首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A major challenge for a scalable quantum computing architecture is the faithful transfer of information from one node to another. We report on the realization of an atom-photon quantum interface based on an optical cavity, using it to entangle a single atom with a single photon and then to map the quantum state of the atom onto a second single photon. The latter step disentangles the atom from the light and produces an entangled photon pair. Our scheme is intrinsically deterministic and establishes the basic element required to realize a distributed quantum network with individual atoms at rest as quantum memories and single flying photons as quantum messengers.  相似文献   

2.
Beyond traditional nonlinear optics with large numbers of atoms and photons, qualitatively new phenomena arise in a quantum regime of strong interactions between single atoms and photons. By using a microscopic optical resonator, we achieved such interactions and demonstrated a robust, efficient mechanism for the regulated transport of photons one by one. With critical coupling of the input light, a single atom within the resonator dynamically controls the cavity output conditioned on the photon number at the input, thereby functioning as a photon turnstile. We verified the transformation from a Poissonian to a sub-Poissonian photon stream by photon counting measurements of the input and output fields. The results have applications in quantum information science, including for controlled interactions of single light quanta and for scalable quantum processing on atom chips.  相似文献   

3.
A single cesium atom trapped within the mode of an optical cavity is used to generate single photons on demand. The photon wave packets are emitted as a Gaussian beam with temporal profile and repetition rate controlled by external driving fields. Each generation attempt is inferred to succeed with a probability near unity, whereas the efficiency for creating an unpolarized photon in the total cavity output is 0.69 +/- 0.10, as limited by passive cavity losses. An average of 1.4 x 10(4) photons are produced by each trapped atom. These results constitute an important step in quantum information science, for example, toward the realization of distributed quantum networking.  相似文献   

4.
Quantum technologies based on photons will likely require an integrated optics architecture for improved performance, miniaturization, and scalability. We demonstrate high-fidelity silica-on-silicon integrated optical realizations of key quantum photonic circuits, including two-photon quantum interference with a visibility of 94.8 +/- 0.5%; a controlled-NOT gate with an average logical basis fidelity of 94.3 +/- 0.2%; and a path-entangled state of two photons with fidelity of >92%. These results show that it is possible to directly "write" sophisticated photonic quantum circuits onto a silicon chip, which will be of benefit to future quantum technologies based on photons, including information processing, communication, metrology, and lithography, as well as the fundamental science of quantum optics.  相似文献   

5.
Visible quantum cutting in LiGdF4:Eu3+ through downconversion   总被引:1,自引:0,他引:1  
For mercury-free fluorescent lamps and plasma display panels, alternative luminescent materials are required for the efficient conversion of vacuum ultraviolet radiation to visible light. Quantum cutting involving the emission of two visible photons for each vacuum ultraviolet photon absorbed is demonstrated in Eu3+-doped LiGdF4 with the concept of downconversion. Upon excitation of Gd3+ with a high-energy photon, two visible photons can be emitted by Eu3+ through an efficient two-step energy transfer from Gd3+ to Eu3+, with a quantum efficiency that approaches 200 percent.  相似文献   

6.
Quantum communication relies on the availability of light pulses with strong quantum correlations among photons. An example of such an optical source is a single-photon pulse with a vanishing probability for detecting two or more photons. Using pulsed laser excitation of a single quantum dot, a single-photon turnstile device that generates a train of single-photon pulses was demonstrated. For a spectrally isolated quantum dot, nearly 100% of the excitation pulses lead to emission of a single photon, yielding an ideal single-photon source.  相似文献   

7.
A high-brightness source of narrowband, identical-photon pairs   总被引:1,自引:0,他引:1  
We generated narrowband pairs of nearly identical photons at a rate of 5 x 10(4) pairs per second from a laser-cooled atomic ensemble inside an optical cavity. A two-photon interference experiment demonstrated that the photons could be made 90% indistinguishable, a key requirement for quantum information-processing protocols. Used as a conditional single-photon source, the system operated near the fundamental limits on recovery efficiency (57%), Fourier transform-limited bandwidth, and pair-generation-rate-limited suppression of two-photon events (factor of 33 below the Poisson limit). Each photon had a spectral width of 1.1 megahertz, ideal for interacting with atomic ensembles that form the basis of proposed quantum memories and logic.  相似文献   

8.
By illuminating an individual rubidium atom stored in a tight optical tweezer with short resonant light pulses, we created an efficient triggered source of single photons with a well-defined polarization. The measured intensity correlation of the emitted light pulses exhibits almost perfect antibunching. Such a source of high-rate, fully controlled single-photon pulses has many potential applications for quantum information processing.  相似文献   

9.
Two beams of light can be quantum mechanically entangled through correlations of their phase and intensity fluctuations. For a pair of spatially extended image-carrying light fields, the concept of entanglement can be applied not only to the entire images but also to their smaller details. We used a spatially multimode amplifier based on four-wave mixing in a hot vapor to produce twin images that exhibit localized entanglement. The images can be bright fields that display position-dependent quantum noise reduction in their intensity difference or vacuum twin beams that are strongly entangled when projected onto a large range of different spatial modes. The high degree of spatial entanglement demonstrates that the system is an ideal source for parallel continuous-variable quantum information protocols.  相似文献   

10.
Optical nonlinearities enable photon-photon interaction and lie at the heart of several proposals for quantum information processing, quantum nondemolition measurements of photons, and optical signal processing. To date, the largest nonlinearities have been realized with single atoms and atomic ensembles. We show that a single quantum dot coupled to a photonic crystal nanocavity can facilitate controlled phase and amplitude modulation between two modes of light at the single-photon level. At larger control powers, we observed phase shifts up to pi/4 and amplitude modulation up to 50%. This was accomplished by varying the photon number in the control beam at a wavelength that was the same as that of the signal, or at a wavelength that was detuned by several quantum dot linewidths from the signal. Our results present a step toward quantum logic devices and quantum nondemolition measurements on a chip.  相似文献   

11.
Ye J  Kimble HJ  Katori H 《Science (New York, N.Y.)》2008,320(5884):1734-1738
Precision metrology and quantum measurement often demand that matter be prepared in well-defined quantum states for both internal and external degrees of freedom. Laser-cooled neutral atoms localized in a deeply confining optical potential satisfy this requirement. With an appropriate choice of wavelength and polarization for the optical trap, two electronic states of an atom can experience the same trapping potential, permitting coherent control of electronic transitions independent of the atomic center-of-mass motion. Here, we review a number of recent experiments that use this approach to investigate precision quantum metrology for optical atomic clocks and coherent control of optical interactions of single atoms and photons within the context of cavity quantum electrodynamics. We also provide a brief survey of promising prospects for future work.  相似文献   

12.
Cavity optomechanics studies the coupling between a mechanical oscillator and the electromagnetic field in a cavity. We report on a cavity optomechanical system in which a collective density excitation of a Bose-Einstein condensate serves as the mechanical oscillator coupled to the cavity field. A few photons inside the ultrahigh-finesse cavity trigger strongly driven back-action dynamics, in quantitative agreement with a cavity optomechanical model. We approach the strong coupling regime of cavity optomechanics, where a single excitation of the mechanical oscillator substantially influences the cavity field. The results open up new directions for investigating mechanical oscillators in the quantum regime and the border between classical and quantum physics.  相似文献   

13.
One-dimensional microcavities are optical resonators with coplanar reflectors separated by a distance on the order of the optical wavelength. Such structures quantize the energy of photons propagating along the optical axis of the cavity and thereby strongly modify the spontaneous emission properties of a photon-emitting medium inside a microcavity. This report concerns semiconductor light-emitting diodes with the photon-emitting active region of the light-emitting diodes placed inside a microcavity. These devices are shown to have strongly modified emission properties including experimental emission efficiencies that are higher by more than a factor of 5 and theoretical emission efficiencies that are higher by more than a factor of 10 than the emission efficiencies in conventional light-emitting diodes.  相似文献   

14.
We report on the experimental quantum teleportation of strongly nonclassical wave packets of light. To perform this full quantum operation while preserving and retrieving the fragile nonclassicality of the input state, we have developed a broadband, zero-dispersion teleportation apparatus that works in conjunction with time-resolved state preparation equipment. Our approach brings within experimental reach a whole new set of hybrid protocols involving discrete- and continuous-variable techniques in quantum information processing for optical sciences.  相似文献   

15.
We experimentally demonstrate emission of two quantum-mechanically correlated light pulses with a time delay that is coherently controlled via temporal storage of photonic states in an ensemble of rubidium atoms. The experiment is based on Raman scattering, which produces correlated pairs of spin-flipped atoms and photons, followed by coherent conversion of the atomic states into a different photon beam after a controllable delay. This resonant nonlinear optical process is a promising technique for potential applications in quantum communication.  相似文献   

16.
The possibility of arbitrarily "adding" and "subtracting" single photons to and from a light field may give access to a complete engineering of quantum states and to fundamental quantum phenomena. We experimentally implemented simple alternated sequences of photon creation and annihilation on a thermal field and used quantum tomography to verify the peculiar character of the resulting light states. In particular, as the final states depend on the order in which the two actions are performed, we directly observed the noncommutativity of the creation and annihilation operators, one of the cardinal concepts of quantum mechanics, at the basis of the quantum behavior of light. These results represent a step toward the full quantum control of a field and may provide new resources for quantum information protocols.  相似文献   

17.
The motion of individual cesium atoms trapped inside an optical resonator is revealed with the atom-cavity microscope (ACM). A single atom moving within the resonator generates large variations in the transmission of a weak probe laser, which are recorded in real time. An inversion algorithm then allows individual atom trajectories to be reconstructed from the record of cavity transmission and reveals single atoms bound in orbit by the mechanical forces associated with single photons. In these initial experiments, the ACM yields 2-micrometer spatial resolution in a 10-microsecond time interval. Over the duration of the observation, the sensitivity is near the standard quantum limit for sensing the motion of a cesium atom.  相似文献   

18.
The exceptional spin coherence of nitrogen-vacancy centers in diamond motivates their function in emerging quantum technologies. Traditionally, the spin state of individual centers is measured optically and destructively. We demonstrate dispersive, single-spin coupling to light for both nondestructive spin measurement, through the Faraday effect, and coherent spin manipulation, through the optical Stark effect. These interactions can enable the coherent exchange of quantum information between single nitrogen-vacancy spins and light, facilitating coherent measurement, control, and entanglement that is scalable over large distances.  相似文献   

19.
Using spontaneous parametric down-conversion, we produce polarization-entangled states of two photons and characterize them using two-photon tomography to measure the density matrix. A controllable decoherence is imposed on the states by passing the photons through thick, adjustable birefringent elements. When the system is subject to collective decoherence, one particular entangled state is seen to be decoherence-free, as predicted by theory. Such decoherence-free systems may have an important role for the future of quantum computation and information processing.  相似文献   

20.
We report on an all-optical switch that operates at low light levels. It consists of laser beams counterpropagating through a warm rubidium vapor that induce an off-axis optical pattern. A switching laser beam causes this pattern to rotate even when the power in the switching beam is much lower than the power in the pattern. The observed switching energy density is very low, suggesting that the switch might operate at the single-photon level with system optimization. This approach opens the possibility of realizing a single-photon switch for quantum information networks and for improving transparent optical telecommunication networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号