首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Development of crop coefficient (Kc), the ratio of crop evapotranspiration (ETc) to reference evapotranspiration (ETo), can enhance ETc estimates in relation to specific crop phenological development. This research was conducted to determine growth-stage-specific Kc and crop water use for cotton (Gossypium hirsutum) and wheat (Triticum aestivum) at the Texas AgriLife Research field at Uvalde, TX, USA from 2005 to 2008. Weighing lysimeters were used to measure crop water use and local weather data were used to determine the reference evapotranspiration (ETo). Seven lysimeters, weighing about 14 Mg, consisted of undisturbed 1.5 m × 2.0 m × 2.2 m deep soil monoliths. Six lysimeters were located in the center of a 1-ha field beneath a linear-move sprinkler system equipped with low energy precision application (LEPA) and a seventh lysimeter was established to measure reference grass ETo. Crop water requirements, Kc determination, and comparison to existing FAO Kc values were determined over a 2-year period on cotton and a 3-year period on wheat. Seasonal total amounts of crop water use ranged from 689 to 830 mm for cotton and from 483 to 505 mm for wheat. The Kc values determined over the growing seasons varied from 0.2 to 1.5 for cotton and 0.1 to 1.7 for wheat. Some of the values corresponded and some did not correspond to those from FAO-56 and from the Texas High Plains and elsewhere in other states. We assume that the development of regionally based and growth-stage-specific Kc helps in irrigation management and provides precise water applications for this region.  相似文献   

2.
Improving irrigation water management is becoming important to produce a profitable crop in South Texas as the water supplies shrink. This study was conducted to investigate grain yield responses of corn (Zea mays) under irrigation management based on crop evapotranspiration (ETC) as well as a possibility to monitor plant water deficiencies using some of physiological and environmental factors. Three commercial corn cultivars were grown in a center-pivot-irrigated field with low energy precision application (LEPA) at Texas AgriLife Research Center in Uvalde, TX from 2002 to 2004. The field was treated with conventional and reduced tillage practices and irrigation regimes of 100%, 75%, and 50% ETC. Grain yield was increased as irrigation increased. There were significant differences between 100% and 50% ETC in volumetric water content (θ), leaf relative water content (RWC), and canopy temperature (TC). It is considered that irrigation management of corn at 75% ETC is feasible with 10% reduction of grain yield and with increased water use efficiency (WUE). The greatest WUE (1.6 g m−2 mm−1) achieved at 456 mm of water input while grain yield plateaued at less than 600 mm. The result demonstrates that ETC-based irrigation can be one of the efficient water delivery schemes. The results also demonstrate that grain yield reduction of corn is qualitatively describable using the variables of RWC and TC. Therefore, it appears that water status can be monitored with measurement of the variables, promising future development of real-time irrigation scheduling.  相似文献   

3.
Determination of temporal and spatial distribution of water use (WU) within agricultural land is critical for irrigation management and could be achieved by remotely sensed data. The aim of this study was to estimate WU of dwarf green beans under excessive and limited irrigation water application conditions through indicators based on remotely sensed data. For this purpose, field experiments were conducted comprising of six different irrigation water levels. Soil water content, climatic parameters, canopy temperature and spectral reflectance were all monitored. Reference evapotranspiration (ET0), crop coefficient Kc and potential crop evapotraspiration (ETc) were calculated by means of methods described in FAO-56. In addition, WU values were determined by using soil water balance residual and various indexes were calculated. Water use fraction (WUF), which represents both excessive and limited irrigation applications, was defined through WU, ET0 and Kc. Based on the relationships between WUF and remotely sensed indexes, WU of each irrigation treatments were then estimated. According to comparisons between estimated and measured WU, in general crop water stress index (CWSI) can be offered for monitoring of irrigated land. At the same time, under water stress, correlation between measured WU and estimated WU based on CWSI was the highest too. However, canopy-air temperature difference (Tc − Ta) is more reliable than others for excessive water use conditions. Where there is no data related to canopy temperature, some of spectral vegetation indexes could be preferable in the estimation of WU.  相似文献   

4.
The evapotranspiration of hedge-pruned olive orchards (Olea europaea L. cv. Arbequina) was measured under the semiarid conditions of the middle Ebro River Valley in a commercial olive orchard (57 ha) during 2004 and 2005. No measured ETc values for this type of olive orchards have previously been reported. An eddy covariance system (krypton hygrometer KH20 and 3D sonic anemometer CSAT3, Campbell Scientific) was used. The eddy covariance measurements showed a lack of the energy balance closure (average imbalance of 26%). Then sensible and latent heat (LE) flux values were corrected using the approach proposed by Twine et al. (2000) in order to get daily measured olive evapotranspiration (ETc) and crop coefficient (Kc) values. The highest measured monthly ETc averages were about 3.1-3.3 mm day−1, while the total seasonal ETc during the irrigation period (March-October) was about 585 mm (in 2004) and 597 mm (in 2005). Monthly Kc values varied from about 1.0 (Winter) to 0.4-0.5 (Spring and Summer). These Kc values were similar to Kc values reported for round-shape canopy olive orchards, adjusted for ground cover, particularly during late Spring and Summer months when differences among measured and published Kc values were about less than 0.1.  相似文献   

5.
In cold, semi-arid areas, the options for crop diversification are limited by climate and by the water supply available. Growing irrigated crops outside the main season is not easy, because of climatic and market constraints. We carried out an experiment in Albacete, Central Spain, to measure the water use (evapotranspiration, ET) of broccoli (Brassica oleracea L. var. italica Plenck) planted in late summer and harvested at the end of fall. A weighing lysimeter was used to measure the seasonal ET under sprinkler irrigation. Consumptive use reached 359 mm for a period of 109 days after transplanting. The crop coefficient (Kc) for broccoli was obtained and compared to the standard recommendations for normal planting dates. Dual crop coefficient computations of the lysimeter ET data indicated that evaporation represented 31% of seasonal ET. An analysis of the variation in daily Kc values at a time of full cover suggested that the use of a grass lysimeter as a reference ET (ETo) was superior to using the ASCE Penman-Monteith (ASCE PM) equation at hourly time steps, which in turn caused less variability in Kc than when using the FAO-56 Penman-Monteith (FAO-56 PM) equation at daily time steps for the ETo calculation. An additional experiment aimed at evaluating the yield response to applied irrigation water by the drip method (seven treatments, from 59 to 108% of ETc) generated a production function that gave maximum yields of near 12 t ha−1 at an irrigation level of 345 mm, and a water use efficiency of 3.37 kg m−3. It is concluded that growing broccoli in the fall season is a viable alternative for crop diversification, as the lower yields obtained here may be more than compensated for by the higher produce prices in autumn, at a time of the year where irrigation water demand for other crops is very low.  相似文献   

6.
The main purpose of this paper was to evaluate whether or not the dual crop coefficient (DCC) method proposed in FAO-56 was suitable for calculating the actual daily evapotranspiration of the main crops (winter wheat and summer maize) in the North China Plain (NCP). The results were evaluated with the data measured by the large-scale weighing lysimeter at the Yucheng Comprehensive Experimental Station (YCES) of the Chinese Academy of Sciences (CAS) from 1998 to 2005 using the Nash-Sutcliffe efficiency (NSE), the root mean square error (RMSE) and the root mean square error to observations’ standard deviation ratio (RSR). The evaluation results showed that the DCC method performed effective in simulating the quantity of seasonal evapotranspiration for winter wheat but was inaccurate in calculating the peak values. The RMSE value of the winter wheat during the total growing season was less than 0.9 mm/d, the NSE and RSR values during the total growing stage were “Very Good”, but the results for summer maize were “Unsatisfactory”. The recommended basal crop coefficient values Kcbtab during the initial, mid-season and end stages for winter wheat and summer maize were modified and the variation scope of basal crop coefficient Kcb was analyzed. The Kc (compositive crop coefficient, Kc = ETc/ET0, ETc here is the observed values by lysimeter, ET0 is the reference evapotranspiration) values were estimated using observed weighing lysimeter data during the corresponding stages for winter wheat and summer maize were 0.80, 1.15, 1.25, 0.95; 0.90, 0.95, 1.25, 1.00, respectively. These can be a reference for irrigation planning.  相似文献   

7.
Water requirements of maize in the middle Heihe River basin, China   总被引:2,自引:0,他引:2  
As part of an intercomparison study on crop evapotranspiration (ETc), six methods for estimating ETc have been applied to maize field in the middle Heihe River basin, China. The ETc was estimated by the soil water balance and Bowen ratio-energy balance methods while the Priestley-Taylor, Penman, Penman-Monteith and Hargreaves methods were used for estimating the reference evapotranspiration (ET0). The results showed that the trend of ETc was very similar, while the differences were significant among the different methods. The variations of ETc were closely related to the LAI as well as to the meteorological features. The ETc for the Bowen ratio-energy balance, Penman, Penman-Monteith, soil water balance, Priestley-Taylor and Hargreaves methods totaled 777.75, 693.13, 618.34, 615.67, 560.31 and 552.07 mm, respectively, with the daily mean values for 5.26, 4.68, 4.18, 4.16, 3.79 and 3.73 mm day−1. The Penman-Monteith method provided fairly good estimation of ETo as compared with the Priestley-Taylor, Penman, Hargreaves methods. By contrast with the Penman-Monteith method, the Bowen ratio-energy balance and Penman methods were 25.8% and 12.0% higher, while the Priestley-Taylor and Hargreaves methods were 9.4% and 10.7% lower, respectively. Therefore, the Hargreaves and Priestley-Taylor methods were the alternative ETc methods in arid regions of Northwest China.  相似文献   

8.
Pomegranate (Punica granatum L.) is a drought-hardy crop, suited to arid and semi-arid regions, where the use of marginal water for agriculture is on the rise. The use of saline water in irrigation affects various biochemical processes. For a number of crops, yields have been shown to decrease linearly with evapotranspiration (ET) when grown in salt-stressed environments. In the case of pomegranate, little research has been conducted regarding the effect of salt stress. Our study focused on the responses of ET, crop coefficient (Kc) and growth in pomegranate irrigated with saline water. Experiments were conducted using lysimeters with two varieties of pomegranate, P. granatum L. vars. Wonderful and SP-2. The plants were grown with irrigation water having an electrical conductivity (ECiw) of 0.8, 1.4, 3.3, 4.8 and 8 dS m−1. Plants were irrigated with 120% of average lysimeter-measured ET. Seasonal variation in ET, crop coefficient (Kc) and growth were recorded. Variation in daily ET was observed 1 month after initiation of the treatments. While significant seasonal ET variation was observed for the EC-0.8 treatment, it remained more stable for the EC-8 treatment. Salinity treatment had a significant effect on both daily ET (F = 131, p < 0.01) and total ET (F = 112.68, p = 0.001). Furthermore, the electrical conductivity of the drainage water (ECdw) in the EC-8 treatment was five times higher than that of the EC-0.8 treatment in the peak season. Fitting the relative ET (ETr) to the Maas and Hoffman salinity yield response function showed a 10% decrease in ET per unit increase in electrical conductivity of the saturated paste extract (ECe) with a threshold of 1 dS m−1. If these parameters hold true in the case of mature pomegranate trees, the pomegranate should be listed as a moderately sensitive crop rather than a moderately tolerant one. Fitting 30-day interval ETr data to the Maas and Hoffman salinity yield response function showed a reduction in the slope as the season progressed. Thus using a constant slope in various models is questionable when studying crop-salinity interactions. In addition, both of the varieties showed similar responses under salt stress. Moreover, the calculated value of Kc is applicable for irrigation scheduling in young pomegranate orchards using irrigation water with various salinities.  相似文献   

9.
Free-drainage or “open” substrate system used for vegetable production in greenhouses is associated with appreciable NO3 leaching losses and drainage volumes. Simulation models of crop N uptake, N leaching, water use and drainage of crops in these systems will be useful for crop and water resource management, and environmental assessment. This work (i) modified the TOMGRO model to simulate N uptake for tomato grown in greenhouses in SE Spain, (ii) modified the PrHo model to simulate transpiration of tomato grown in substrate and (iii) developed an aggregated model combining TOMGRO and PrHo to calculate N uptake concentrations and drainage NO3 concentration. The component models simulate NO3-N leached by subtracting simulated N uptake from measured applied N, and drainage by subtracting simulated transpiration from measured irrigation. Three tomato crops grown sequentially in free-draining rock wool in a plastic greenhouse were used for calibration and validation. Measured daily transpiration was determined by the water balance method from daily measurements of irrigation and drainage. Measured N uptake was determined by N balance, using data of volumes and of concentrations of NO3 and NH4+ in applied nutrient solution and drainage. Accuracy of the two modified component models and aggregated model was assessed by comparing simulated to measured values using linear regression analysis, comparison of slope and intercept values of regression equations, and root mean squared error (RMSE) values. For the three crops, the modified TOMGRO provided accurate simulations of cumulative crop N uptake, (RMSE = 6.4, 1.9 and 2.6% of total N uptake) and NO3-N leached (RMSE = 11.0, 10.3, and 6.1% of total NO3-N leached). The modified PrHo provided accurate simulation of cumulative transpiration (RMSE = 4.3, 1.7 and 2.4% of total transpiration) and cumulative drainage (RMSE = 13.8, 6.9, 7.4% of total drainage). For the four cumulative parameters, slopes and intercepts of the linear regressions were mostly not statistically significant (P < 0.05) from one and zero, respectively, and coefficient of determination (r2) values were 0.96-0.98. Simulated values of total drainage volumes for the three crops were +21, +1 and −13% of measured total drainage volumes. The aggregated TOMGRO-PrHo model generally provided accurate simulation of crop N uptake concentration after 30-40 days of transplanting, with an average RMSE of approximately 2 mmol L−1. Simulated values of average NO3 concentration in drainage, obtained with the aggregated model, were −7, +18 and +31% of measured values.  相似文献   

10.
Based on successive observation, fifteen-day evapotranspiration (ETc) of Populus euphratica Oliv forest, in the extreme arid region northwest China, was estimated by application of Bowen ratio-energy balance method (BREB) during the growing season in 2005. During the growing season in 2005, total ETc was 446.96 mm. From the beginning of growing season, the ETc increased gradually, and reached its maximum value of 6.724 mm d−1 in the last fifteen days of June. Hereafter the ETc dropped rapidly, and reached its minimum value of 1.215 mm d−1 at the end of growing season. The variation pattern of crop coefficient (Kc) was similar to that of ETc. From the beginning of growing season, the Kc value increased rapidly, and reached its maximum value of 0.623 in the last fifteen days of June. Afterward, with slowing growth of P. euphratica, the value dropped rapidly to the end of growing season. According to this study, the ETc of P. euphratica forest is affected not only by meteorological factors, but by water content in soil.  相似文献   

11.
A 2 years field study was conducted to develop crop coefficients for field-grown tomato (Lycopersicon esculentum Mill.), a major irrigated crop in the Jordan Valley, under drip irrigation system with black plastic mulch. The area of the study field was 1.5 ha surrounded by many similar tomato fields. Actual crop evapotranspiration (ETC) was measured using eddy covariance technique which distinguishes this study from other previous studies conducted in the Jordan Valley that relied on the old indirect approach for ETC estimation based on the soil water balance.Grass reference evapotranspiration (ETO) was determined by using the FAO Penman–Monteith method utilizing the agrometeorological parameters measured at the study site. The crop coefficient (KC) was determined as the ratio of ETC to ETO. The tomato crop coefficients were determined following the FAO crop coefficient model. The average crop coefficient during the midseason growth stage (KC mid) was 0.82 which is far below the adjusted FAO crop coefficient of 1.19 by about 31%. Also, the late season crop coefficient (KC end) was much lower than the adjusted FAO crop coefficient of 0.76 by about 40%. Moreover, the weighted average crop coefficient over the entire growing season (KC GS) was 0.69, which is about 36% lower than the FAO corresponding value. In fact, the low KC values obtained reflect the effect of practicing both localized drip irrigation and plastic mulch covering. This study showed that there is a big difference between the reported FAO crop coefficients and the one measured in the filed using a precise approach. These exact updated values of crop coefficients will enhance future estimation of crop water requirements and hence irrigation management of tomato crop which is the major irrigated crop in the Jordan Valley.  相似文献   

12.
Improved water management through precise crop water requirement determination is needed to improve the efficiency of water use in agricultural production. As a result, appropriate irrigation scheduling which can lead to water saving, improvements in the yield and income can be designed. In this study, three non-weighing lysimeters having dimensions of 2 m × 1 m × 2 m were used to determine water requirement (ETc) and crop coefficient (Kc) of onion (Bombay Red cultivar). Reference crop evapotranspiration (ETo) was determined using weather data recorded at the site. The measured ETc values were 51.3 mm, 140.5 mm, 144.8 mm, and 53.9 mm during the initial, development, mid-season and late season growth stages respectively. Crop coefficient (Kc) values, calculated as ratio of ETc to ETo, were 0.47, 0.99, and 0.46 during the initial and mid-season stages and end of late season. Furthermore, third-order polynomials were fitted well to predict the crop coefficient values as functions of growing degree-days (GDD).  相似文献   

13.
A trial was carried out at the lysimeter station in southern Italy on muskmelon crop cultivated with and without plastic mulch during spring–summer in 2001 and 2003. The objective of the experiment was to verify the reliability of the crop evapotranspiration (ETc) estimate by means of the most recent update of the FAO Irrigation and Drainage Paper 56, in comparison with ETc directly measured by two mechanical weighing lysimeters.Crop coefficients (Kc) were determined during different development stages based on lysimetric measures of ETc and of the reference evapotranspiration (ET0) estimated through the Penman Monteith and the Hargreaves methods. On melon crop cultivated without plastic mulch, corrected crop coefficients (Kc) following the last FAO Irrigation and Drainage Paper 56 procedures were well correlated with those measured from lysimeter and were as reliable as the ETc estimate. In contrast, values of Kc proposed by FAO Irrigation and Drainage Paper 56 for crops grown with plastic mulch were meaningfully lowers than those measured from lysimeter, loading to an underestimation of water consumption. On muskmelon, cultivated with and without plastic mulch, it is necessary to adapt development phase duration, suggested by the FAO Irrigation and Drainage Paper 56, to the real phenology of the employed cultivar. An adaptation of the phenology to the real duration of the single phases is essential to avoid error in the estimate of ETc.  相似文献   

14.
The methods for estimating temporal and spatial variation of crop evapotranspiration are useful tools for irrigation scheduling and regional water allocation. The purpose of this study was to develop a method for mapping spatial distribution of crop evapotranspiration and analyze the temporal and spatial variation of spring wheat evapotranspiration in the Shiyang river basin in Northwest China in the last 50 years. DEM-based methods were employed to estimate the spatial distribution of spring wheat evapotranspiration (ETc). Reference crop evapotranspiration (ET0) was calculated with the Penman–Monteith equation using meteorological data measured from eight stations in the basin. Crop coefficient (Kc) was determined from measured evapotranspiration in spring wheat season in the region. The results showed that ETc gradually increased in the upper reaches of the basin in the last 50 years, while the middle reaches showed a significant decreasing trend, and in other regions, no significant trend was found. These changes can be attributed to expansion of irrigation areas and climate change. The multiple regression analysis between ETc and altitude, latitude, and aspect were carried out for eight weather stations and the relationships were used to map ETc for the basin. The spatial variations of ETc were analyzed for three typical growing seasons based their precipitation. Results showed that long-term average ETc over cultivated land was increasing from 270 mm in southwest mountainous area to 591 mm in northeast oasis of the basin, and the relative error between the estimated ETc in spring wheat growing season by reference evapotranspiration (ET0) and crop coefficient (Kc), and the interpolated ETc was within 11.1%.  相似文献   

15.
Actual measurements of water uptake and use, and the effect of water quality considerations on evapotranspiration (ET), are indispensable for understanding root zone processes and for the development of predictive plant growth models. The driving hypothesis of this research was that root zone stress response mechanisms in perennial fruit tree crops is dynamic and dependent on tree maturity and reproductive capability. This was tested by investigating long-term ET, biomass production and fruit yield in date palms (Phoenix dactylifera L., cv. Medjool) under conditions of salinity. Elevated salinity levels in the soil solution were maintained for 6 years in large weighing-drainage lysimeters by irrigation with water having electrical conductivity (EC) of 1.8, 4, 8 and 12 dS m−1. Salinity acted dynamically with a long-term consequence of increasing relative negative response to water consumption and plant growth that may be explained either as an accumulated effect or increasing sensitivity. Sensitivity to salinity stabilized at the highest measured levels after the trees matured and began producing fruit. Date palms were found to be much less tolerant to salinity than expected based on previous literature. Trees irrigated with low salinity (EC = 1.8 dS m−1) water were almost twice the size (based on ET and growth rates) than trees irrigated with EC = 4 dS m−1 water after 5 years. Fruit production of the larger trees was 35-50% greater than for the smaller, salt affected, trees. Long term irrigation with very high EC of irrigation water (8 and 12 dS m−1) was found to be commercially impractical as growth and yield were severely reduced. The results raise questions regarding the nature of mechanisms for salinity tolerance in date palms, indicate incentives to irrigate dates with higher rather than lower quality water, and present a particular challenge for modelers to correctly choose salinity response functions for dates as well as other perennial crops.  相似文献   

16.
Precision irrigation management and scheduling, as well as developing site- and cultivar-specific crop coefficient (Kc), and yield response factor to water deficit (ky) are very important parameters for efficient use of limited water resources. This study investigated the effect of deficit irrigation, applied at different growth stages of peanut with sprinkler irrigation in sandy soil, on field peanut evapotranspiration (ETc), yield and yield components, and water use efficiencies (IWUE and WUE). Also, yield response factor to water deficit (ky), and site- and cultivar-specific Kc were developed. Four treatments were imposed to deficit irrigation during late vegetative and early flowering, late flowering and early pegging, pegging, and pod formation growth stages of peanut, and compared with full irrigation in the course of the season (control). A soil water balance equation was used to estimate crop evapotranspiration (ETc). The results revealed that maximum seasonal ETc was 488 mm recorded with full irrigation treatment. The maximum value of Kc (0.96) occurred at the fifth week after sowing, this value was less than the generic values listed in FAO-33 and -56 (1.03 and 1.15), respectively. Dry kernels yield among treatments differed by 41.4%. Deficit irrigation significantly affected yields, where kernels yield decreased by 28, 39, 36, and 41% in deficit-irrigated late vegetative and early flowering, late flowering and early pegging, pegging, and pod formation growth stages, respectively, compared with full irrigation treatment. Peanut yields increased linearly with seasonal ETc (R2 = 0.94) and ETc/ETp (R2 = 0.92) (ETp = ETc with no water stress). The yield response factor (ky), which indicates the relative reduction in yield to relative reduction in ETc, averaged 2.9, was higher than the 0.7 value reported by Doorenbos and Kassam [Doorenbos, J., Kassam, A.H., 1979. Yield response to water. FAO Irrigation and Drainage Paper 33, Rome, Italy, 193 pp.], the high ky value reflects the great sensitivity of peanut (cv. Giza 5) to water deficit. WUE values varied considerably with deficit irrigation treatments, averaging 6.1 and 4.5 kg ha−1 mm−1 (dry-mass basis) for pods and kernels, respectively. Differences in WUE between the driest and wettest treatment were 31.3 and 31.3% for pods and kernels, respectively. Deficit irrigation treatments, however, impacted IWUE much more than WUE. Differences in IWUE between the driest and wettest treatment were 33.9 and 33.9% for pods and kernels, respectively. The results revealed that better management of available soil water in the root zone in the course of the season, as well as daily and seasonal accurate estimation of ETc can be an effective way for best irrigation scheduling and water allocation, maximizing yield, and optimizing economic return.  相似文献   

17.
This study was performed to test three methods based on the FAO-56 “dual” crop coefficient approach to estimate actual evapotranspiration (AET) for winter wheat under different irrigation treatments in the semi-arid region of Tensift Al Haouz, Marrakech (center of Morocco). The three methods differ in the calculation of the basal crop coefficient (Kcb) and the fraction of soil surface covered by vegetation (fc). The first approach strictly follows the FAO-56 procedure, with Kcb given in the FAO-56 tables and fc calculated from Kcb (No-Calibration method). The second method uses local Kcb and fc values estimated from field measurements (Local-Calibration method) and the last approach uses a remotely-sensed vegetation index to estimate Kcb and fc (NDVI-Calibration method). The analysis was performed on three fields using actual (AET) measured by Eddy Correlation systems. It was shown that the Local-Calibration approach gave best results. Accurate estimates of Kcb and fc were necessary for FAO-56 “dual” crop coefficient application. The locally derived Kcb for winter wheat taken at initial, mid-season, and maturity crop growth were 0.15, 0.90 and 0.23, respectively. The Kcb value at the mid-season stage was found to be considerably less than that suggested by the FAO-56.  相似文献   

18.
This paper describes the use of satellite-based remote sensing (RS) data and geographic information system (GIS) tools for estimating seasonal crop evapotranspiration in Mahi Right Bank Canal (MRBC) command area of Gujarat, India. Crop coefficients (Kc) for various major crops grown in MRBC were estimated, empirically, from the RS derived soil adjusted vegetation index (SAVI) values. A reference crop evapotranspiration (ET0) map was generated from point meteorological observations. The Kc and ET0 maps were combined to generate seasonal crop evapotranspiration (ETcrop) map which highlighted spatial variation in ETcrop ranging from more than 600 mm for healthy tobacco crops to less than 150 mm for very poor wheat crops.  相似文献   

19.
Use of literature crop coefficient (K c) values for quantifying evapotranspiration (ETc) under non-standard conditions such as plastic mulch, shallow water table, and sub-tropical conditions can lead to inaccurate ETc estimates. A 5-year experiment was conducted for fall crop growing seasons in south Florida to quantity bi-weekly ETc and K c for bell pepper grown under shallow water table and plastic mulch environments using large drainage lysimeters. The ETc values varied from 205 to 320 mm with a seasonal average of 267 mm. Average K c values for bell pepper for development, mid-season, and late stages were 1.05, 1.21, and 1.28, respectively. Higher than literature initial K c values were due to rainfall and use of sub-irrigation system to maintain artificially high water table which results in high soil moisture in the bare soil area—such high moisture results in high evaporation. The K c values from this study were statistically higher than literature values. Use of literature K c values resulted in underestimating ETc by 27–37%. The K c values would provide improved estimates of sub-irrigated pepper ETc in subtropical Florida and elsewhere with similar environment.  相似文献   

20.
Accurate estimation of the reference crop evapotranspiration (ET0) is investigated due to its critical role in affecting calculation of crop water use and efficiency in agricultural ecosystems. The main emphasis in this paper is to clarify the possible uncertainty in the estimation of ET0 associated with using un-calibrated Ångström-Prescott (A-P) coefficients. We first calibrated the coefficients using long-term data records from 34 sites in the Yellow River basin in China, and then applied these coefficients to estimate short wave irradiance (Rs) and ET0 at 16 sites to evaluate the difference in ET0 between the FAO recommended and the locally calibrated. We found that the direct use of the FAO recommended coefficients significantly affected the estimation of ET0 at most sites, which differed from −3% to 15% at daily scale and from −4% to 16% at monthly scale from the locally calibrated ones. These differences are comparable with or larger than those caused by some alternatives of the FAO recommended algorithms for net irradiance or vapor pressure, which further highlights the importance of using the locally calibrated coefficients. The degree of difference in ET0 showed a significant threshold relation with altitude and longitude in such a way that relatively small impact lies around 2233 m and 98°E, and away from these, the effect begins to increase. Given the large overestimation in water use as a consequence of the significant overestimation in ET0 associated with the direct use of the FAO coefficients, especially in those high yield production areas with altitude <1200 m, we developed several relationships between the A-P coefficient a, b, (a + b) and other easily obtainable factors (altitude, longitude and air temperature). A three-step procedure was recommended in applying these relations, which was (1) determine if calibration is needed or not for a given location; (2) estimate one of the A-P coefficients, either a or b if calibration is needed; (3) estimate the remaining coefficient using relations of (a + b) due to its higher coefficient of determination. In summary, we have revealed the errors and areas that are most affected when using the un-calibrated coefficients, and discussed the consequence of such error on agricultural production, and proposed practical solutions to avoid large errors. These results are intended to make the research community aware of such errors so that more appropriate choice of these coefficients is made. We hope that similar assessment will be done in other climates, contributing to managing water resources efficiently in water basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号