首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
WANG Xiao-song  LI Zhi-wen 《园艺学报》2003,19(12):1695-1699
Cerebral ischemia and the aftermath of reperfusion form a hypoxic/hyperoxic sequence of events that can trigger DNA damage in neurons of central nervous system. Neuronal apoptosis will happen without immediate DNA repair. APE/Ref-1 is a multifunctional protein involoved in DNA base excision repair pathway and in redox reguiation of DNA-binding activity of AP-1 family members, which may play an important role in protection of postischemic neuronal damage.  相似文献   

2.
YANG Li-jun  LI Shu-qing 《园艺学报》2001,17(12):1215-1219
AIM: To observe the changes in platelet-activating factor (PAF) receptor binding characteristics and explore the action of PAF on formation of thrombotic core and penumbra following local cerebral ischemia. METHODS: Neuron's membrane protein was abstracted, and the local cerebral ischemia model were induced by photochemistry in tree shrews. The PAF binding sites on central neuron membrane were studied by-PAF binding assay. RESULTS: There were two different affinities of PAF receptors on tree shrew's brain cell membrane, with kD1=(3.61 ±0.72) nmol/L and kD2=(17.04±2.41) nmol/L, corresponding respectively to maximum number of binding sites: Bmax1=(1 457.94±168.01) pmol/g protein and Bmax2=(5 017.40±742.16) pmol/g protein. The binding sites decreased in ischemic core, penumbra and contralateral regions at 4,24 and 72 h after ischemia (P<0.01), with those of 24 h reaching the minimum levels. CONCLUSION: PAF receptors play an important role in cerebral ischemia, may be related to the secondary damage in ischemic penumbra, and also are molecular bases of brain injury induced by PAF.  相似文献   

3.
AIM:To study forms of cell death following cerebral ischemia/reperfusion in diabetic rats. METHODS:Based on the modles of diabetes and middle cerebral artery occlusion(MCAO), characteristics of cell death after ischemia/reperfusion were evaluated synthetically by the pathological, flow cytometry(FCM), TUNEL and the DNA agarose electrophoresis.RESULTS:The occurrence of cerebral injury after ischemia/reperfusion were accompanied by cell necrosis and cell apoptosis. And cell apoptosis was mainly located in ischeamic penumbra(IP) zone around the densely ischemic focus. Ischemic centre(IC)was characterized by cell necrosis. At the same time, the results showed that the process of ischemic cerebral injury worsen by diabetes mellitus was related to inducing cell apoptosis in IP and Mid zone.CONCLUSION:Neuronal damage following focal cerebral ischemia/reperfusion included cell necrosis and apoptosis, IC zone was mainly characterized by the former, however IP zone by the latter, and there had close internal relationship between them. Brain damage following cerebral ischemia/reperfusion was worsen instinctly under diabetic condition.  相似文献   

4.
AIM:To investigate the effect of c-Jun N-terminal kinase(JNK) pathway on the apoptosis of hippocampal neurons after cerebral ischemia-reperfusion(IR) in SD rats. METHODS:Ninety rats were randomly divided into 5 groups:sham group, cerebral IR group,cerebral IR+JNK inhibitor(SP600125) group,cerebral IR+JNK agonist(anisomycin) group and cerebral IR+vehicle group. The brain samples were collected 24 h after reperfusion. The protein level of caspase-3 in hippocampal neurons was measured by immunohistochemical and Western blotting techniques. The mRNA expression of caspase-3 in the hippocampus was determined by real-time fluorescence quantitative PCR. The apoptosis of hippocampal neurons was detected by TUNEL staining. RESULTS:Compared with sham group, the expression of caspase-3 at mRNA and protein levels in cerebral IR group increased obviously(P<0.05). Compared with cerebral IR group, the expression of caspase-3 at mRNA and protein levels in cerebral IR+JNK inhibitor group decreased obviously(P<0.05), and those in cerebral group increased obviously(P<0.05). However, the expression of caspase-3 at mRNA and protein levels in cerebral IR+vehicle group had no obvious change(P>0.05).The apoptosis of hippocampal neurons in each group was consistent with the changes of caspase-3 at mRNA and protein levels. CONCLUSION:Activation of JNK pathway enhances caspase-3 expression in rat hippocampal neurons after cerebral IR,thus promoting the apoptosis of the neurons.  相似文献   

5.
AIM: To study the effect of 6-gingerol on the apoptosis of rat nucleus pulposus cells and its possible mechanism. METHODS: Rat nucleus pulposus cells were isolated and cultured. The effects of 6-gingerol and hydrogen peroxide (H2O2) at different concentrations on the viability of nucleus pulposus cells were measured by CCK-8 assay. After 6-gingerol treatment, the protein level of p-Akt was determined by Western blot. The cells were divided into 4 groups:control group, H2O2 group, 6-gingerol group (6-gingerol + H2O2) and LY294002 group (6-gingerol + H2O2 + LY294002). The apoptotic rate and the levels of reactive oxygen species (ROS) were analyzed by flow cytometry. TUNEL fluorescence staining was used to observe the number of apoptotic cells. The morphological changes of mitochondria were observed under transmission electron microscope, and Western blot was used to determine the protein levels of caspase-3, Bcl-2, Bax, p-Akt, Akt and p53. The mRNA expression of aggrecan and type II collagen was measured by RT-qPCR. RESULTS: The results of CCK-8 assay showed that the optimal concentration of 6-gingerol for promoting the viability of rat nucleus pulposus cells was 24 mg/L, and the exposure condition of H2O2 at 80 μmol/L for 6 h was appropriate for establi-shing the cell damage model. 6-Gingerol increased the protein level of p-Akt in a time-dependent manner. The apoptotic rate, ROS level and TUNEL positive cells in H2O2 group were significantly increased compared with control group. The mitochondrial edema was obvious in H2O2 group compared with control group. The protein levels of pro-apoptotic molecules caspase-3, Bax and p53 were significantly increased, while anti-apoptotic protein Bcl-2, and mRNA expression of aggrecan and type II collagen were significantly decreased compared with control group (P<0.05). 6-Gingerol exerted a protective effect against H2O2-induced apoptosis and promoted the expression of anti-apoptotic proteins. However, this effect was weakened after treatment with PI3K/Akt signaling pathway inhibitor LY294002. CONCLUSION: H2O2 induces damage and dysfunction of rat nucleus pulposus cells, and 6-gingerol may inhibit H2O2-induced apoptosis of nucleus pulposus cells by activation of PI3K/Akt signaling pathway.  相似文献   

6.
7.
AIM: To investigate the effect of cobalt chloride (CoCl2) on the apoptosis of neural stem cells (NSCs) and the expression of microRNA-26a (miR-26a) in vitro, and to explore the mechanisms of NSC apoptosis induced by CoCl2. METHODS: NSCs were exposed to CoCl2 at different doses (200~600 μmol/L) for 24 h. The cell viability and apoptosis were measured by CCK-8 assay and TUNEL method. The expression of miR-26a-3p, miR-26a-5p, GSK-3β, caspase-3, Bcl-2 and Bax was examined by real-time PCR. The protein levels of Bcl-2 and Bax were detected by Western blotting. RESULTS: The cell viability was inhibited and the apoptosis of NSCs was increased significantly by CoCl2 in a dose-dependent manner (P<0.05). CoCl2 at concentration of 400 μmol/L for 24 h was used to induce apoptosis and the expression of miR-26a was down-regulated compared with control (P<0.05). Exposure to CoCl2 at concentration of 400 μmol/L up-regulated the expression of GSK-3β, caspase-3 and Bax, down-regulated the expression of Bcl-2 and Bcl-2/Bax (P<0.05). CONCLUSION: CoCl2 at concentration of 400 μmol/L induces the apoptosis of NSCs obviously. CoCl2 may induce the NSC apoptosis by mitochondrial apoptotic pathway. Declining miR-26a may be related to NSC apoptosis.  相似文献   

8.
AIM: To study the effects of basic fibroblast growth factor (bFGF) on neuronal apoptosis and fractalkine expression in ischemic penumbra after cerebral ischemia/reperfusion in rats.METHODS: Thirty-six rats were randomly divided into 3 groups: sham operation group, ischemia/reperfusion group and bFGF group. The model of middle cerebral artery occlusion was established by the method of intraluminal filament blockage. The middle cerebral arteries were blocked for 1 h and then reperfused for 24 h. Neurological performances of all rats were scored with Bederson's standard. The brain tissues of the rats were stained and the average infarct volume was calculated. TUNEL method was used to determine the number of apoptotic neurons, and the expression of fractalkine was detected by the method of immunohistochemistry.RESULTS: The score of neurological performances in bFGF group was 2.23±0.59, lower than that in ischemia/reperfusion group (3.18±0.65). The number of apoptotic neurons in bFGF group (13.22±1.35) was lower than that in ischemia/reperfusion group (17.28±1.01, P<0.05), which was the lowest in sham operation group (0.91±0.65). Compared with sham operation group, the expression of fractalkine in ischemia/reperfusion group was decreased. The expression of fractalkine in bFGF group was mainly higher than that in ischemia/reperfusion group (P<0.05).CONCLUSION: Up-regulation of fractalkine may be one of the molecular mechanisms of bFGF to protect neurons against ischemia/reperfusion injury.  相似文献   

9.
AIM: To study the effects of soybean isoflavones on mitochondrial ultrastructure, neuronal apoptosis and expression of cytochrome C, caspase-9 and caspase-3 in the rats with cerebral ischemia/reperfusion.METHODS: Adult healthy SD rats (n=60) were randomly divided into 3 groups: sham group, ischemia/reperfusion injury (I/R) group and soybean isoflavone (SI) pretreatment group. Soybean isoflavones (120 mg·kg-1·d-1) were fed by gastric lavage for 21 d. The global ischemia/reperfusion model of the rats was established by blocking 3 vessels, and then reperfused for 1 h after 1 h of ischemia. The morphological change of the cerebral cortex cells was observed under light microscope. The mitochondrial ultrastructure of the cerebral cortex cells was determined by transmission electron microscope. The apoptotic rate of the cerebral cortex cells was detected by flow cytometry. The expression of cytochrome C, caspase-9 and caspase-3 in the cerebral cortex cells was determined by semi-quantitative RT-PCR and immunohistochemical techniques.RESULTS: Disintegration of mitochondria membrane and disappearance of the mitochondrial cristae were seen in I/R group. Compared with I/R group, the change of ultrastructure of mitochondria was significantly improved by soybean isoflavone pretreatment, and the neuronal apoptotic rate was also significantly decreased (P<0.01). The mRNA expression and protein content of cytochrome C, caspase-9 and caspase-3 in I/R group were obviously higher than those in sham group (P<0.01). Compared with I/R group, the mRNA expression and protein content of cytochrome C, caspase-9 and caspase-3 in SI group were significantly decreased (P<0.01).CONCLUSION: Soybean isoflavones attenuate cerebral ischemia/reperfusion injury by stabilizing the structure of mitochondria, preventing cytochrome C release to the cytoplasm, inhibiting the activation of caspase-9 and caspase-3 and decreasing cell apoptosis.  相似文献   

10.
ATM: To investigate the effects of tetramethylpyrazine (TMP) combined with bone marrow mesenchymal stem cells (BMSCs) on neuronal apoptosis, and Bcl-2 and Bax expression in rats with cerebral ischemia. METHODS: The BMSCs were isolated by the whole bone marrow adherent method and cultured, and those in the 3rd passage were used for tail-vein transplantation. The rats were subjected to right middle cerebral artery occlusion (MCAO) using suture method, and the rats except sham group were randomly divided into model group, BMSCs (1×109 cells/L) group, TMP (40 mg/kg) group and combination (TMP+BMSCs) group with 12 rats in each group. Neurological function was evaluated by modified neurological severity scoring (mNSS) on 1 d, 7 d and 14 d after cerebral ischemia. Toluidine blue staining was performed to detect cerebral infarct volume, HE staining was used to observe brain histopathological change, neuronal apoptosis was observed by TUNEL staining, and the mRNA and protein expression of Bcl-2 and Bax was detected by real-time fluorescence quantitative PCR and Western blot at 14 d after cerebral ischemia. RESULTS: Compared with BMSCs group and TMP group, TMP combined with BMSCs significantly reduced the score of mNSS (P<0.01) and the infarct volume (P<0.01), alleviated the pathological damage in the peripheral area of cerebral ischemia, decreased the number of TUNEL positive cells (P<0.01), increased the expression of Bcl-2 and decreased the expression of Bax at mRNA and protein levels (P<0.01).CONCLUSION: Tetramethylpyrazine combined with transplantation of BMSCs improves the functional recovery, reduces the infarct volume, relieves the ischemic injury of the brain tissue, and attenuates neuronal apoptosis in the rats with cerebral ischemia. The mechanism may be related to regulating the expression of Bcl-2 and Bax.  相似文献   

11.
AIM: To investigate the effects and mechanism of Le Er Mai (LEM) on the apoptosis of hippocampus neuronal cells in the anaphase of cerebral ischemic reperfusion injury in rats.METHODS: A rat model of middle cerebral artery occlusion reperfusion (MCAO) was produced with the intraluminal filament. During reperfusion for 30 d after 2 h of ischemia, the TUNEL staining methods were used to detect apoptosis of hippocampus neuronal cells, and immunohistochemical technique were employed to examine the protein expression of Fas, Bax, caspase-3 and caspase-9 in the hippocampial. The gene expressions of fas, bax, caspase-3 and caspase-9 in hippocampial were examined by RT-PCR. RESULTS: After 2 h ischemia and 30 d reperfusion, compared with sham-operated group, TUNEL-positive staining cells and expression levels of Fas, Bax as well as caspase-3 and caspase-9 obviously increased, and the mRNA expressions of fas, bax, caspase-3 and caspase-9 in hippocampial markedly up-regulated in model group. Compared with model group, LEM at dose of 2.00 g/kg or 0.87 g/kg, and flunarizinum significantly reduced apoptosis and decreased the protein expressions of Fas, Bax, caspase-3 and caspase-9 in hippocampial, and down-regulated the mRNA expressions of fas, bax, caspase-3 and caspase-9 (P<0.05), those action of LEM in 0.87 g/kg dosage group was lower than those in 2.00 g/kg dosage group.CONCLUSION: LEM obviously lower the injury of hippocampial in the anaphase of cerebral ischemia reperfusion through inhibiting the apoptosis of hippocampus neuronal cells. The mechanism of LEM may be related to regulate the expression of signal transduction pathway correlated gene of apoptosis in neuronal cells.  相似文献   

12.
13.
AIM: To observe the changes of VEGF expression in different subfield of brain in tree shrews during hyperglycemia and focal cerebral ischemia, in order to explore the relationship between cerebral ischemia, hyperglycemia and VEGF. METHODS: High blood glucose in tree shrews was induced by intraperitoneal injection of streptozotoctin. Focal cortical thrombotic cerebral ischemia was induced by photochemical method in tree shrews. At 4 h, 24 h and 72 h after cerebral ischemia, the histopathological changes and hippocampal neuronal density were examined. VEGF expressions in the ischemic core, penumbra and contralateral cerebral cortex were detected by immunohistochemistry technique at different times after cerebral ischemia. RESULTS: The results of histopathological study showed that there was infarction zone in the exposured cerebral cortex at 4 h after photochemical reaction, and the damage was most severe at 24 h, subsequently accompanied with the glia multiplication and rehab reaction at 72 h. The animals in hyperglycemic ischemic group suffered from greater neurological lesion than the normoglycemic stroke animals, especially at 24 h (P<0.01) and 72 h (P<0.05) after cerebral ischemia. Immunohistochemical analyses of VEGF expression revealed that it started to increase at 4 h after brain ischemia in the penumbra, reached a peak at 24 h, and weakened at 72 h. The stimulated VEGF production was also observed in hyperglycemic only group. When hyperglycemia and brain ischemia were combined, the VEGF expression was higher than that in hyperglycemic only group (P<0.05). Compared to normoglycemic ischemic group, no additivity of the effects of hyperglycemia combined with brain ischemia was observed. CONCLUSION: (1) The model of experimental hyperglycemia and cerebral ischemia is replicated successfully by applying the method combined in vivo injection of streptozotocin in the lower primate tree shrew with thrombotic focal cerebral ischemia. (2) This study shows that hyperglycemia aggravates the focal cerebral ischemia damage. (3) Cerebral ischemia and hyperglycemia both can independently up-regulate VEGF expression, but there is no additional increase in VEGF expression when hyperglycemia combined with brain ischemia is applied.  相似文献   

14.
15.
AIM:To investigate the effects of Astragalus injection on neuronal apoptosis and expression of c-Jun N-terminal kinase 3(JNK3) in the rat hippocampus after cerebral ischemia reperfusion. METHODS:The rat model of cerebral ischemia reperfusion was set up by a four-vessel occlusion method. The SD rats were randomly divided into 4 groups:sham operation group, cerebral ischemia reperfusion group(model group), cerebral ischemia reperfusion+Astragalus injection group(Astragalus injection group) and cerebral ischemia reperfusion+vehicle group(vehicle group). The rats in model group, Astragalus injection group and vehicle group after transient global cerebral ischemia(30 min) were then divided into 7 subgroups according to the reperfusion time of 0 h, 0.5 h, 2 h, 6 h, 24 h, 72 h and 120 h. The apoptosis of the neuron in the hippocampus was measured by the method of TUNEL staining. The expression of JNK3 at mRNA and protein levels was determined by real-time PCR and Western blotting,respectively. RESULTS:Compared with sham operation group, the number of apoptotic neurons increased in model group(P<0.05). Compared with model group, the number of apoptotic neurons decreased obviously in Astragalus injection group(P<0.05). Compared with sham operation group, the expression of JNK3 at mRNA and protein levels in the hippocampus increased obviously in model group at all time points except 120 h(P<0.05). Compared with model group, the expression of JNK3 at mRNA and protein levels in the hippocampus decreased obviously in Astragalus injection group at all time points except 120 h(P<0.05). CONCLUSION:Astragalus injection decreases neuronal apoptosis in rat hippocampus after cerebral ischemia reperfusion by inhibiting the expression of JNK3 at mRNA and protein levels.  相似文献   

16.
AIM: to study the change of glutamate(Glu) transport across blood brain barrier(BBB) in rat following forebrain ischemia/reperfusion. METHODS: BBB unidirectional transfer constant(Ki) for [3H]-Glu in rat hippocampus, cerebral cortex and striatum were determined after rats were subjected to cerebral ischemia 10 min (two-carotid occlusion plus hypovolemic hypotension) followed by 0.17, 2, 6 and 24 h of reperfusion. The recovery of [3H]-Glu in cerebrum was also determined after intracerebral injection of [3H]-Glu in another experiment. RESULTS: Compared with control rat brain, Ki for [3H]-Glu significantly(P<0.05) decreased at 10 min cerebral ischemia followed by 0.17, 2 and 6 h of reperfusion. At 5 min after intracerebrally injecting [3H]-Glu, recovery of [3H]-Glu in control rat brain was 23.83%. The result indicted that there is a Glu efflux mechanism on BBB. This efflux was not significantly inhibited by pretreatment of 200 mg/L probenecid. After 10 min cerebral ischemia followed by 2 h of reperfusion, the recovery(13.13%) was significantly lower than contro(P<0.05), its recovery was only 55% of the control. The result indicated that cerebral ischemia/reperfusion may enhanced the efflux of [3H]-Glu from brain. CONCLUSION: Cerebral ischemia/reperfusion significantly reduced Glu BBB transport from plasma to brain and enhanced efflux of Glu from brain.  相似文献   

17.
LI Jun-wu 《园艺学报》2001,17(2):150-153
AIM: To investigate the inhibitory effects of ATP on proliferation of immortalized human fibroblasts, and learn what subtypes of P-2 purinergic receptors are involved in ATP cytotoxicity.METHODS:The immortalized human fibroblast cell line KMST-6 was cultured with ATP and its derivatives including ADP, β,γ-methyleneadenosine5'-triphosphate(MeATP), 2'&3'-O-(4-benzoylbenzoyl) adenosine, triethylammonium salt (BzATP), adenosine 5'-O-(3-methiotriphosphate)(ATPγS), 2-methylthioadenosine 5'-triphosphate(2-MeATP) and UTP, and the cell cycle analysis was finished using flow-cytometer, the cell apoptosis analysis was made using Hoechst 33258 and examination of DNA ladder.RESULTS: The extent of cytotoxicity induced by these drugs was found to be in order of : ATP=ADP>ATPγS>MeATP=BzATP, neither 2-MeSATP nor UTP showed any cytotoxicity. No enhanced expression of P21 was observed and the cell cycle was held in G1/S in the cells treated with 0.4mmol/L;no cell apoptosis was detected in the cells treated with 1mmol/L ATP.CONCLUSION: Connecting with P2X or P2Y purinergic receptors,ATP activated some intracellular signals to inhibit cell growth, the growth inhibition caused by ATP was not due to apoptosis or induction of cyclin/CDK kinase inhibitor,P21.  相似文献   

18.
AIM: To investigate the role of PI3K/Akt and JAK2/STAT3 pathways in the protection of sulfur dioxide (SO2) against limb ischemia/reperfusion (I/R)-induced acute lung injury (ALI) in rats. METHODS: ALI was induced by limb I/R in the SD rats. Na2SO3(0.54 mmol/kg, ip)/NaHSO3 (0.18 mmol/kg, ip) as SO2 donor was injected at 20 min before reperfusion. The inhibitors of JAK2/STAT3 and PI3K/Akt pathways, Stattic (3 mg/kg, iv) and LY294002(40 mg/kg, iv), respectively, were injected at 1 h before reperfusion. Peripheral blood and lung tissues were collected for determining the contents of the cytokines, the protein levels of the molecules related to the signaling pathways, apoptosis and histopathologic changes by ELISA, TUNEL and Western blot. RESULTS: Compared with control group, the content of MDA, the activity of MPO, lung coefficient, apoptotic index, cytokine expression, and the protein levels of p-Akt and p-STAT3 in I/R group all increased significantly, and administration of Na2SO3/NaHSO3 attenuated the damage in the lung. Besides, the results of Western blot showed that the rat lung tissues expressed p-STAT3 protein and p-Akt protein. After I/R, the protein levels of p-STAT3 and p-Akt were increased. After using Na2SO3/NaHSO3, p-Akt was increased, but p-STAT3 was decreased (P<0.05). CONCLUSION: Both JAK2/STAT3 and PI3K/Akt pathways are likely involved in the protective effect of SO2 against limb I/R-induced ALI in rats. The activation of JAK2/STAT3 signaling pathway increases I/R injury. Reversely, the activation of PI3K/Akt signaling pathway reduces I/R injury. Besides, JAK2/STAT3 and PI3K/Akt signaling pathways may have crosstalk during I/R-induced ALI and JAK2/STAT3 pathway may have an impact on the P13K/Akt pathway.  相似文献   

19.
LI Shu-qing  LI Fan  HE Liang  HE Bo 《园艺学报》2016,32(3):477-484
AIM: To assess whether the expression of tight junction(TJ) proteins, occludin/zonula occludins(ZO)-1, and regional cerebral blood flow(rCBF) link to brain edema in tree shrews during thrombotic cerebral ischemia and ischemic postconditioning(PC), and to explore how TJ affects brain edema and cerebral infarction. METHODS: Tree shrews were randomly grouped into control, ischemia and cerebral ischemia+PC(n=23), and the remaining 3 animals were used for magnetic resonance imaging(MRI). The local cerebral thrombosis were induced by photochemical reaction in the tree shrews, and ischemic PC was established at 4 h after induction of cerebral ischemia followed by clipped ipsilateral common carotid artery(5 min×3). The changes of the neural ultrastructure were observed under electron microscope. The neuronal apoptosis was analyzed by the method of TUNEL. Laser Doppler brain flowmetry was used to monitor the rCBF. The protein levels of occludin/ZO-1 were determined by immunochemistry and Western blot. The cerebral infarction volume was detected by MRI. The brain water content was measured by dry-wet weight method. RESULTS: Induction of cerebral ischemia led to a significant reduction of the normal neuron numbers in the hippocampal CA1 area, and conversely, the number of neurons with abnormal ultrastructure was increased. The TUNEL positive cells were increased significantly(P<0.01) in ischemia group. Moreover, the rCBF decreased significantly(P<0.01), and occludin/ZO-1 protein expression decreased(P<0.01). The brain water content and cerebral infarction volume were significantly increased(P<0.01). Ischemic PC increased the rCBF and the occludin/ZO-1 expression, but reduced the brain water content, the TUNEL positive cells, and the infarction volume(P<0.01). CONCLUSION: Ischemic PC increases the rCBF but not the local water content, suggesting that reduced cerebral infarction volume after ischemia PC is associated with the attenuation of cerebral edema by the enhancement of occludin/ZO-1 protein expression.  相似文献   

20.
AIM: To determine whether caudatin, a C21 steroidal aglycone, enhances tumor necrosis factor-related apoptosis-inducing ligand(TRAIL)-associated HepG2 cell apoptosis. METHODS: Cell growth inhibition was determined by MTT assay and cell colony formation assay. The TUNEL apoptosis detection kit was used to analyze cell apoptosis, and the protein expression was examined by Western blotting. RESULTS: Combination of caudatin with TRAIL signi-ficantly reduced cell proliferation and increased the apoptotic rate of HepG2 cells compared with the use of each agent alone. This was evidenced by marked increases in caspase-3, caspase-7, caspase-9 and PARP cleavages in the cells treated with caudatin and TRAIL-compared with control group. Combination of caudatin with TRAIL also led to the strong suppression of survivin. CONCLUSION: Caudatin synergizes HepG2 cells to TRAIL-induced apoptosis by promoting the cleavages of caspase-3, caspase-7, caspase-9 and PARP and inhibiting the expression of survivin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号