首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 514 毫秒
1.
The effects of four intravenous combinations, xylazine (0.7 mg/kg)/methadone (0.1 mg/kg), xylazine (0.7 mg/kg)/buprenorphine (0.004 and 0.006 mg/kg) and acepromazine (0.05 mg/kg)/buprenorphine (0.006 mg/kg) on arterial blood pressure, central venous pressure, heart rate, respiratory rate and blood gases were studied in four experimental ponies. With xylazine/buprenorphine and xylazine/methadone onset of sedation was rapid and obvious and although no surgical or diagnostic procedures were carried out, sedation was judged to be satisfactory for the next 30 to 40 minutes. Onset of sedation after intravenous injection of acepromazine/buprenorphine was slower and less obvious, while its duration was difficult to determine for the ponies could be aroused by noise even when apparently fully sedated. The observations indicated that at the stated doses all the drug combinations should be safe for clinical use.  相似文献   

2.
The effect of yohimbine pretreatment on gastric emptying of a liquid marker in horses was evaluated by measuring serum concentrations of acetaminophen. Gastric emptying was determined in normal, fasted horses, in horses given endotoxin (E. coli 055 B5; 0.2 microg/kg) intravenously, and in horses given yohimbine (0.25 mg/kg, IV, over 30 minutes) plus endotoxin. Acetaminophen (20 mg/kg) was given by stomach tube 15 minutes after the endotoxin infusion. Blood samples for acetaminophen analysis were collected, and time to reach the peak serum concentration (Tmax), the maximum serum concentration (Cmax) and the area under the acetaminophen serum concentration versus time curve (AUC) were determined for each treatment group. Endotoxin significantly increased Tmax, indicating a profound delay in gastric emptying and yohimbine pretreatment significantly (P < or = 0.05) prevented this effect.  相似文献   

3.
The aim of this study was to measure the effects of specific commonly used sedative protocols on equine solid phase gastric emptying rate, using the 13C-octanoic acid breath test (13C-OABT). The gastric emptying of a standard 13C-labelled test meal was measured once weekly in 8 mature horses over two 4 week treatment periods. Each horse acted as its own control. In treatment Period 1, saline (2 ml i.v.), xylazine (0.5 mg/kg i.v.), detomidine (0.01 mg/kg i.v.) or detomidine/butorphanol combination (0.01/0.02 mg/kg i.v.) was administered in randomised order after ingestion of the test meal. During treatment Period 2, test meal consumption was followed by saline, xylazine (1.0 mg/kg i.v.), or detomidine (0.03 mg/kg i.v.) administration, or preceded by acepromazine (0.05 mg/kg i.m.) in randomised order. The 13C:12C ratio of sequential expiratory breath samples was determined by isotope ratio mass spectrometry, and used to measure the gastric half-emptying time, t 1/2, and duration of the lag phase, t lag, for each of the 64 tests. In treatment Period 1, detomidine/butorphanol prolonged both t 1/2 and t lag with respect to xylazine 0.5 mg/kg and the saline control (P < 0.05). In Period 2, detomidine 0.03 mg/kg delayed each parameter with respect to saline, acepromazine and xylazine 1.0 mg/kg (P < 0.001). Xylazine 1.0 mg/kg also lengthened t lag relative to the saline control (P = 0.0004), but did not cause a significant change in t 1/2. Comparison of treatment periods showed that the inhibitory effect of detomidine on gastric emptying rate was dose related (P<0.05). These findings may have clinical significance for case selection when these agents are used for purposes of sedation and/or analgesia.  相似文献   

4.
OBJECTIVE: To determine sedative, cardiorespiratory and metabolic effects of xylazine hydrochloride, detomidine hydrochloride, and a combination of xylazine and acepromazine administered i.v. at twice the standard doses in Thoroughbred horses recuperating from a brief period of maximal exercise. ANIMALS: 6 adult Thoroughbreds. PROCEDURE: Horses were preconditioned by exercising them on a treadmill to establish a uniform level of fitness. Each horse ran 4 simulated races, with a minimum of 14 days between races. Simulated races were run at a treadmill speed that caused horses to exercise at 120% of their maximal oxygen consumption. Horses ran until they were fatigued or for a maximum of 2 minutes. One minute after the end of exercise, horses were treated i.v. with xylazine (2.2 mg/kg of body weight), detomidine (0.04 mg/kg), a combination of xylazine (2.2 mg/kg) and acepromazine (0.04 mg/kg), or saline (0.9% NaCl) solution. Treatments were randomized so that each horse received each treatment once, in random order. Cardiopulmonary indices were measured, and samples of arterial and venous blood were collected immediately before and at specific times for 90 minutes after the end of each race. RESULTS: All sedatives produced effective sedation. The cardiopulmonary depression that was induced was qualitatively similar to that induced by administration of these sedatives to resting horses and was not severe. Sedative administration after exercise prolonged the exercise-induced increase in body temperature. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of xylazine, detomidine, or a combination of xylazine-acepromazine at twice the standard doses produced safe and effective sedation in horses that had just undergone a brief, intense bout of exercise.  相似文献   

5.
Atipamezole antagonism of xylazine sedation was evaluated in six ponies. Atipamezole (0.15 mg/kg) or saline was injected intravenously 15 minutes after the ponies had been sedated with xylazine (1.0 mg/kg). Arterial blood pressure and gases, pulse and respiratory rates, the electrocardiogram, nose-to-ground distance and a subjective sedation score were recorded. The pretreatment nose-to-ground distance and PaO2 returned to normal sooner after atipamezole than after saline and the ponies' appetite and normal locomotion also recovered sooner. No significant differences were observed between the effects of saline and atipamezole on the other measurements.  相似文献   

6.
Antagonism of xylazine-pentobarbital anesthesia by yohimbine in ponies   总被引:1,自引:0,他引:1  
Effects of yohimbine on xylazine-pentobarbital anesthesia were evaluated in ponies. Five minutes after the IV injection of xylazine (1.1 mg/kg of body weight), pentobarbital sodium (12.7 mg/kg, IV) and additional xylazine (2.2 mg/kg, IM) were given and produced anesthesia in 12 ponies for 64.0 +/- 16.4 minutes (mean +/- SD) as well as immobilization for 89.8 +/- 34.2 minutes. Eleven ponies were given yohimbine (0.1 mg/kg, IV) 50 minutes after pentobarbital dosing. In these 11 ponies, durations of anesthesia and immobilization were shorter, 52.0 +/- 1.4 and 65.5 +/- 14.8 minutes, respectively. The xylazine-pentobarbital combination caused bradycardia that was reversed by yohimbine injection. Xylazine-pentobarbital produced a small, but steady, decrease of mean arterial blood pressure, which was compounded by yohimbine administration and was evident for approximately 2 minutes. Within a minute after yohimbine injection, the ponies' respiratory rate decreased and the length of inspiration and expiration and thoracic breathing increased. This lasted approximately 2 to 3 minutes and was followed by an increase in respiratory rate. The anesthesia also produced a decrease in PaO2 that gradually returned to base line in 12 control ponies, but was more pronounced in 11 ponies given yohimbine. The PaCO2, although remaining moderately high in control ponies, returned to base line after yohimbine injection. An increased pHa was seen 60 minutes after induction of anesthesia and was especially noticeable after yohimbine administration. Decreases in the number of WBC, hemoglobin content, PCV, plasma protein and serum aspartate transaminase resulting from xylazine-pentobarbital were reversed by yohimbine. Conversely, serum glucose values and creatine kinase activities were increased by xylazine-pentobarbital.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
ObjectiveTo evaluate the effects of methadone, administered alone or in combination with acepromazine or xylazine, on sedation and on physiologic values in dogs.Study designRandomized cross-over design.AnimalsSix adult healthy mixed-breed dogs weighing 13.5 ± 4.9 kg.MethodsDogs were injected intramuscularly with physiologic saline (Control), or methadone (0.5mg kg−1) or acepromazine (0.1 mg kg−1) or xylazine (1.0 mg kg−1), or acepromazine (0.05 mg kg−1) plus methadone (0.5 mg kg−1) or xylazine (0.5 mg kg−1) plus methadone (0.5 mg kg−1) in a randomized cross-over design, with at least 1-week intervals. Sedation, pulse rate, indirect systolic arterial pressure, respiratory rate (RR), body temperature and pedal withdrawal reflex were evaluated before and at 15-minute intervals for 90 minutes after treatment.ResultsSedation was greater in dogs receiving xylazine alone, xylazine plus methadone and acepromazine plus methadone. Peak sedative effect occurred within 30 minutes of treatment administration. Pulse rate was lower in dogs that received xylazine either alone or with methadone during most of the study. Systolic arterial pressure decreased only in dogs receiving acepromazine alone. When methadone was administered alone, RR was higher than in other treatments during most of the study and a high prevalence of panting was observed. In all treatments body temperature decreased, this effect being more pronounced in dogs receiving methadone alone or in combination with acepromazine. Pedal withdrawal reflex was absent in four dogs receiving methadone plus xylazine but not in any dog in the remaining treatments.Conclusions and clinical relevanceMethadone alone produces mild sedation and a high prevalence of panting. Greater sedation was achieved when methadone was used in combination with acepromazine or xylazine. The combination xylazine–methadone appears to result in better analgesia than xylazine administered alone. Both combinations of methadone/sedative were considered effective for premedication in dogs.  相似文献   

8.
OBJECTIVE: To assess the sedative and cardiopulmonary effects of medetomidine and xylazine and their reversal with atipamezole in calves. ANIMALS: 25 calves. PROCEDURES: A 2-phase (7-day interval) study was performed. Sedative characteristics (phase I) and cardiopulmonary effects (phase II) of medetomidine hydrochloride and xylazine hydrochloride administration followed by atipamezole hydrochloride administration were evaluated. In both phases, calves were randomly allocated to receive 1 of 4 treatments IV: medetomidine (0.03 mg/kg) followed by atipamezole (0.1 mg/kg; n = 6), xylazine (0.3 mg/kg) followed by atipamezole (0.04 mg/kg; 7), medetomidine (0.03 mg/kg) followed by saline (0.9% NaCl; 6) solution (10 mL), and xylazine (0.3 mg/kg) followed by saline solution (10 mL; 6). Atipamezole or saline solution was administered 20 minutes after the first injection. Cardiopulmonary variables were recorded at intervals for 35 minutes after medetomidine or xylazine administration. RESULTS: At the doses evaluated, xylazine and medetomidine induced a similar degree of sedation in calves; however, the duration of medetomidine-associated sedation was longer. Compared with pretreatment values, heart rate, cardiac index, and PaO(2) decreased, whereas central venous pressure, PaCO(2), and pulmonary artery pressures increased with medetomidine or xylazine. Systemic arterial blood pressures and vascular resistance increased with medetomidine and decreased with xylazine. Atipamezole reversed the sedative and most of the cardiopulmonary effects of both drugs. CONCLUSIONS AND CLINICAL RELEVANCE: At these doses, xylazine and medetomidine induced similar degrees of sedation and cardiopulmonary depression in calves, although medetomidine administration resulted in increases in systemic arterial blood pressures. Atipamezole effectively reversed medetomidine- and xylazine-associated sedative and cardiopulmonary effects in calves.  相似文献   

9.
OBJECTIVE: To evaluate the correlation between halftime of liquid-phase gastric emptying (T50), determined with nuclear scintigraphy using technetium Tc 99m pentetate, and absorption variables of orally administered acetaminophen. ANIMALS: 6 mature horses. PROCEDURE: Technetium Tc 99m pentetate (10 mCi) and acetaminophen (20 mg/kg of body weight) were administered simultaneously in 200 ml of water. Serial left and right lateral images of the stomach region were obtained with a gamma camera, and T50 determined separately for counts obtained from the left side, the right side and the geometric mean. Power exponential curves were used for estimation of T50 and modified R2 values for estimation of goodness of fit of the data. Serial serum samples were taken, and acetaminophen concentration was determined, using fluorescence polarization immunoassay. Maximum serum concentration (Cmax), time to reach maximum serum concentration (Tmax), area under the curve for 240 minutes and the absorption constant (Ka) were determined, using a parameter estimation program. Correlations were calculated, using the Spearman rank correlation coefficient. RESULTS: Correlations between T50 and Tmax and between T50 and Ka were significant. CONCLUSIONS AND CLINICAL RELEVANCE: Tmax and Ka are valuable variables in the assessment of liquid-phase gastric emptying using acetaminophen absorption. Acetaminophen absorption may be a valuable alternative to nuclear scintigraphy in the determination of gastric emptying rates in equine patients with normally functioning small intestine.  相似文献   

10.
OBJECTIVE: To determine antiemetic efficacy of prophylactic administration of dexamethasone and its influence on sedation in cats sedated with xylazine hydrochloride. ANIMALS: 6 healthy adult cats (3 males and 3 females). PROCEDURE: The prophylactic antiemetic effect of 4 doses of dexamethasone (1, 2, 4, and 8 mg/kg of body weight, IM) or saline (0.9% NaCl) solution (0.066 ml/kg, IM) administered 1 hour before administration of xylazine (0.66 mg/kg, IM) was evaluated. Cats initially were given saline treatment (day 0) and were given sequentially increasing doses of xylazine on days 7, 14, 21, and 28. After xylazine injection, all cats were observed for 30 minutes to allow assessment of frequency of emesis and time until onset of the first emetic episode.The influence of dexamethasone on xylazine-induced sedation in these cats also was evaluated. RESULTS: Prior treatment with 4 or 8 mg/kg of dexamethasone significantly reduced the frequency of emetic episodes and also significantly prolonged the time until onset of the first emetic episode after xylazine injection. Time until onset of the first emetic episode also was significantly prolonged for dexamethasone at a dose of 2 mg/kg. Time until onset of sedation after administration of xylazine was not altered by administration of dexamethasone. CONCLUSIONS AND CLINICAL RELEVANCE: Dexamethasone (4 or 8 mg/kg, IM) significantly decreased the frequency of emetic episodes induced by xylazine without compromising sedative effects in cats. Dexamethasone may be used prophylactically as an antiemetic in cats treated with xylazine.  相似文献   

11.
Norfloxacin, a 4-quinolone antibiotic, was administered orally to 4 healthy dogs at dosages of 11 and 22 mg/kg of body weight, every 12 hours for 4 days, with a 4-week interval between dosing regimens. Serum and tissue cage fluid (TCF) norfloxacin concentrations were measured at 0, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 8, 10, and 12 hours after the first and seventh dose of each dosing regimen. When administered at a dosage of 11 mg/kg, the mean peak serum concentration (Cmax) was 1.0 microgram/ml at 1 hour, the time of mean peak concentration (Tmax) after the first dose. After the seventh dose, the Cmax was 1.4 micrograms/ml at Tmax of 1.5 hours. The Tmax for the TCF concentration was 5 hours, with Cmax of 0.3 microgram/ml and 0.7 microgram/ml after the first and seventh dose, respectively. When administered at a dosage of 22 mg/kg, the serum Tmax was 2 hours after the first dose, with Cmax of 2.8 micrograms/ml. After the seventh dose, the serum Tmax was 1.5 hours, with Cmax of 2.8 micrograms/ml. The Tmax for the TCF concentration was 5 hours after the first and seventh doses, with Cmax of 1.2 micrograms/ml and 1.6 micrograms/ml, respectively. After the seventh dose, the serum elimination half-life was 6.3 hours for a dosage of 11 mg/kg and was 6.7 hours for a dosage of 22 mg/kg. For serum concentration, the area under the curve from 0 to 12 hours (AUC0----12) was 8.77 micrograms.h/ml and 18.27 micrograms.h/ml for dosages of 11 mg/kg and 22 mg/kg, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
ABSTRACT

Aim: To evaluate the sedative and clinical effects of I/V xylazine, detomidine, medetomidine and dexmedetomidine in miniature donkeys.

Methods: Seven clinically healthy, male adult miniature donkeys with a mean age of 6 years and weight of 105?kg, were assigned to five I/V treatments in a randomised, cross-over design. They received either 1.1?mg/kg xylazine, 20?μg/kg detomidine, 10?μg/kg medetomidine, 5?μg/kg dexmedetomidine or saline, with a washout period of ≥7 days. The degree of sedation was scored using a 4-point scale by three observers, and heart rate (HR), respiration rate (RR), rectal temperature and capillary refill time (CRT) were recorded immediately before and 5, 10, 15, 30, 60, 90 and 120 minutes after drug administration.

Results: All saline-treated donkeys showed no sedation at any time, whereas the donkeys treated with xylazine, detomidine, medetomidine and dexmedetomidine had mild or moderate sedation between 5 and 60 minutes after treatment, and no sedation after 90 minutes. All animals recovered from sedation without complication within 2 hours. The mean HR and RR of saline-treated donkeys did not change between 0 and 120 minutes after administration, but the mean HR and RR of donkeys treated with xylazine, detomidine, medetomidine and dexmedetomidine declined between 5 and 60 minutes after drug administration. The mean rectal temperature of all treated donkeys did not change between 0 and 120 minutes after administration. The CRT for all donkeys was ≤2 seconds at all times following each treatment.

Conclusions and clinical relevance: Administration of xylazine at 1.1?mg/kg, detomidine at 20?μg/kg, medetomidine at 10?μg/kg and dexmedetomidine at 5?μg/kg resulted in similar sedation in miniature donkeys. Therefore any of the studied drugs could be used for sedation in healthy miniature donkeys.  相似文献   

13.
This study aimed to evaluate the effects of a constant rate infusion (CRI) of xylazine or xylazine in combination with lidocaine on nociception, sedation, and physiologic values in horses. Six horses were given intravenous (IV) administration of a loading dose (LD) of 0.55 mg/kg of xylazine followed by a CRI of 1.1 mg/kg/hr. The horses were randomly assigned to receive three treatments, on different occasions, administered 10 minutes after initiation of the xylazine CRI, as follows: control, physiologic saline; lidocaine low CRI (LLCRI), lidocaine (LD: 1.3 mg/kg, CRI: 0.025 mg/kg/min); and lidocaine high CRI (LHCRI), lidocaine (LD: 1.3 mg/kg, CRI: 0.05 mg/kg/min). A blinded observer assessed objective and subjective data for 50 minutes during the CRIs. In all treatments, heart and respiratory rates decreased, end-tidal carbon dioxide concentration increased, and moderate to intense sedation was observed, but no significant treatment effect was detected in these variables. Ataxia was significantly higher in LHCRI than in the control treatment at 20 minutes of infusion. Compared with baseline values, nociceptive threshold increased to as much as 79% in the control, 190% in LLCRI, and 158% in LHCRI. Nociceptive threshold was significantly higher in LLCRI (at 10 and 50 minutes) and in LHCRI (at 30 minutes) than in the control treatment. The combination of CRIs of lidocaine with xylazine produced greater increases in nociceptive threshold compared with xylazine alone. The effects of xylazine on sedation and cardiorespiratory variables were not enhanced by the coadministration of lidocaine. The potential to increase ataxia may contraindicate the clinical use of LHCRI, in combination with xylazine, in standing horses.  相似文献   

14.
The sedative effect induced by administering xylazine hydrochloride or detomidine hydrochloride with or without butorphanol tartrate to standing dairy cattle was compared in two groups of six adult, healthy Holstein cows. One group received xylazine (0.02 mg/kg i.v.) followed by xylazine (0.02 mg/kg) and butorphanol (0.05 mg/kg i.v.) 1 week later. Cows in Group B received detomidine (0.01 mg/kg i.v.) followed by detomidine (0.01 mg/kg i.v.) and butorphanol (0.05 mg/kg i.v.) 1 week later. Heart rate, respiratory rate, and arterial blood pressure were monitored and recorded before drugs were administered and every 10 minutes for 1 hour after drug administration. The degree of sedation was evaluated and graded. Cows in each treatment group had significant decreases in heart rate and respiratory rate after test drugs were given. Durations of sedation were 49.0 +/- 12.7 minutes (xylazine), 36.0 +/- 14.1 (xylazine with butorphanol), 47.0 +/- 8.1 minutes (detomidine), and 43.0 +/- 14.0 minutes (detomidine with butorphanol). Ptosis and salivation were observed in cows of all groups following drug administration. Slow horizontal nystagmus was observed from three cows following administration of detomidine and butorphanol. All cows remained standing while sedated. The degree of sedation seemed to be most profound in cows receiving detomidine and least profound in cows receiving xylazine.  相似文献   

15.
OBJECTIVE: To evaluate the effects of intranasal administration of midazolam and xylazine (with or without ketamine) and detomidine and their specific antagonists in parakeets. DESIGN: Prospective study. ANIMALS: 17 healthy adult Ring-necked Parakeets (Psittacula krameri) of both sexes (mean weight, 128.83+/-10.46 g [0.28+/-0.02 lb]). PROCEDURE: The dose of each drug or ketamine-drug combination administered intranasally that resulted in adequate sedation (ie, unrestrained dorsal recumbency maintained for >or=5 minutes) was determined; the onset of action, duration of dorsal recumbency, and duration of sedation associated with these treatments were evaluated. The efficacy of the reversal agents flumazenil, yohimbine, and atipamezole was also evaluated. RESULTS: In parakeets, intranasal administration of midazolam (7.3 mg/kg [3.32 mg/lb]) or detomidine (12 mg/kg [5.45 mg/lb]) caused adequate sedation within 2.7 and 3.5 minutes, respectively. Combinations of midazolam (3.65 mg/kg [1.66 mg/lb]) and xylazine (10 mg/kg [4.55 mg/lb]) with ketamine (40 to 50 mg/kg [18.2 to 22.7 mg/lb]) also achieved adequate sedation. Compared with detomidine, duration of dorsal recumbency was significantly longer with midazolam. Intranasal administration of flumazenil (0.13 mg/kg [0.06 mg/lb]) significantly decreased midazolam-associated recumbency time. Compared with the xylazineketamine combination, duration of dorsal recumbency was longer after midazolam-ketamine administration. Intranasal administration of flumazenil, yohimbine, or atipamezole significantly decreased the duration of sedation induced by midazolam, xylazine, or detomidine, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Intranasal administration of sedative drugs appears to be an acceptable method of drug delivery in Ring-necked Parakeets. Reversal agents are also effective when administered via this route.  相似文献   

16.
The effect of combinations of nalbuphine (0.3 mg/kg) with either detomidine (10 μg/kg) or acepromazine (50 μg/kg) was investigated in ponies. Nalbuphine enhanced the degree of sedation produced by both sedatives; sedation with detomidine and nalbuphine was profound. Cardiovascular and respiratory effects were mild and could usually be attributed to the effect of the sedative itself. Side effects were minimal and gave no cause for concern. It was concluded that nalbuphine, in combination with acepromazine or detomidine, is a safe and effective sedative for use in ponies.  相似文献   

17.
Trials were conducted to test the ability of yohimbine, 4-aminopyridine and doxapram given by intravenous injection to antagonise xylazine sedation in red deer (Cervus elaphus). Yohimbine produced the best and most consistent result. The mean time taken for 34 animals to stand spontaneously after receiving yohimbine (0.2 to 0.25 mg/kg) was 2 minutes 25 seconds and this occurred, on average, 33 minutes after the initial doze of xylazine. Control deer took 67 and 104 minutes on average to stand after receiving intravenous (0.64-0.96 mg/kg) and intramuscular (1.0-1.5 mg/kg) injections of xylazine respectively. Two deer which received an overdose of xylazine (4 mg/kg) recovered 3 and 9 minutes respectively after receiving yohimbine. Two deer given a high intravenous dose of yohimbine (1.0 mg/kg) became mildly nervous and anxious, but returned to normal within an hour. 4-aminopyridine (0.3 mg/kg) alone produced some arousal from xylazine sedation (0.6-1.0 mg/kg) but was inconsistent. In combination with yohimbine (0.125 mg/kg) it produced rapid recovery in two deer but caused convulsions in two other deer. Doxapram (1 mg/kg) produced respiratory stimulation and some arousal from xylazine sedation (0.6-1.0 mg/kg) in the majority of deer but the effect was transitory. Animals relapsed into moderate sedation and recumbency within 10 minutes and required vigorous stimulation to arouse them again. Yohimbine, administered by intravenous injection at a dose rate of 0.2 to 0.25 mg/kg, appears to be a safe and reliable drug for the reversal of xylazine sedation in deer.  相似文献   

18.
Trials were conducted to test the ability of yohimbine, 4-aminopyridine and doxapram given by intravenous injection to antagonise xylazine sedation in red deer (Cervus elaphus). Yohimbine produced the best and most consistent result. The mean time taken for 34 animals to stand spontaneously after receiving yohimbine (0.2 to 0.25 mg/kg) was 2 minutes 25 seconds and this occurred, on average, 33 minutes after the initial doze of xylazine. Control deer took 67 and 104 minutes on average to stand after receiving intravenous (0.64–0.96 mg/kg) and intramuscular (1.0–1.5 mg/kg) injections of xylazine respectively. Two deer which received an overdose of xylazine (4 mg/kg) recovered 3 and 9 minutes respectively after receiving yohimbine. Two deer given a high intravenous dose of yohimbine (1.0 mg/kg) became mildly nervous and anxious, but returned to normal within an hour. 4-aminopyridine (0.3 mg/kg) alone produced some arousal from xylazine sedation (0.6–1.0 mg/kg) but was inconsistent. In combination with yohimbine (0.125 mg/kg) it produced rapid recovery in two deer but caused convulsions in two other deer.

Doxapram (1 mg/kg) produced respiratory stimulation and some arousal from xylazine sedation (0.6–1.0 mg/kg) in the majority of deer but the effect was transitory. Animals relapsed into moderate sedation and recumbency within 10 minutes and required vigorous stimulation to arouse them again.

Yohimbine, administered by intravenous injection at a dose rate of 0.2 to 0.25 mg/kg, appears to be a safe and reliable drug for the reversal of xylazine sedation in deer.  相似文献   

19.
Effects of xylazine on renal function and plasma glucose in ponies   总被引:2,自引:0,他引:2  
The intravenous administration of xylazine (1.1 mg/kg bodyweight) in six ponies resulted in a significant increase in urine output over two hours, with maximum flow occurring between 30 and 60 minutes after injection. Urine specific gravity, osmolality and glucose concentration decreased. Renal clearance of endogenous creatinine was unchanged. Significant increases in the excretion of potassium and chloride occurred. Plasma glucose concentration was increased 30 minutes after the administration of xylazine by a mean value of 37 per cent. Serum osmolality and sodium, potassium and chloride concentrations remained unchanged.  相似文献   

20.
OBJECTIVE: To evaluate the sedative, analgesic, and cardiorespiratory effects of intramascular (IM) romifidine in cats. STUDY DESIGN: Prospective, randomized experimental trial. ANIMALS: Ten healthy adult cats. METHODS: Romifidine (100, 200, and 400 microg kg(-1)) or xylazine (1 mg kg(-1)) was given IM in a cross-over study design. Heart rate (HR), respiratory rate (RR), rectal temperature (RT), hemoglobin saturation, oscillometric arterial pressure, and scores for sedation, muscle relaxation, position, auditory response, and analgesia were determined before and after drug administration. Time to recumbency, duration of recumbency, and time to recover from sedation were determined. Subjective evaluation and cardiorespiratory variables were recorded before and at regular intervals for 60 minutes after drug administration. RESULTS: Bradycardia developed in all cats that were given romifidine or xylazine. No other significant differences in physiologic parameters were observed from baseline values or between treatments. Increasing the dose of romifidine did not result in increased sedation or muscle relaxation. Cats given xylazine showed higher sedation and muscle relaxation scores over time. Analgesia scores were significantly higher after administration of romifidine (400 microg kg(-1)) and xylazine (1 mg kg(-1)) than after romifidine at 100 or 200 microg kg(-1). Duration of lateral recumbency was not significantly different between treatments; however, cats took longer to recover after administration of 400 micro g kg(-1) romifidine. CONCLUSIONS AND CLINICAL RELEVANCE: Bradycardia is the most important adverse effect after IM administration of romifidine at doses ranging from 100 to 400 microg kg(-1) or 1 mg kg(-1) of xylazine in cats. The sedative effects of romifidine at 200 microg kg(-1) are comparable to those of 1 mg kg(-1) of xylazine, although muscle relaxation and analgesia were significantly less with romifidine than with xylazine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号