首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 312 毫秒
1.
不同模式杉木—火力楠混交林林分燃烧性的研究   总被引:1,自引:0,他引:1  
对不同模式杉木-火力楠混交林及火力楠纯林和杉木纯林,林分燃烧的定量测定与分析结果表明,不同模式杉木-火力楠混交林及火力楠纯林的林分燃烧性均低于杉木纯林,经多目标决策认为,不同模式混交林均具有较高的林分生产力和较强的自身抗御火灾的能力,其中以3:1的杉木、火力楠带状混交林为最佳混交模式。  相似文献   

2.
秃杉混交林生产力研究   总被引:2,自引:0,他引:2  
对秃杉、杉木、火力楠混交林,秃杉、杉木混交林以及秃杉、杉木纯林的生物量及其空间结构进行了研究。结果表明:秃杉混交林比秃杉纯林具有更高的生产力,混交林中又以秃杉、杉木、火力楠混交林的生产力最高,林分总蓄积量达75.06 m3/hm2,总生物量达81.57t/hm2,分别比秃杉纯林高34.4%和37.7%。混交林林分具有一定成层性,林分结构比秃杉纯林更有利于生物量的积累,而且秃杉比杉木曼速生。  相似文献   

3.
杉木纯林及杉木火力楠混交林林分结构及土壤养分分析   总被引:1,自引:1,他引:0  
以广西南宁市郊杉木纯林和杉木+火力楠混交林为研究对象,分析杉木纯林与杉木+火力楠混交林的生长与土壤养分之间的关系差异,以期为杉木人工林的营造提供数据参考。结果表明:杉木+火力楠混交林的平均胸径、平均树高和单株材积等生长量显著高于杉木纯林;混交林的径阶集中分布范围为18~22 cm,纯林主要集中分布在12~20 cm径阶范围内;杉木混交林径级离散度为0.593 3,杉木纯林径级离散度为0.929 3,混交林分化不明显而纯林分化明显。杉木混交林与杉木纯林土壤养分含量差异显著,混交林土壤中全N、氨态N、全P、全K、速效P、速效K含量均显著多于杉木纯林,且随着土层深度的增加,土壤养分含量均逐渐减少。混交林林分结构比纯林稳定,养分含量较高。  相似文献   

4.
杉木火力楠混交林与杉木纯林土壤碳氮库研究   总被引:4,自引:0,他引:4  
通过实地调查取样和室内C、N元素分析仪的测定,比较了杉木纯林与杉木火力楠混交林的土壤碳库及垂直分布差异,结果显示:混交林的土壤有机碳含量比纯林高,其有机碳贮量比杉木纯林大17.57%,主要差异在枯枝落叶层,分别为3.620 t.hm-2和12.610 t.hm-2。有机碳富集指数20~40 cm差异最大,混交林富集指数是纯林的1.18倍。混交林土壤有机碳贮量(79.460 t.hm-2)大于杉木纯林(67.583 t.hm-2),且均以表层(0~20 cm)碳贮量为主。混交林的全氮含量高于纯林,C/N则低于纯林。这些差异主要是由不同林分凋落物数量和性质上的差异引起的。杉木和火力楠混交林比杉木纯林更有利于碳的贮存,人工造林应多发展混交林。  相似文献   

5.
火力楠杉木混交林栽培技术与生长效果研究   总被引:1,自引:0,他引:1  
对福建永安国有林场火力楠杉木混交林栽培技术进行了研究,结果表明:15年生1∶4火力楠杉木混交林林分蓄积307.94m3·hm-2,分别比火力楠纯林和杉木纯林高31.8%和16.6%,具有良好的混交效应,可作为定向培育阔叶树速生丰产林树种推广造林。  相似文献   

6.
杉木萌芽纯林与混交林生长量及经济效益的研究   总被引:1,自引:0,他引:1  
在杉木林采伐迹地上,通过不炼山、套种火力楠与深山含笑,进行杉木萌芽纯林与混交林的对比试验,9a试验结果表明:混交林中杉木的平均胸径、树高、单株材积、地上部分单株生物量分别比杉木萌芽纯林增加4 04%、8 75%、16 3%、1 43%;混交林中火力楠和深山含笑生长良好,混交林总蓄积量和乔木层地上部分总生物量分别为杉木纯林的1 47倍和1 32倍;混交林的投入产出比高于杉木萌芽纯林,说明本模式是恢复和提高杉木连栽地土壤生产力的可行方法。  相似文献   

7.
杉木林下套种阔叶树试验研究   总被引:3,自引:1,他引:2  
通过对杉木纯林、二次间伐杉木林下套种火力楠、二次间伐杉木林下木荷等三种林分生长因子、土壤结构、土壤水分养分、林分总持水量等方面进行对比分析,结果表明,混交林的阔叶树生长良好、杉木火力楠混交林的杉木各项生长因子增幅较大,平均胸径、平均单株材积、林分总蓄积量分别比杉木纯林增加24.7%、76.7%和38.9%。混交林的总持水量比杉木纯林大27.6%,土壤结构稳定性明显增强,0~20cm土层土壤水分显著提高,土壤的全N、水解N、速效P含量增加,有较好的土壤改良作用。  相似文献   

8.
为揭示不同营林模式对杉木林生物量分配格局的影响,作者以不同林龄的杉木纯林、杉木×马尾松混交林和杉木×枫香混交林为对象,研究了其乔木层生物量分配格局,结果表明:在22年生杉木林下套种马尾松和枫香,经18年培育之后,与40年生杉木纯林相比,林分总生物量无显著差异,但林分净生产力得到一定程度的提高,尤其以林下套种阔叶树种枫香的样地提高更为明显,不同营林模式乔木层生物量的空间分配皆表现为千〉根〉枝〉叶,干器官的生物量在总生物量中占较大比重,并随着林龄的增加而逐渐增加,混交林可有效提高林分地上和地下部分生物量和生产力,改善其生物量分配格局,提高森林对空间的利用率。  相似文献   

9.
对5年生杉木三年桐混交林的林分结构进行调查研究,结果表明:杉木与三年桐混交能加快林分郁闭,有效地利用林地空间,从而大大地提高林分的光能利用率,5年生混交林总生物量是杉木纯林的1 92倍,混交林中杉木的干材生物量比杉木纯林增加72 6%,有效地提高木材产量和经济效益。  相似文献   

10.
在福建宁化国有林场开展了12年生杉木纯林和杉木木荷混交林生物量、不同组分营养元素含量及积累量的研究,结果表明,混交林乔木层生物量高于纯林,灌木层、草本层和凋落物层生物量两种林分接近,混交林总生物量比纯林增加32.8%;混交林中杉木各器官多数营养元素含量高于纯林,但没有一致性的变化规律;混交林N、P、K、Ca和Mg积累量均高于纯林,混交林中这五种元素的积累量分别比纯林增加11.5%、15.6%、19.7%、30.7%和6.2%;因此,杉木木荷混交林可以有效增加这五种营养元素的积累,混交林比纯林更有利于维持地力。  相似文献   

11.
The combustibility of Chinese fir and macclure michelia mixed forest   总被引:1,自引:0,他引:1  
李振问 《林业研究》1995,6(2):35-40
NATURALCONDITIONS0FTHEEX-PERIMENTALSITETheexperimentalsitcissituatedinXiken,YouxiCountyofEujianProvince,betWeenl17"8'-ll8"6'Elongltudeand25"8'-26"4O'NlatitUde.Theaverageelevationis225m.andaverageslopeis36",incliningnorthwest,fea-whngam0nsoonclimatecharacteristicofbothanintermediatesubtropicalc0ntinentalclimateandamaritimeclimate.TheaverageannualtemperatUreisl5-l9"Candannualrainfallisl600-1800nun.Soilisredformingthemoun-tainlandTheexPerimentalsitewastheslashareaofthesecondgr…  相似文献   

12.
火力楠不同混交模式生长效应调查分析   总被引:4,自引:0,他引:4  
陈清堤 《林业调查规划》2011,36(3):73-76,80
对20 a生火力楠不同混交模式生长效应调查分析,结果表明,火力楠不同模式混交造林效果优于纯林,混交林产量比增6.2%~46.4%.火力楠作为主要树种与马尾松、杉木混交宜采用行间混交,混交比例按2∶1;火力楠作为伴生树种与杉木、马尾松混交宜采用插花式混交,混交比例按1∶3,种间关系较为协调.火力楠混交林与纯林比较,林分结构比较复杂,能充分利用光照条件,枯落物多且成分复杂,有利于改善林内小气候及土壤状况,林分结构比较稳定.  相似文献   

13.
选择福建省建阳范桥国有林场16年生杉木×闽粤栲混交林与杉木纯林为研究对象,对不同坡位不同林分养分积累量进行分析对比。结果表明:上坡立地条件下,杉木纯林乔木层N、P、K养分积累量均大于杉木×闽粤栲混交林。中坡和下坡林分乔木层养分积累量则表现为混交林大于杉木纯林。不同林分乔木层养分积累量均占整个林分养分积累总量的90%以上,且表现为N>K>P和下坡>中坡>上坡。上坡杉木纯林的灌木层和草本层N、P积累量均大于混交林,下坡林分的灌木层N、P、K养分积累量均表现为杉木×闽粤栲混交林大于杉木纯林。不同林分凋落物的N和P的积累量均大大超过草本层和灌木层的积累量。  相似文献   

14.
Chinese fir (Cunninghamia lanceolata), a type of subtropical fast-growing conifer tree, is widely distributed in South China. Its plantation area covers more than 7 × 106 hm2, accounting for 24% of the total area of plantation forests in the country. In recent decades, the system of successive plantation of Chinese fir has been widely used in southern China due to anticipated high economic return. However, recent studies have documented that the practice of this system has led to dramatic decreases in soil fertility and forest environment as well as in productivity. Some forest ecologists and managers recognize the ecological role performed by broadleaf trees growing in mixtures with conifers, and a great deal of studies on mixture effects have been conducted, particularly on mixture species of temperate and boreal forests, but these research results were not completely consistent. Possibilities include dependence of the mixture effects in large part to specific site conditions, the interactions among species in mixtures and biological characteristics of species. Although some researchers also studied the effects of mixtures of Chinese fir and broadleaf tree species on soil fertility, forest environment and tree growth status, little information is available about the effects of Chinese fir and its mixtures with broadleaves on carbon and nitrogen stocks. The experimental site is situated at the Huitong Experimental Station of Forest Ecology, Chinese Academy of Sciences, Hunan Province (26°40′–27°09′ N, 109°26′–110°08′ E). It is located at the transition zone from the Yunnan-Guizhou Plateau to the low mountains and hills of the southern bank of the Yangtze River at an altitude of 300–1,100 m above mean sea level. At the same time, the site is also a member of the Chinese Ecosystem Research Network (CERN), sponsored by the Chinese Academy of Sciences (CAS). This region has a humid mid-subtropical monsoon climate with a mean annual precipitation of 1,200–1,400 mm, most of the rain falling between April and August, and a mean temperature of 16.5°C with a mean minimum of 4.9°C in January and a mean maximum of 26.6°C in July. The experimental field has red-yellow soil. After a clear-cutting of the first generation Chinese fir (Cunninghamia lanceolata) plantation forest in 1982, three different plantation forest ecosystems, viz. mixture of Michelia macclurei and Chinese fir (MCM), pure Michelia macclurei stand (PMS) and pure Chinese fir stand (PCS), were established in the spring of 1983. A comparative study on C and N stocks under these three plantation forest ecosystems was conducted in 2004. Results showed that carbon stocks were greater under the mixtures than under the pure Chinese fir forest and the pure broad-leaved forest, and the broadleaves and the mixtures showed higher values in nitrogen stocks compared with the pure Chinese fir forest. The spatial distribution of carbon and nitrogen stocks was basically consistent, the value being greater in soil layer, followed by tree layer, roots, understory and litter layer. The carbon and nitrogen stocks in soil layer were both highly correlated with the biomass in understory and litter layer, indicating that understory and forest litterfall exerted a profound effect on soil carbon and nitrogen stocks under plantation ecosystems. However, correlations among soil carbon, nitrogen stocks and below ground biomass of stand have not been observed in this study. Translated from Acta Ecologica Sinica, 2005, 25(12): 3,146–3,154 [译自: 生态学报]  相似文献   

15.
杉木纯林、混交林土壤微生物特性和土壤养分的比较研究   总被引:6,自引:0,他引:6  
王清奎  汪思龙 《林业研究》2008,19(2):131-135
本文于2005年5月份,在中国科学院会同森林生态实验站选择了一块15年生的杉木纯林和两块15年生杉阔混交林作为研究对象,调查了林地土壤有机碳、全氮、全磷、硝态氮、有效磷和土壤微生物碳、氮、磷、基础呼吸以及呼吸熵,比较了纯林和混交林土壤微生物特性和土壤养分.结果表明,杉阔混交林的土壤有机碳、全氮、全磷硝态氮和有效磷含量高于杉木纯林;在混交林中,土壤微生物学特性得到改善.在0(10 cm和10(20 cm两层土壤中,杉阔混交林土壤微生物氮含量分别比杉木纯林高69%和61%.在0(10 cm土层,杉阔混交林土壤微生物碳、磷和基础呼吸分别比杉木纯林高11%、14%和4%;在10(20 cm土层,分别高6%、3%和3%.但是,杉阔混交林土壤微生物碳:氮比和呼吸熵较杉木纯林低34%和4%.另外,土壤微生物与土壤养分的相关性高于土壤呼吸、微生物碳:氮比和呼吸熵与土壤养分的相关性.由此可知,在针叶纯林中引入阔叶树后,土壤肥力得以改善,并有利于退化森林土壤的恢复.  相似文献   

16.
Forest ecosystems play a significant role in sequestering carbon (C) in biomass and soils. Plantations established in subtropical China since the 1980s, mainly of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) in monocultures, have proved to be major C sinks. However, information is lacking about whether mixing Chinese fir with broadleaved tree species will increase stand growth and C sequestration. We address this question by comparing a pure Chinese fir plantation and two mixed plantations established in 1990 at Huitong Experimental Station of Forest Ecology, Hunan Province, China. The mixed plantations include Chinese fir and either Kalopanax septemlobus (Thunb.) Koidz or Alnus cremastogyne Burk., planted at 4:1 ratios. We found that total C storage was 123, 131 and 142 Mg ha−1 in the pure plantation, mixed plantation with K. septemlobus, and mixed plantation with A. cremastogyne, respectively. The mixed plantation with A. cremastogyne increased C storage in biomass relative to the pure Chinese fir plantation (P < 0.05). No significant difference was detected between mixed plantations. Soil C storage did not differ among these plantations, ranging from 67.9 ± 7.1 to 73.3 ± 9.1 Mg ha−1, which accounted for about 55% of the total C pools. Our results indicated that as the mixture of Chinese fir and broadleaved species will increase both biomass C and soil C storage over pure Chinese fir, and will do it, within 15 years of planting.  相似文献   

17.
杉木生态系统生物量与固碳能力的分析与评价   总被引:5,自引:0,他引:5  
杉木(Cunninghamia lanceolata)是我国特有的优良速生针叶树种,分布地域广阔,在碳循环及维护生态系统平衡等方面发挥着非常重要的作用。本文通过分析大量文献,讨论了立地条件、分布区域和经营方式等因素对杉木林生态系统生物量和生产力的影响。根据文献资料对杉木林生态系统生物量和固碳能力进行了初步估测。结果表明:①中国杉木林生态系统平均生物量约为36.516 t.hm-2,平均生产力约为8.412 t.hm-2.a-1。杉木林生产力的最大值在杉木中心分布区的中亚热带,尤以中亚热带南部亚地带的最高,其生产力平均达13.50 t.hm-2.a-1;中亚热带北部亚地带平均为11.95 t.hm-2.a-1;南亚热带和北亚热带分别是8.83 t.hm-2.a-1和5.54 t.hm-2.a-1;北热带地区杉木林的生物生产力最低,平均为5.02t.hm-2.a-1。②1994年以前的统计数据,中国杉木林生态系统的总植物碳储量为:幼龄林9.98×106t,中龄林31.61×106t,近熟林11.73×106t,成熟林7.50×106t,过熟林2.87×106t,总计为63.69×106t。③目前,中国杉木林面积达1 239.1×104hm2,蓄积量为47 357.33×104m3,换算成生物量约为18 938.20×104t,总固碳量约为5 211.65×104t.a-1。目前,杉木林生态系统的碳储量的估算没有包括土壤以及凋落物层的碳含量,因此,所估算的杉木林固碳能力和总的碳储量可能偏低。  相似文献   

18.
杉观混交林中杉木和纯林杉木生长特点差异   总被引:4,自引:0,他引:4  
何宗明  杨玉盛  郑志平 《林业科学》2001,37(Z1):126-130
通过对杉木观光木混交林杉木与纯林杉木生长特性的比较分析,结果表明10a生前混交林杉木与纯林杉木树高生长比较接近.10 a生后直至27 a生混交林杉木树高生长始终大于纯林杉木.混交林中杉木在与观光木的竞争中始终处于优势地位,因此它的胸径、材积生长始终比纯林杉木大.4~11a生时纯林杉木种内竞争比较激烈.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号