首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ObjectiveTo evaluate the agreement between invasive blood pressure (IBP) and Doppler ultrasound blood pressure (DUBP) using three cuff positions and oscillometric blood pressure (OBP) in anesthetized dogs.Study designProspective study.AnimalsNine adult dogs weighing 14.5–29.5 kg.MethodsThe cuff was placed above and below the tarsus, and above the carpus with the DUBP and above the carpus with the OBP monitor. Based on IBP recorded via a dorsal pedal artery catheter, conditions of low, normal, and high systolic arterial pressures [SAP (mmHg) <90, between 90 and 140, and >140, respectively] were induced by changes in isoflurane concentrations and/or dopamine administration. Mean biases ± 2 SD (limits of agreement) were determined.ResultsAt high blood pressures, regardless of cuff position, SAP determinations with the DUBP underestimated invasive SAP values by more than 20 mmHg in most instances. With the DUBP, cuff placement above the tarsus yielded better agreement with invasive SAP during low blood pressures (0.2 ± 16 mmHg). The OBP underestimated SAP during high blood pressures (?42 ± 42 mmHg) and yielded better agreement with IBP for mean (MAP) and diastolic (DAP) arterial pressure measurements [overall bias: 2 ± 15 mmHg (MAP) and 0.2 ± 16 mmHg (DAP)].ConclusionsAgreement of SAP determinations with the DUBP is poor at SAP > 140 mmHg, regardless of cuff placement. Measurement error of the DUBP with the cuff placed above the tarsus is clinically acceptable during low blood pressures. Agreement of MAP and DAP measurements with this OBP monitor compared with IBP was clinically acceptable over a wide pressure range.Clinical relevanceWith the DUBP device, placing the cuff above the tarsus allows reasonable agreement with IBP obtained via dorsal pedal artery catheterization. Only MAP and DAP provide reasonable estimates of direct blood pressure with the OBP monitor evaluated.  相似文献   

2.
ObjectiveTo assess agreement between oscillometric noninvasive blood pressure (NIBP) measurements using LifeWindow monitors (LW9xVet and LW6000V) and invasive blood pressure (IBP). To assess the agreement of NIBP readings using a ratio of cuff width to mid-cannon circumference of 25% and 40%.Study designProspective, randomized clinical study.AnimalsA total of 43 adult horses undergoing general anesthesia in dorsal recumbency for different procedures.MethodsAnesthetic protocols varied according to clinician preference. IBP measurement was achieved after cannulation of the facial artery and connection to an appropriately positioned transducer connected to one of two LifeWindow multiparameter monitors (models: LW6000V and LW9xVet). Accuracy of monitors was checked daily using a mercury manometer. For each horse, NIBP was measured with two cuff widths (corresponding to 25% or 40% of mid-cannon bone circumference), both connected to the same monitor, and six paired IBP/NIBP readings were recorded (at least 3 minutes between readings). NIBP values were corrected to the relative level of the xiphoid process. A Bland–Altman analysis for repeated measures was used to assess bias (NIBP–IBP) and limits of agreement (LOAs).ResultsThe 40% cuff width systolic arterial pressure [SAP; bias 7.9 mmHg, LOA –26.6 to 42.3; mean arterial pressure (MAP): bias 4.9 mmHg, LOA –28.2 to 38.0; diastolic arterial pressure (DAP): bias 4.2 mmHg, LOA –31.4 to 39.7)] performed better than the 25% cuff width (SAP: bias 26.4 mmHg, LOA –21.0 to 73.9; MAP: bias 15.7 mmHg, LOA –23.8 to 55.2; DAP: bias 10.9 mmHg, LOA –33.2 to 54.9).Conclusions and clinical relevanceUsing the LifeWindow multiparameter monitor in anesthetized horses, the 40% cuff width provided better agreement with IBP; however, both cuff sizes and both monitor models failed to meet American College of Veterinary Internal Medicine Consensus Statement Guidelines.  相似文献   

3.
ObjectiveTo assess agreement between carotid arterial pressure and auricular arterial, thoracic limb Doppler or thoracic limb oscillometric blood pressure measurements.Study designProspective experimental study.AnimalsSix adult New Zealand white rabbits.MethodsRabbits were anesthetized with isoflurane in oxygen at 1, 1.5 and 2 MAC on two separate occasions. Catheters in the auricular and the contralateral external carotid artery were connected to calibrated pressure transducers via non-compliant tubing. Inflatable cuffs of width equal to approximately 40% of the limb circumference were placed above the carpus on both thoracic limbs with a Doppler transducer placed distal to the cuff on one. Systolic (SAP) and mean (MAP) arterial blood pressure measurements were obtained at each dose, on each occasion. Agreement between measurement techniques was evaluated by repeated measures Bland Altman analysis with carotid pressure as the reference. Variation in bias over the measurement range was evaluated by regression analysis.ResultsCarotid MAP and SAP ranged from 20 to 65 mmHg and 37 to 103 mmHg respectively. Bias and 95% limits of agreement for auricular and oscillometric MAP were 7 (0–14) and ?5 (?21–11) mmHg, respectively, and for auricular, oscillometric and Doppler SAP were 23 (8–37), ?2 (?24–20) and 13 (?14–39) mmHg, respectively. Bias varied significantly over the measurement range (p < 0.001) for all three SAP techniques but not for MAP measurements.Conclusions and clinical relevanceLimits of agreement for all measurements were large but less so for MAP than SAP. Variation in bias with SAP should be considered when using these measurements clinically.  相似文献   

4.
ObjectiveTo assess the agreement between an oscillometric device and invasive blood pressure (IBP) measurements in anesthetized healthy adult guinea pigs.Study designProspective experimental study.AnimalsA total of eight adult Hartley guinea pigs.MethodsAll animals were anesthetized; a carotid artery was surgically exposed and catheterized for IBP measurements. A size 1 cuff placed on the right thoracic limb was connected to an oscillometric device for noninvasive blood pressure (NIBP) assessment. Concurrent pairs of systolic (SAP), diastolic (DAP) and mean (MAP) arterial pressures were recorded simultaneously with both methods every 3 minutes for 30 minutes. Agreement between IBP and NIBP measurements was determined using the Bland–Altman method, considering the recommended standards for the validation of NIBP measurement devices proposed by the American College of Veterinary Internal Medicine (ACVIM).ResultsThe bias and the 95% limits of agreement were: –14 (–31 to 3) mmHg, –2 (–14 to 10) mmHg and –1 (–13 to 11) mmHg for SAP, DAP and MAP, respectively.Conclusions and clinical relevanceThe oscillometric device used in this study to measure NIBP did not meet ACVIM criteria for validation. It showed good agreement for DAP and MAP but not for SAP measurements. Considering the small size of these animals and the resulting difficulty in performing percutaneous arterial catheterization, this device might be a useful tool to assess MAP and DAP during anesthetic procedures in adult guinea pigs.  相似文献   

5.
ObjectiveTo evaluate agreement with central systemic arterial pressure of an oscillometer and two cuff widths placed on the thoracic or pelvic limbs.Study designProspective experimental study.AnimalsA group of nine New Zealand White rabbits weighing 3.5 ± 0.3 kg.MethodsRabbits were sedated with dexmedetomidine and midazolam, then anesthetized with ketamine and sevoflurane. The femoral artery was surgically exposed and a 20 gauge, 5 cm catheter inserted to measure systolic (SAP), mean (MAP) and diastolic (DAP) blood pressure at the iliac artery and caudal aorta junction. Adjustments of vaporizer dial and dobutamine infusion provided a range of invasive blood pressure (IBP). Two measurements of IBP were recorded during the oscillometer cycling phase, and the mean value was used in analyses. Oscillometer cuffs of bladder width 2.0 cm (S1) and 2.5 cm (S2) were placed proximal to the carpus and tarsus. Cuff width to circumference ratio was calculated. Oscillometer SAP, MAP and DAP were paired with corresponding IBP values. Agreement was assessed using linear mixed models (p < 0.05).ResultsCuff ratios for both limbs were 41% (S1 cuff) and 50% (S2 cuff) and 122–139 paired observations were obtained. There was significant limb × cuff interaction with SAP and MAP. The oscillometer overestimated SAP and MAP on the pelvic limb and underestimated SAP and MAP on the thoracic limb. For SAP, the oscillometer overestimated by constant bias (–19 ± 2 mmHg) and proportional bias (0.28 ± 0.02 mmHg per 1 mmHg increase). For MAP, the oscillometer underestimated by constant bias (4 ± 2 mmHg) and was worse with S2 on the thoracic limb. Overestimation was similar between cuffs on the pelvic limb. For DAP, the oscillometer underestimated by constant bias (15 ± 2 mmHg).Conclusions and clinical relevanceCuff S1 on the thoracic limb provided best estimation of MAP.  相似文献   

6.
ObjectiveTo use American College of Veterinary Internal Medicine (ACVIM) criteria to evaluate a high-definition oscillometric (HDO) blood pressure monitoring device versus invasive blood pressure (IBP) measurement in normotensive rabbits anaesthetized with two different anaesthetic protocols.Study designProspective experimental study.AnimalsA group of 20 healthy adult New Zealand White rabbits weighing 4.36 ± 0.37 kg (mean ± standard deviation).Materials and methodsRabbits were premedicated with butorphanol 0.5 mg kg–1 and midazolam 0.5 mg kg–1 subcutaneously (SC, group BMA) or ketamine 25 mg kg–1 and medetomidine 0.4 mg kg–1 SC (group KM). Anaesthesia was induced with alfaxalone administered intravenously (group BMA) or isoflurane by face mask (group KM) and maintained with isoflurane in oxygen. IBP was measured from the central auricular artery. The cuff for the HDO monitor was placed distal to the left elbow and distal to the left tarsus. Agreement between invasive and HDO measurements was evaluated using Bland–Altman method.ResultsIn group KM there was better agreement between the HDO device and IBP when the cuff was placed on the thoracic limb, with 100% and 91% of the readings for mean (MAP) and diastolic arterial pressure (DAP), respectively, within 10 mmHg of the IBP measurements. The agreement, although worse, also met the ACVIM criteria for systolic arterial pressure (SAP; 53% of the readings within 10 mmHg). In group BMA, the device met the criteria with the cuff on the thoracic limb only, and only for MAP and DAP (73% and 75% of the measurements within 10 mmHg of the IBP, respectively) but not for SAP (12%).Conclusion and clinical relevanceThe HDO device met most of the ACVIM criteria for noninvasive blood pressure measurement in anaesthetized rabbits, specifically when the cuff was placed distal to the elbow and the anaesthetic protocol included ketamine and medetomidine.  相似文献   

7.
ObjectiveTo evaluate the agreement between oscillometric blood pressure (OBP) measured from the tongue and invasive blood pressure (IBP), and to compare OBPs measured from the tongue with OBPs measured from the pelvic limb and tail.Study designProspective experimental study.AnimalsA total of eight adult Beagle dogs weighing 11.1 ± 1.2 kg.MethodsAnimals were premedicated with intravenous (IV) acepromazine (0.005 mg kg–1). Anesthesia was induced with alfaxalone (3 mg kg–1) IV and maintained with isoflurane. The dorsal pedal artery was catheterized for IBP measurements. Systolic (SAP), diastolic (DAP) and mean (MAP) arterial pressure were simultaneously measured from the tongue, pelvic limb and tail. Based on invasive SAP, hypertension (>140 mmHg), normotension (90–140 mmHg) and hypotension (<90 mmHg) were induced by controlling end-tidal isoflurane concentrations and/or dobutamine/dopamine administration. Agreement between paired IBP and OBP measurements was analyzed with reference standards for noninvasive blood pressure devices used in small animals and humans.ResultsRegardless of cuff placement, the mean bias ± standard deviation between IBP and OBP met veterinary (≤10 ± 15 mmHg) and human (<5 ± 8 mmHg) standards for MAP and DAP. SAP measurements provided by the OBP device showed unacceptable agreement with IBP, and the bias between methods increased at higher blood pressures, regardless of cuff site. During hypotension, tongue OBP showed the largest percentage of absolute difference <10 mmHg in relation to IBP for SAP (90%), MAP (97%), and DAP (93%), compared with pelvic limb (60%, 97% and 82%, respectively) and tail OBP (54%, 92% and 77%, respectively).Conclusions and clinical relevanceThe tongue is a clinically useful site for measuring OBP in anesthetized Beagle dogs, providing reliable estimates of MAP and DAP. The tongue could replace other cuff placement sites and may be a relatively suitable site for assessing hypotension.  相似文献   

8.
ObjectiveTo assess accuracy of noninvasive blood pressure (NIBP) measured by oscillometric device Sentinel compared to invasive blood pressure (IBP) in anaesthetized horses undergoing surgery. To assess if differences between the NIBP measured by the Sentinel and IBP are associated with recumbency, cuff placement, weight of the horse or acepromazine premedication and to describe usefulness of the Sentinel.Study designProspective study examining replicates of simultaneous NIBP and IBP measurements.AnimalsTwenty-nine horses.MethodsInvasive blood pressure was measured via a catheter in the facial artery, transverse facial artery or metatarsal artery. NIBP was measured using appropriate size cuffs placed on one of two metacarpal or metatarsal bones or the tail in random order. With both techniques systolic (SAP), mean (MAP), and diastolic (DAP) arterial blood pressures and heart rates (HR) were recorded. A mixed effects model compared the IBP to the NIBP values and assessed potential effects of catheter placement, localisation of the cuffs in combination with recumbency, weight of the horse or acepromazine premedication.ResultsNoninvasive blood pressure yielded higher measurements than IBP. Agreement varied with recumbency and cuff position. Estimated mean differences between the two methods decreased from SAP (lateral recumbency: range -5.3 to -56.0 mmHg; dorsal recumbency: range 0.8 to -20.7 mmHg), to MAP (lateral recumbency: range -1.8 to -19.0 mmHg; dorsal recumbency: range 13.9 to -16.4 mmHg) to DAP (lateral recumbency: range 0.5 to -6.6 mmHg; dorsal recumbency: range 21.0 to -15.5 mmHg). NIBP measurement was approximately two times more variable than IBP measurement. No significant difference between IBP and NIBP due to horse's weight or acepromazine premedication was found. In 227 of 1047 (21.7%) measurements the Sentinel did not deliver a result.Conclusion and clinical relevanceAccording to the high variability of NIBP compared to IBP, NIBP measurements as measured by the Sentinel in the manner described here are not considered as an appropriate alternative to IBP to measure blood pressure in anaesthetized horses.  相似文献   

9.
ObjectiveTo determine the accuracy of an oscillometric blood pressure monitor in anesthetized sheep.Study designProspective study.AnimalsTwenty healthy adult sheep, 11 males and nine females, weighing 63.6 ± 8.6 kg.MethodsAfter premedication with buprenorphine or transdermal fentanyl, anesthesia was induced with ketamine‐midazolam and maintained with isoflurane and ketamine, 1.2 mg kg?1 hour?1, ± lidocaine, 3 mg kg?1 hour?1. Invasive blood pressure measurements were obtained from an auricular arterial catheter and noninvasive measurements were from a cuff on the metatarsus or antebrachium. Simultaneous invasive and noninvasive measurements were recorded over a range (55–111 mmHg) of mean arterial pressures (MAP). Isoflurane concentration was increased to decrease MAP and decreasing the isoflurane concentration and infusing dobutamine achieved higher pressures. Invasive and noninvasive measurements were compared.ResultsCorrelation (R2) was good between the two methods of measurement (average of three consecutive readings) for systolic (SAP) (0.87), diastolic (DAP) (0.86), and mean (0.90) arterial pressures (p < 0.001). Bias ± SD between noninvasive and invasive measurements for SAP was 3 ± 8 mmHg, for DAP was ?10 ± 7 mmHg, and MAP was ?7 ± 6 mmHg. There was no significant difference between the average of three measurements and use of the first measurement. Correlations using the first measurement were SAP (0.82), DAP (0.84), and MAP (0.89). Bias ± SD for SAP was 3 ±10 mmHg, for DAP was ?11 ± 7 mmHg, and MAP was ?7 ± 6 mmHg. The oscillometric monitor slightly overestimated SAP and underestimated DAP and MAP for both average values and the first reading.Conclusions and clinical relevanceThis oscillometric model provided MAP measurements that were acceptable by ACVIM standards. MAP measurements with this monitor were lower than those found with the invasive technique so a clinical diagnosis of hypotension may be made in sheep that are not hypotensive.  相似文献   

10.
The objectives of this study were to assess, in anesthetized neonatal foals, the accuracy of 2 automated indirect oscillometric monitors for measurement of mean arterial pressure (MAP), to determine the optimal site of cuff placement for MAP monitoring, and to determine the relationship between arterial blood pressure and cardiac output. Ten neonatal foals were anesthetized and instrumented with a catheter in the metatarsal artery for direct MAP monitoring and measurement of cardiac output by lithium dilution. Concurrent MAP measurements were obtained with Cardell and Dinamap oscillometric monitors with cuffs placed at 3 different sites (coccygeal, metatarsal, and median arteries). Blood pressure was manipulated by varying the depth of anesthesia and by administration of dobutamine or phenylephrine. A statistically significant (P = .025) interaction was found between the type of monitor and cuff placement site. With the Cardell monitor, placement of the cuff over the coccygeal artery resulted in a significantly lower bias than placement over the median or dorsal metatarsal artery (P < .0001 and P = .0149, respectively). No significant difference in bias was found with cuff placement site when using the Dinamap monitor. The correlation coefficient (r) between MAP and cardiac output was 0.47. Indirect oscillometry with a cuff placed over the coccygeal artery or dorsal metatarsal artery is an acceptable method for measuring MAP in foals. Blood pressure does not correlate well with cardiac output in anesthetized foals.  相似文献   

11.
Objective – To compare blood pressure measurements obtained via ultrasonic Doppler flow monitor (DOP) and 2 oscillometric noninvasive blood pressure monitors (CAR and PAS) to invasive blood pressure (IBP) in hospitalized, conscious dogs with a range of blood pressures. Design – Prospective clinical study. Setting – University teaching hospital. Animals – Eleven client‐owned dogs aged between 4 months and 11.5 years (median 6 y), and weighing between 5.8 and 37.5 kg (median 30.2 kg). Interventions – Blood pressure measurement. Measurements and Main Results – Three consecutive measurements of systolic, diastolic, and mean arterial pressure (MAP) were recorded for each of the 3 indirect devices (only systolic for DOP), along with concurrent IBP measurements. The data were categorized into 3 groups: hypotensive (direct MAP<80 mm Hg), normotensive (80 mm Hg≤direct MAP≥100 mm Hg), and hypertensive (direct MAP>100 mm Hg). Each indirect method was compared with the corresponding direct arterial pressure using the Bland‐Altman method. Within the hypotensive group, each indirect method overestimated the corresponding IBP. Within the normotensive group all indirect systolic measurements and the PAS diastolic measurements underestimated the corresponding IBP. The remaining indirect measurements overestimated the corresponding IBP. Within the hypertensive group, DOP and CAR systolic measurements underestimated the corresponding IBP, and the remaining indirect measurements overestimated the corresponding IBP. In hypertensive dogs oscillometric systolic measurements were more accurate than MAP. In hypotensive dogs MAP measurements were more accurate than systolic measurements. All indirect measurements were most accurate in hypertensive dogs. Conclusions – The noninvasive blood pressure monitors in our study did not meet the validation standards set in human medicine. However, CAR diastolic and MAP measurements within the normotensive group, CAR MAP measurements within the hypertensive group, and PAS diastolic measurements in all groups were close to these standards. All indirect measurements showed greater bias during hypotension. Precision was poorer for all indirect systolic measurements than for MAP.  相似文献   

12.
Objective To use the American College of Veterinary Internal Medicine (ACVIM) validation criteria to evaluate the performance of high definition oscillometric (HDO) and Doppler blood pressure measurement techniques against invasive blood pressure measurements in anaesthetized dogs. Study design Prospective clinical study. Animals Twenty client‐owned dogs. Materials and Methods Invasive blood pressure was measured using a catheter inserted into a pedal artery and an electronic transducer. The sites of cuff placement for the HDO measurements were the mid antebrachium or the proximal tail and, for the Doppler technique, the distal tibia. Agreement between invasive and non‐invasive blood pressure measurements was estimated by the Bland–Altman method. Results Only 10% and 34% of Doppler measurements were within 10 and 20 mmHg of invasive blood pressure values, respectively. The Doppler device failed to meet the ACVIM validation criteria for blood pressure measurement devices. The best agreement between HDO and invasive blood pressure measurement technique was observed for mean arterial blood pressure (MAP); 67% and 95% of readings were within 10 and 20 mmHg of invasive blood pressure values respectively. In addition, 52% and 87% of diastolic arterial blood pressure (DAP) measurements were within 10 and 20 mmHg of invasive readings. High definition oscillometric readings did not meet ACVIM recommended limits for SAP. Conclusion and clinical relevance The Doppler technique overestimated and the HDO device showed limited agreement with invasive blood pressure measurement in anaesthetized dogs. High definition oscillometry met most of the ACVIM requirements for MAP and DAP while the Doppler technique did not.  相似文献   

13.
OBJECTIVE: To examine the agreement between direct arterial blood pressure measurements obtained from 2 arteries and indirect blood pressure measurements obtained with an oscillometric blood pressure monitor (OBPM) during normotension and phenylephrine-induced hypertension in dogs. ANIMALS: 16 male Beagles. PROCEDURES: In anesthetized dogs, arterial catheters were placed in the lingual and dorsal pedal arteries for measurement of arterial blood pressure. A blood pressure cuff was placed on either the dog's fore- or hind limb and connected to an OBPM. Systolic, diastolic, and mean arterial blood pressures (SAP, DAP, and MAP, respectively) were recorded from both arteries and the OBPM every 5 minutes for 30 minutes (baseline), during a 30-minute period in which dogs received a phenylephrine infusion IV to induce hypertension, and for 30 minutes after discontinuation of the infusion. Mean differences in blood pressure values and confidence intervals were calculated to compare the indirect and direct measurement techniques. RESULTS: In dogs, oscillometry underestimated SAP during normotension, and the difference between oscillometric and direct measurements increased during hypertension. Oscillometry underestimated DAP, but the difference between oscillometric and direct measurements decreased during hypertension. There was close agreement among techniques for MAP determinations. Biases between direct measurements and OPBM blood pressure values measured from dogs' forelimbs or hind limbs were not significantly different. CONCLUSIONS AND CLINICAL RELEVANCE: In normotensive dogs, oscillometric measurements of MAP and SAP agreed more closely with direct arterial pressure measurements than oscillometric estimates of DAP. Oscillometric measurement of MAP was accurate during both normotension and hypertension in dogs.  相似文献   

14.
ObjectiveTo compare high definition oscillometry (HDO) to invasive blood pressure measurement in anaesthetized dogs.Study designProspective, clinical trial.AnimalsFifty dogs weighing 1.95–79 kg (mean 23.5 kg).Materials and methodsAnaesthetic and peri–anaesthetic management was chosen according to each dog's physical status and anaesthetist's preference. Direct arterial blood pressure measurements were performed using a catheter placed in the dorsal pedal artery and an electronic pressure transducer connected to a multiparameter monitor. Non–invasive blood pressure measurements were performed using an appropriately sized cuff placed around the tail base. Comparisons between the two methods were made using Bland and Altman plots. The data are reported as mean bias (lower, upper limits of agreement). Further analysis was performed after separating the data into the following categories based on invasive mean arterial blood pressure (MAP): high (MAP > 100 mmHg), medium (70 mmHg < MAP < 100 mmHg) and low (MAP < 70 mmHg) blood pressure (BP). The two methods were compared as used clinically.ResultsEight hundred measurement pairs for invasive and HDO BP readings were compared. Overall, the HDO measured lower values for SAP and DAP but higher for MAP than the invasive method. The lowest bias (upper, lower limits of agreement) were obtained for MAP, ?1 (?22, 19) mmHg. The biggest discrepancy between the methods was reflected by a large bias (limits of agreement) 5 (?34, 45) mmHg, was for SAP. The results for DAP were between those for SAP and MAP with a bias (limits of agreement) of 3 (?20, 27) mmHg. When the values were separated into the pressure range categories the HDO measured higher in the high, medium and low BP groups, with the exception of SAP in the low BP group.ConclusionsWhen considering the mean bias, the accuracy of HDO compared well with direct arterial blood pressure, but the precision was poor, as determined by wide limits of agreement.Clinical relevanceUsing trends and serial measurements rather than a single measurement for clinical decision making is recommended with both methods, when used as reported here.  相似文献   

15.
OBJECTIVE: To compare the performance of the Surgivet Non-Invasive Blood Pressure (NIBP) monitor V60046 with an invasive blood pressure (IBP) technique in anaesthetized dogs. STUDY DESIGN: A prospective study. ANIMALS: Thirty-four dogs, anaesthetized for a variety of procedures. METHODS: Various anaesthetic protocols were used. Invasive blood pressure measurement was made using a catheter in the femoral or the pedal artery. A cuff was placed on the contralateral limb to allow non invasive measurements. Recordings of arterial blood pressures (ABPs) were taken at simultaneous times for a range of pressures. For analysis, three pressure levels were determined: high [systolic blood pressure (SAP) > 121 mmHg], normal (91 mmHg < SAP < 120 mmHg) and low (SAP < 90 mmHg). Comparisons between invasive and non invasive measurements were made using Bland-Altmann analysis. RESULTS: The NIBP monitor consistently underestimated blood pressure at all levels. The lowest biases and greatest precision were obtained at low and normal pressure levels for SAP and mean arterial pressure (MAP). At low blood pressure levels, the biases +/- 95% confidence interval (CI) were 1.9 +/- 2.96 mmHg (SAP), 8.3 +/- 2.41 mmHg diastolic arterial pressure (DAP) and 3.5 +/- 2.09 mmHg (MAP). At normal blood pressure levels, biases and CI were: 1.2 +/- 2.13 mmHg (SAP), 5.2 +/- 2.32 mmHg (DAP) and 2.1 +/- 1.54 mmHg (MAP). At high blood pressure levels, the biases and CI were 22.7 +/- 5.85 mmHg (SAP), 5.5 +/- 3.13 mmHg (DAP) and 9.4 +/- 3.52 mmHg (MAP). In 90.6% of cases of hypotension (MAP < 70 mmHg), the low blood pressure was correctly diagnosed by the Surgivet. CONCLUSIONS: Measurement of blood pressure with the indirect monitor allowed detection of hypotension using either SAP or MAP. The most accurate readings were determined for MAP at hypotensive and normal levels. The monitor lacked accuracy at high pressures. CLINICAL RELEVANCE: When severe challenges to the cardiovascular system are anticipated, an invasive method of recording ABP is preferable. For routine usage, the Surgivet monitor provided a reliable and safe method of NIBP monitoring in dogs, thereby contributing to the safety of anaesthesia by providing accurate information about the circulation.  相似文献   

16.

Objective

To assess the validity and reliability of Doppler ultrasonography (DOP) as compared with invasive arterial blood pressure measurements in anaesthetized dogs weighing less than 5 kg.

Study design

Controlled, prospective, clinical study.

Animals

A total of 41 privately owned dogs weighing less than 5 kg.

Methods

The dogs were anaesthetized, and an intra-arterial catheter was placed aseptically in the dorsal pedal artery of the pelvic limb to perform invasive blood pressure (IBP) measurement. The contralateral metatarsal surface of the foot was clipped in order to perform DOP. Both techniques were used to record blood pressure measurements every 5 minutes during surgical procedures. The blood pressure measurements were categorized into two groups: hypotensive [mean arterial pressure (MAP) < 60 mmHg] and normotensive (MAP between 60 and 120 mmHg). A linear mixed model was used to compare the DOP and IBP values. The results were evaluated according to the requirements of the American College of Veterinary Internal Medicine (ACVIM) guidelines for the validation of devices.

Results

DOP provided higher values compared to the systolic arterial blood pressure (SAP) and MAP of IBP measurements. The closest agreement between the two techniques was found for SAP; the bias was 8.8, and limits of agreement (LOA) were –32.9 and 50.4. Similar results were observed when the IBP technique was categorized. The closest agreement was for SAP in animals categorized as normotensive; the bias was 8.2, and LOAs were –32.8 and 49.2. The level of agreement between DOP and IBP did not meet the ACVIM recommendations.

Conclusions and clinical relevance

Our results suggest there is poor agreement between DOP and IBP measurements in anaesthetized dogs weighing less than 5 kg. Hence, the use of DOP in these animals could be misleading.  相似文献   

17.
Objective: To investigate the agreement between indirect oscillometric and direct blood pressure measurement in the equine neonate. Design: Prospective observational study. Setting: University Veterinary Teaching Hospital. Animals: Ten crossbred foals of 30–46 hours of age. Interventions: Six animals (Group 1) were anesthetized. Four animals (Group 2) were restrained on a mat. All animals were instrumented with a catheter in the greater metatarsal artery and an oscillometric blood pressure cuff over the coccygeal artery. Blood pressure was varied with dobutamine, phenylephrine, nitroprusside, and increased depth of anesthesia (Group 1) or dopamine (Group 2). Measurements and main results: Simultaneous direct and indirect blood pressure measurements were obtained from the greater metatarsal artery and the coccygeal artery, respectively. There was good agreement between the 2 methods for mean and diastolic blood pressures in both groups, but not for systolic pressure. The agreement was best in mean blood pressure of anesthetized foals (mean bias –1.07; limits of agreement – 9.39, 7.25 mmHg). Conclusions: Indirect oscillometry appears to be an acceptable method for measuring mean arterial blood pressure in both anesthetized and conscious neonatal foals, and may be a valid method of monitoring critically ill foals.  相似文献   

18.
OBJECTIVE: To determine accuracy of an oscillometric blood pressure monitor used over a wide range of pressures in anesthetized cats. DESIGN: Prospective study. ANIMALS: 6 healthy cats. PROCEDURE: 4 female cats and 2 male cats that weighed 2.7 to 4.5 kg (5.9 to 9.9 lb) and were 2 to 8 years old were anesthetized. Blood pressure was measured directly with an arterial catheter placed in the right femoral artery and indirectly from the left antebrachium by use of an oscillometric monitor. A series of diastolic arterial pressure (DAP), mean arterial pressure (MAP), and systolic arterial pressure (SAP) measurements were obtained during hypotension, normotension, and hypertension. Values obtained indirectly and directly were compared. RESULTS: The oscillometric monitor was accurate for DAP and MAP throughout the entire pressure range and met the standards of the Association for the Advancement of Medical Instrumentation (mean +/- SD difference from values obtained directly, < or = 5 +/- 8 mm Hg). The SAP was increasingly underestimated with increasing overall pressure; mean differences from direct measurements were -5.2, -12.1, and -17.7 mm Hg during hypo-, normo-, and hypertension, respectively. Standard deviations for SAP were all < or = 8 mm Hg. The monitor gave readings during all attempts. The direct blood pressure recording system appeared to perform well with neither under- nor overdamping. CONCLUSIONS AND CLINICAL RELEVANCE: Except for a minor underestimation of SAP during normo- and hypertension, the oscillometric monitor yielded reliable and easily obtainable blood pressure measurements in anesthetized cats.  相似文献   

19.
ObjectiveTo determine the agreement of high definition oscillometry (HDO) with direct arterial blood pressure measurements in normotensive, hypotensive and hypertensive horses during general anaesthesia.Study designExperimental study.AnimalsSeven healthy warmblood horses, aged 3–11 years, weighing 470–565 kg.MethodsMeasurements from a HDO device with the cuff placed around the base of the tail were compared with pressures measured invasively from the facial artery. High blood pressures were induced by intravenous (IV) administration of dobutamine (5 μg kg−1 minute−1) over ten minutes followed by norepinephrine (0.1 mg kg−1 IV) and low pressures by increasing the inspired fraction of isoflurane and administration of nitroglycerine (0.05 mg kg−1 IV). For analysis three pressure levels were determined: high (MAP>110 mmHg), normal (60 mmHgResultsA total of 245 paired measurements of systolic (SAP), mean (MAP) and diastolic (DAP) pressures were obtained. The HDO device underestimated blood pressure at hypertensive and normotensive levels and overestimated blood pressure at hypotensive levels. Best agreement was obtained for SAP and MAP within normotensive limits. At normotension, bias ± standard deviation for SAP, MAP and DAP were 0.1 ± 19.4 mmHg, 0.5 ± 14.0, 4.7 ± 15.6, respectively. At high pressure levels bias and SD were 26.1 ± 37.3 (SAP), 4.2 ± 19.4 (MAP), 1.5 ± 16.8 (DAP) and at low pressures -20.0 ± 20.9 (SAP), -11.4 ± 19.6 (MAP), -4.7 ± 20.1 (DAP), with HDO measurements at a MAP <50 mmHg often failing.Conclusion and clinical relevanceGood agreement with invasive arterial blood pressures was obtained with HDO at normotensive levels in horses. At high and low pressure ranges HDO was unreliable. Therefore, if haemodynamic instability is expected, invasive measurement remains preferable.  相似文献   

20.
ObjectiveTo measure the level of agreement between Doppler measured (DOP) arterial blood pressure (ABP) in the forelimb and directly measured (DIR) auricular systolic ABP (SAP) and mean ABP (MAP) in isoflurane-anaesthetized rabbits.Study designProspective clinical study.AnimalsData were analysed from 17 of 24 healthy rabbits, weighing 1.3–2.8 kg.MethodsRabbits were anaesthetized for neutering using a standardized protocol. A 26G catheter placed in an auricular artery was connected via heparinised saline filled non-compliant tubing (regularly flushed) to a calibrated pressure transducer (zeroed level with the thoracic inlet) to obtain DIR ABP. A cuff was placed proximal to the carpus (approximately level with the thoracic inlet) and a Doppler transducer sited over the dorsal carpal branch of the radial artery to obtain DOP ABP. Simultaneous DIR and DOP ABP recordings were made every 5–10 minutes during anaesthesia. Agreement was assessed as described by Bland JM &; Altman (2007).ResultsMean ± SD cuff width: limb circumference ratio was 0.50 ± 0.04. Mean between-method differences ± SD, DIR SAP- DOP and DIR MAP- DOP, were +1 ± 8 and ?13 ± 8 mmHg respectively. The 95% limits of agreement between DIR SAP and DOP and between DIR MAP and DOP were ?14 to +17 and ?28 to +2 mmHg respectively. Differences between DIR SAP and DOP were ≤10 mmHg 85% of the time. Defining hypotension as either DIR SAP < 80 mmHg or DIR MAP < 60 mmHg, and taking DOP ABP of <80 mmHg to indicate hypotension, sensitivity and specificity were 92% and 67% respectively.ConclusionsGood agreement was found between DIR SAP and DOP. Doppler measurements below 80 mmHg are a reliable indicator of arterial hypotension.Clinical relevanceDOP is acceptable for monitoring ABP in isoflurane-anaesthetized rabbits and is useful for detection of hypotension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号