin (TOR) kinase and its associated protein rictor are necessary for Ser473 phosphorylation and that a reduction in rictor or mammalian TOR (mTOR) expression inhibited an Akt/PKB effector. The rictor-mTOR complex directly phosphorylated Akt/PKB on Ser473 in vitro and facilitated Thr308 phosphorylation by PDK1. Rictor-mTOR may serve as a drug target in tumors that have lost the expression of PTEN, a tumor suppressor that opposes Akt/PKB activation.  相似文献   

17.
Endocytic proteins such as epsin, AP180, and Hip1R (Sla2p) share a conserved modular region termed the epsin NH2-terminal homology (ENTH) domain, which plays a crucial role in clathrin-mediated endocytosis through an unknown target. Here, we demonstrate a strong affinity of the ENTH domain for phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2]. With nuclear magnetic resonance analysis of the epsin ENTH domain, we determined that a cleft formed with positively charged residues contributed to phosphoinositide binding. Overexpression of a mutant, epsin Lys76 --> Ala76, with an ENTH domain defective in phosphoinositide binding, blocked epidermal growth factor internalization in COS-7 cells. Thus, interaction between the ENTH domain and PtdIns(4,5)P2 is essential for endocytosis mediated by clathrin-coated pits.  相似文献   

18.
The protein N-WASP [a homolog to the Wiskott-Aldrich syndrome protein (WASP)] regulates actin polymerization by stimulating the actin-nucleating activity of the actin-related protein 2/3 (Arp2/3) complex. N-WASP is tightly regulated by multiple signals: Only costimulation by Cdc42 and phosphatidylinositol (4,5)-bisphosphate (PIP2) yields potent polymerization. We found that regulation requires N-WASP's constitutively active output domain (VCA) and two regulatory domains: a Cdc42-binding domain and a previously undescribed PIP(2)-binding domain. In the absence of stimuli, the regulatory modules together hold the VCA-Arp2/3 complex in an inactive "closed" conformation. In this state, both the Cdc42- and PIP2-binding sites are masked. Binding of either input destabilizes the closed state and enhances binding of the other input. This cooperative activation mechanism shows how combinations of simple binding domains can be used to integrate and amplify coincident signals.  相似文献   

19.
During their growth and development, animals adapt to tremendous changes in order to survive. These include responses to both environmental and physiological changes and autophagy is one of most important adaptive and regulatory mechanisms. Autophagy is defined as an autolytic process to clear damaged cellular organelles and recycle the nutrients via lysosomic degradation. The process of autophagy responds to special conditions such as nutrient withdrawal. Once autophagy is induced, phagophores form and then elongate and curve to form autophagosomes. Autophagosomes then engulf cargo, fuse with endosomes, and finally fuse with lysosomes for maturation. During the initiation process, the ATG1/ULK1 (unc-51-like kinase 1) and VPS34 (which encodes a class III phosphatidylinositol (PtdIns) 3-kinase) complexes are critical in recruitment and assembly of other complexes required for autophagy. The process of autophagy is regulated by autophagy related genes (ATGs). Amino acid and energy starvation mediate autophagy by activating mTORC1 (mammalian target of rapamycin) and AMP-activated protein kinase (AMPK). AMPK is the energy status sensor, the core nutrient signaling component and the metabolic kinase of cells. This review mainly focuses on the mechanism of autophagy regulated by nutrient signaling especially for the two important complexes, ULK1 and VPS34.  相似文献   

20.
The evolutionarily conserved serine-threonine kinase mammalian target of rapamycin (mTOR) plays a critical role in regulating many pathophysiological processes. Functional characterization of the mTOR signaling pathways, however, has been hampered by the paucity of known substrates. We used large-scale quantitative phosphoproteomics experiments to define the signaling networks downstream of mTORC1 and mTORC2. Characterization of one mTORC1 substrate, the growth factor receptor-bound protein 10 (Grb10), showed that mTORC1-mediated phosphorylation stabilized Grb10, leading to feedback inhibition of the phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated, mitogen-activated protein kinase (ERK-MAPK) pathways. Grb10 expression is frequently down-regulated in various cancers, and loss of Grb10 and loss of the well-established tumor suppressor phosphatase PTEN appear to be mutually exclusive events, suggesting that Grb10 might be a tumor suppressor regulated by mTORC1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号