首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
OBJECTIVE: To characterize pharmacokinetics of voriconazole in horses after oral and IV administration and determine the in vitro physicochemical characteristics of the drug that may affect oral absorption and tissue distribution. ANIMALS: 6 adult horses. PROCEDURES: Horses were administered voriconazole (1 mg/kg, IV, or 4 mg/kg, PO), and plasma concentrations were measured by use of high-performance liquid chromatography. In vitro plasma protein binding and the octanol:water partition coefficient were also assessed. RESULTS: Voriconazole was adequately absorbed after oral administration in horses, with a systemic bioavailability of 135.75 +/- 18.41%. The elimination half-life after a single orally administered dose was 13.11 +/- 2.85 hours, and the maximum plasma concentration was 2.43 +/- 0.4 microg/mL. Plasma protein binding was 31.68%, and the octanol:water partition coefficient was 64.69. No adverse reactions were detected during the study. CONCLUSIONS AND CLINICAL RELEVANCE: Voriconazole has excellent absorption after oral administration and a long half-life in horses. On the basis of the results of this study, it was concluded that administration of voriconazole at a dosage of 4 mg/kg, PO, every 24 hours will attain plasma concentrations adequate for treatment of horses with fungal infections for which the fungi have a minimum inhibitory concentration 相似文献   

2.
OBJECTIVE: To determine penetration of topically and orally administered voriconazole into ocular tissues and evaluate concentrations of the drug in blood and signs of toxicosis after topical application in horses. ANIMALS: 11 healthy adult horses. PROCEDURE: Each eye in 6 horses was treated with a single concentration (0.5%, 1.0%, or 3.0%) of a topically administered voriconazole solution every 4 hours for 7 doses. Anterior chamber paracentesis was performed and plasma samples were collected after application of the final dose. Voriconazole concentrations in aqueous humor (AH) and plasma were measured via high-performance liquid chromatography. Five horses received a single orally administered dose of voriconazole (4 mg/kg); anterior chamber paracentesis was performed, and voriconazole concentrations in AH were measured. RESULTS: Mean +/- SD voriconazole concentrations in AH after topical administration of 0.5%, 1.0%, and 3.0% solutions (n = 4 eyes for each concentration) were 1.43 +/- 0.37 microg/mL, 2.35 +/- 0.78 microg/mL, and 2.40 +/- 0.29 microg/mL, respectively. The 1.0% and 3.0% solutions resulted in significantly higher AH concentrations than the 0.5% solution, and only the 3.0% solution induced signs of ocular toxicosis. Voriconazole was detected in the plasma for 1 hour after the final topically administered dose of all solutions. Mean +/- SD voriconazole concentration in AH after a single orally administered dose was 0.86 +/- 0.22 microg/mL. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that voriconazole effectively penetrated the cornea in clinically normal eyes and reached detectable concentrations in the AH after topical administration. The drug also penetrated noninflamed equine eyes after oral administration. Low plasma concentrations of voriconazole were detected after topical administration.  相似文献   

3.
OBJECTIVE: To determine the pharmacokinetics of fluconazole in horses. ANIMALS: 6 clinically normal adult horses. PROCEDURE: Fluconazole (10 mg/kg of body weight) was administered intravenously or orally with 2 weeks between treatments. Plasma fluconazole concentrations were determined prior to and 10, 20, 30, 40, and 60 minutes and 2, 4, 6, 8, 10, 12, 24, 36, 48, 60, and 72 hours after administration. A long-term oral dosing regimen was designed in which all horses received a loading dose of fluconazole (14 mg/kg) followed by 5 mg/kg every 24 hours for 10 days. Fluconazole concentrations were determined in aqueous humor, plasma, CSF, synovial fluid, and urine after administration of the final dose. RESULTS: Mean (+/- SD) apparent volume of distribution of fluconazole at steady state was 1.21+/-0.01 L/kg. Systemic availability and time to maximum plasma concentration following oral administration were 101.24+/-27.50% and 1.97+/-1.68 hours, respectively. Maximum plasma concentrations and terminal half-lives after IV and oral administration were similar. Plasma, CSF, synovial fluid, aqueous humor, and urine concentrations of fluconazole after long-term oral administration of fluconazole were 30.50+/-23.88, 14.99+/-1.86, 14.19+/-5.07, 11.39+/-2.83, and 56.99+/-32.87 microg/ml, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Bioavailability of fluconazole was high after oral administration to horses. Long-term oral administration maintained plasma and body fluid concentrations of fluconazole above the mean inhibitory concentration (8.0 mg/ml) reported for fungal pathogens in horses. Fluconazole may be an appropriate agent for treatment of fungal infections in horses.  相似文献   

4.
OBJECTIVE: To determine the pharmacokinetics of acetazolamide administered IV and orally to horses. ANIMALS: 6 clinically normal adult horses. PROCEDURE: Horses received 2 doses of acetazolamide (4 mg/kg of body weight, IV; 8 mg/kg, PO), and blood samples were collected at regular intervals before and after administration. Samples were assayed for acetazolamide concentration by high-performance liquid chromatography, and concentration-time data were analyzed. RESULTS: After IV administration of acetazolamide, data analysis revealed a median mean residence time of 1.71 +/- 0.90 hours and median total body clearance of 263 +/- 38 ml/kg/h. Median steady-state volume of distribution was 433 +/- 218 ml/kg. After oral administration, mean peak plasma concentration was 1.90 +/- 1.09 microg/ml. Mean time to peak plasma concentration was 1.61 +/- 1.24 hours. Median oral bioavailability was 25 +/- 6%. CONCLUSIONS AND CLINICAL RELEVANCE: Oral pharmacokinetic disposition of acetazolamide in horses was characterized by rapid absorption, low bioavailability, and slower elimination than observed initially after IV administration. Pharmacokinetic data generated by this study should facilitate estimation of appropriate dosages for acetazolamide use in horses with hyperkalemic periodic paralysis.  相似文献   

5.
OBJECTIVE: To determine the pharmacokinetics of itraconazole after IV or oral administration of a solution or capsules to horses and to examine disposition of itraconazole in the interstitial fluid (ISF), aqueous humor, and polymorphonuclear leukocytes after oral administration of the solution. ANIMALS: 6 healthy horses. PROCEDURE: Horses were administered itraconazole solution (5 mg/kg) by nasogastric tube, and samples of plasma, ISF, aqueous humor, and leukocytes were obtained. Horses were then administered itraconazole capsules (5 mg/kg), and plasma was obtained. Three horses were administered itraconazole (1.5 mg/kg, IV), and plasma samples were obtained. All samples were analyzed by use of high-performance liquid chromatography. Plasma protein binding was determined. Data were analyzed by compartmental and noncompartmental pharmacokinetic methods. RESULTS: Itraconazole reached higher mean +/- SD plasma concentrations after administration of the solution (0.41 +/- 0.13 microg/mL) versus the capsules (0.15 +/- 0.12 microg/mL). Bioavailability after administration of capsules relative to solution was 33.83 +/- 33.08%. Similar to other species, itraconazole has a high volume of distribution (6.3 +/- 0.94 L/kg) and a long half-life (11.3 +/- 2.84 hours). Itraconazole was not detected in the ISF, aqueous humor, or leukocytes. Plasma protein binding was 98.81 +/- 0.17%. CONCLUSIONS AND CLINICAL RELEVANCE: Itraconazole administered orally as a solution had higher, more consistent absorption than orally administered capsules and attained plasma concentrations that are inhibitory against fungi that infect horses. Administration of itraconazole solution (5 mg/kg, PO, q 24 h) is suggested for use in clinical trials to test the efficacy of itraconazole in horses.  相似文献   

6.
OBJECTIVE: To determine pharmacokinetics and excretion of phenytoin in horses. ANIMALS: 6 adult horses. PROCEDURE: Using a crossover design, phenytoin was administered (8.8 mg/kg of body weight, IV and PO) to 6 horses to determine bioavailability (F). Phenytoin also was administered orally twice daily for 5 days to those same 6 horses to determine steady-state concentrations and excretion patterns. Blood and urine samples were collected for analysis. RESULTS: Mean (+/- SD) elimination half-life following a single IV or PO administration was 12.6+/-2.8 and 13.9+/-6.3 hours, respectively, and was 11.2+/-4.0 hours following twice-daily administration for 5 days. Values for F ranged from 14.5 to 84.7%. Mean peak plasma concentration (Cmax) following single oral administration was 1.8+/-0.68 microg/ml. Steady-state plasma concentrations following twice-daily administration for 5 days was 4.0+/-1.8 microg/ml. Of the 12.0+/-5.4% of the drug excreted during the 36-hour collection period, 0.78+/-0.39% was the parent drug phenytoin, and 11.2+/-5.3% was 5-(phydroxyphenyl)-5-phenylhydantoin (p-HPPH). Following twice-daily administration for 5 days, phenytoin was quantified in plasma and urine for up to 72 and 96 hours, respectively, and p-HPPH was quantified in urine for up to 144 hours after administration. This excretion pattern was not consistent in all horses. CONCLUSIONS AND CLINICAL RELEVANCE: Variability in F, terminal elimination-phase half-life, and Cmax following single or multiple oral administration of phenytoin was considerable. This variability makes it difficult to predict plasma concentrations in horses after phenytoin administration.  相似文献   

7.
Furosemide is the most common diuretic drug used in horses. Furosemide is routinely administered as IV or IM bolus doses 3-4 times a day. Administration PO is often suggested as an alternative, even though documentation of absorption and efficacy in horses is lacking. This study was carried out in a randomized, crossover design and compared 8-hour urine volume among control horses that received placebo, horses that received furosemide at 1 mg/kg PO, and horses that received furosemide at 1 mg/kg IV. Blood samples for analysis of plasma furosemide concentrations, PCV, and total solids were obtained at specific time points from treated horses. Furosemide concentrations were determined by reversed-phase high-performance liquid chromatography with fluorescent detection. Systemic availability of furosemide PO was poor, erratic, and variable among horses. Median systemic bioavailability was 5.4% (25th percentile, 75th percentile: 3.5, 9.6). Horses that received furosemide IV produced 7.4 L (7.1, 7.7) of urine over the 8-hour period. The maximum plasma concentration of 0.03 microg/mL after administration PO was not sufficient to increase urine volume compared with control horses (1.2 L [1.0, 1.4] PO versus 1.2 L [1.0, 1.4] control). There was a mild decrease in urine specific gravity within 1-2 hours after administration of furosemide PO, and urine specific gravity was significantly lower in horses treated with furosemide PO compared with control horses at the 2-hour time point. Systemic availability of furosemide PO was poor and variable. Furosemide at 1 mg/kg PO did not induce diuresis in horses.  相似文献   

8.
OBJECTIVE: To determine pharmacokinetics, safety, and penetration into interstitial fluid (ISF), polymorphonuclear leukocytes (PMNLs), and aqueous humor of doxycycline after oral administration of single and multiple doses in horses. ANIMALS: 6 adult horses. PROCEDURE: The effect of feeding on drug absorption was determined. Plasma samples were obtained after administration of single or multiple doses of doxycycline (20 mg/kg) via nasogastric tube. Additionally, ISF, PMNLs, and aqueous humor samples were obtained after the final administration. Horses were monitored for adverse reactions. RESULTS: Feeding decreased drug absorption. After multiple doses, mean +/- SD time to maximum concentration was 1.63 +/- 1.36 hours, maximum concentration was 1.74 +/- 0.3 microg/mL, and elimination half-life was 12.07 +/- 3.17 hours. Plasma protein binding was 81.76 +/- 2.43%. The ISF concentrations correlated with the calculated percentage of non-protein-bound drug. Maximum concentration was 17.27 +/- 8.98 times as great in PMNLs, compared with plasma. Drug was detected in aqueous humor at 7.5% to 10% of plasma concentrations. One horse developed signs of acute colitis and required euthanasia. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that doxycycline administered at a dosage of 20 mg/kg, PO, every 24 hours will result in drug concentrations adequate for killing intracellular bacteria and bacteria with minimum inhibitory concentration < or = 0.25 microg/mL. For bacteria with minimum inhibitory concentration of 0.5 to 1.0 microg/mL, a dosage of 20 mg/kg, PO, every 12 hours may be required; extreme caution should be exercised with the higher dosage until more safety data are available.  相似文献   

9.
OBJECTIVE: To compare gentamicin concentrations achieved in synovial fluid and joint tissues during IV administration and continuous intra-articular (IA) infusion of the tarsocrural joint in horses. ANIMALS: 18 horses with clinically normal tarsocrural joints. PROCEDURE: Horses were assigned to 3 groups (6 horses/group) and administered gentamicin (6.6 mg/kg, IV, q 24 h for 4 days; group 1), a continuous IA infusion of gentamicin into the tarsocrural joint (50 mg/h for 73 hours; group 2), or both treatments (group 3). Serum, synovial fluid, and joint tissue samples were collected for measurement of gentamicin at various time points during and 73 hours after initiation of treatment. Gentamicin concentrations were compared by use of a Kruskal-Wallis ANOVA. RESULTS: At 73 hours, mean +/- SE gentamicin concentrations in synovial fluid, synovial membrane, joint capsule, subchondral bone, and collateral ligament of group 1 horses were 11.5 +/- 1.5 microg/mL, 21.1 +/- 3.0 microg/g, 17.1 +/- 1.4 microg/g, 9.8 +/- 2.0 microg/g, and 5.9 +/- 0.7 microg/g, respectively. Corresponding concentrations in group 2 horses were 458.7 +/- 130.3 microg/mL, 496.8 +/- 126.5 microg/g, 128.5 +/- 74.2 microg/g, 99.4 +/- 47.3 microg/g, and 13.5 +/- 7.6 microg/g, respectively. Gentamicin concentrations in synovial fluid, synovial membrane, and joint capsule of group 1 horses were significantly lower than concentrations in those samples for horses in groups 2 and 3. CONCLUSIONS AND CLINICAL RELEVANCE: Continuous IA infusion of gentamicin achieves higher drug concentrations in joint tissues of normal tarsocrural joints of horses, compared with concentrations after IV administration.  相似文献   

10.
Objective To determine the concentration of doxycycline in preocular tear film following oral administration in horses as a possible therapeutic modality for infectious and keratomalacic equine keratitis. Procedure Eight broodmares without ocular disease from a Thoroughbred breeding facility were included in this study. Each mare received 20 mg/kg of doxycycline by mouth once daily in the morning for five consecutive days. Tears were collected 1 h after doxycycline administration starting on day one of administration and continuing for 10 consecutive days. Doxycycline levels in the tears were measured using liquid chromatography with tandem mass spectrometric detection (LC-MS/MS). Results Doxycycline was present in the tears of each mare at low µg/mL levels with the highest concentration appearing on the third to fifth days (8.21–9.83 µg/mL). Doxycycline levels had fallen below quantifiable ranges by day 10. No systemic side-effects were noted in any of the horses included in this study. Conclusions Oral doxycycline is present in preocular tear film of normal horses with noninflamed eyes and may be useful as treatment in equine ulcerative keratomalacia. The oral dose listed was tolerated well by the horses in this study. The drug levels attained at 20 mg/kg once daily orally of doxycycline may aid in the treatment of corneal ulceration in horses, but further study is warranted.  相似文献   

11.
OBJECTIVE: To determine radiocarpal (RC) joint synovial fluid and plasma ceftiofur concentrations after regional intravenous perfusion (RIP) and systemic intravenous (IV) administration. STUDY DESIGN: Experimental cross-over study. ANIMALS: Five normal adult horses. METHODS: One RC joint was randomly selected for RIP and the contralateral RC joint was sampled to determine intrasynovial ceftiofur concentrations after IV administration. Wash-out between IV and RIP was > or = 14 days. After surgical introduction of an intraarticular catheter, ceftiofur (2 g) was administered under general anesthesia either IV or by RIP after tourniquet application. Plasma and synovial fluid were collected over 24 hours. Samples were analyzed using high-performance liquid chromatography with ultraviolet detection and the results were statistically analyzed using a linear mixed effect model. RESULTS: Mean synovial fluid ceftiofur concentrations were consistently higher after RIP than after IV administration and were > 1 mug/mL (minimal inhibitory concentration [MIC] for common pathogens) for >24 hours. Mean synovial fluid peak concentration of ceftiofur after RIP and IV administration was 392.7+/-103.29 microg/mL at 0.5 hours postinjection (HPI) and 2.72+/-0.31 mug/mL at 1 HPI, respectively. Large variations in synovial fluid and plasma ceftiofur concentrations were observed between horses regardless of administration technique. RIP did not cause adverse effects. CONCLUSIONS: Under the present experimental conditions RIP with ceftiofur (2 g) induced significantly higher intraarticular antibiotic concentrations in the RC joint in comparison with IV administration. Moreover, after RIP, synovial fluid ceftiofur concentrations remain above the MIC for common pathogens (1 microg/mL) for > 24 hours. No adverse effects from the technique or the antibiotic were observed. CLINICAL RELEVANCE: RIP with high doses of ceftiofur may be a beneficial adjunctive therapy when treating equine synovial infections which are caused by cephalosporin susceptible microorganisms.  相似文献   

12.
OBJECTIVE: To assess bioequivalence after oral, IM, and IV administration of racemic ketoprofen in pigs and to investigate the bioavailability after oral and IM administration. ANIMALS: 8 crossbred pigs. PROCEDURES: Each pig received 4 treatments in a randomized crossover design, with a 6-day washout period. Ketoprofen was administered at 3 and 6 mg/kg, PO; 3 mg/kg, IM; and 3 mg/kg, IV. Plasma ketoprofen concentrations were measured by use of high-performance liquid chromatography for up to 48 hours. To assess bioequivalence, a 90% confidence interval was calculated for the area under the time-concentration curve (AUC) and maximum plasma concentration (C(max)). RESULTS: Equivalence was not detected in the AUCs among the various routes of administration nor in C(max) between oral and IM administration of 3 mg/kg. The bioavailability of ketoprofen was almost complete after each oral or IM administration. Mean +/- SD C(max) was 5.09 +/- 1.41 microg/mL and 7.62 +/- 1.22 microg/mL after oral and IM doses of 3 mg/kg, respectively. Mean elimination half-life varied from 3.52 +/- 0.90 hours after oral administration of 3 mg/kg to 2.66 +/- 0.50 hours after IV administration. Time to peak C(max) after administration of all treatments was approximately 1 hour. Increases in AUC and C(max) were proportional when the orally administered dose was increased from 3 to 6 mg/kg. Conclusions and Clinical Relevance: Orally administered ketoprofen was absorbed well in pigs, although bioequivalence with IM administration of ketoprofen was not detected. Orally administered ketoprofen may have potential for use in treating pigs.  相似文献   

13.
OBJECTIVES: To measure serum polymyxin B concentration after single and repeated IV infusions in horses. ANIMALS: 5 healthy horses. PROCEDURES: In study 1, 1 mg (6,000 U) of polymyxin B/kg was given IV and blood samples were collected for 24 hours. In study 2, 1 mg of polymyxin B/kg was given IV every 8 hours for 5 treatments and blood samples were collected until 24 hours after the last dose. Polymyxin B concentration was measured as the ability to suppress nitrite production by murine macrophages stimulated with lipopolysaccharide and interferon-alpha. Urine was collected prior to the first drug infusion and 24 hours after the fifth drug infusion for determination of urinary gamma-glutamyl transferase (GGT)-to-creatinine ratios. RESULTS: In study 1, mean +/- SEM maximal serum polymyxin B concentration was 2.93 +/- 0.38 microg/mL. Polymyxin B was undetectable 18 hours after infusion. In study 2, maximal polymyxin B concentrations after the first and fifth doses were 2.98 +/- 0.81 microg/mL and 1.91 +/- 0.50 microg/mL, respectively. Mean trough concentration for all doses was 0.22 +/- 0.01 microg/mL. A significant effect of repeated administration on peak and trough serum concentration was not detected. Urine GGT-to-creatinine ratios were not affected by polymyxin B administration. CONCLUSIONS AND CLINICAL RELEVANCE: Polymyxin B given as multiple infusions to healthy horses by use of this protocol did not accumulate in the vascular compartment and appeared safe. Results support repeated IV use of 1 mg of polymyxin B/kg at 8-hour intervals as treatment for endotoxemia.  相似文献   

14.
OBJECTIVE: To determine whether plasma concentrations of benzodiazepines (BDZ) in dogs following intranasal (IN) administration of diazepam are comparable to concentrations following IV administration. ANIMALS: 6 (4 male, 2 female) healthy adult Greyhounds. PROCEDURE: Dogs were randomly assigned to 2 groups of 3 dogs in a crossover design. Diazepam (0.5 mg/kg of body weight) was administered intravenously to dogs in group 1 and intranasally to dogs in group 2. Blood was collected from the jugular vein of each dog into tubes containing lithium heparin before and 3, 6, 9, 12, 15, 20, 30, 60, 120, 240, and 480 minutes following diazepam administration. After a 4-day washout period, dogs in group 1 received diazepam intranasally, dogs in group 2 received diazepam intravenously, and blood was again collected. Plasma concentration of BDZ was determined by use of a fluorescence polarization immunoassay. RESULTS: Mean (+/- SD) peak plasma concentration of BDZ following IV administration (1,316 +/- 216 microg/L) was greater than that following IN administration (448 +/- 41 microg/L). Time to peak concentration was < or = 3 minutes following IV administration and 4.5 +/- 1.5 minutes following IN administration. Mean bioavailability of BDZ following IN administration was 80 +/- 9%. CONCLUSIONS AND CLINICAL RELEVANCE: Diazepam is rapidly and efficiently absorbed following IN administration of the parenteral formulation. Plasma concentrations match or exceed the suggested therapeutic concentration (300 microg/L). Intranasal administration of diazepam may be useful for treatment of seizures in dogs by owners or when intravenous access is not readily available.  相似文献   

15.
OBJECTIVE: To investigate penciclovir pharmacokinetics following single and multiple oral administrations of famciclovir to cats. ANIMALS: 8 adult cats. PROCEDURES: A balanced crossover design was used. Phase I consisted of a single administration (62.5 mg, PO) of famciclovir. Phase II consisted of multiple doses of famciclovir (62.5 mg, PO) given every 8 or 12 hours for 3 days. Plasma penciclovir concentrations were assayed via liquid chromatography-mass spectrometry at fixed time points after famciclovir administration. RESULTS: Following a single dose of famciclovir, the dose-normalized (15 mg/kg) maximum concentration (C(max)) of penciclovir (350 +/- 180 ng/mL) occurred at 4.6 +/- 1.8 hours and mean +/- SD apparent elimination half-life was 3.1 +/- 0.9 hours. However, the dose-normalized area under the plasma penciclovir concentration-time curve extrapolated to infinity (AUC(0-->)) during phase I decreased with increasing dose, suggesting either nonlinear pharmacokinetics or interindividual variability among cats. Accumulation occurred following multiple doses of famciclovir administered every 8 hours as indicated by a significantly increased dose-normalized AUC, compared with AUC(0-->) from phase 1. Dose-normalized penciclovir C(max)following administration of famciclovir every 12 or 8 hours (290 +/- 150 ng/mL or 780 +/- 250 ng/mL, respectively) was notably less than the in vitro concentration (3,500 ng/mL) required for activity against feline herpesvirus-1. CONCLUSIONS AND CLINICAL RELEVANCE: Penciclovir pharmacokinetics following oral famciclovir administration in cats appeared complex within the dosage range studied. Famciclovir dosages of 15 mg/kg administered every 8 hours to cats are unlikely to result in plasma penciclovir concentrations with activity against feline herpesvirus-1.  相似文献   

16.
Oral bioavailability and pharmacokinetic behaviour of clindamycin in dogs was investigated following intravenous (IV) and oral (capsules) administration of clindamycin hydrochloride, at the dose of 11 mg/kg BW. The absorption after oral administration was fast, with a mean absorption time (MAT) of 0.87+/-0.40 h, and bioavailability was 72.55+/-9.86%. Total clearance (CL) of clindamycin was low, after both IV and oral administration (0.503+/-0.095 vs. 0.458+/-0.087 L/h/kg). Volume of distribution at steady-state (IV) was 2.48+/-0.48 L/kg, indicating a wide distribution of clindamycin in body fluids and tissues. Elimination half-lives were similar for both routes of administration (4.37+/-1.20 h for IV, vs. 4.37+/-0.73 h for oral). Serum clindamycin concentrations following administration of capsules remained above the MICs of very susceptible microorganisms (0.04-0.5 microg/mL) for 12 or 10 h, respectively. Time above the mean inhibitory concentration (MIC) is considered as the index predicting the efficacy of clindamycin (T(>MIC) must be at least 40-50% of the dosing interval), so a once-daily oral administration of 11 mg/kg BW of clindamycin can be considered therapeutically effective. For less susceptible bacteria (with MICs of 0.5-2 microg/mL) the same dose should be given but twice daily.  相似文献   

17.
Aspergillosis is a condition causing serious morbidity and mortality in captive penguins and other bird species. It can be treated with antifungal drugs, such as voriconazole. However, the pharmacokinetics of voriconazole are variable between different animal and bird species. Therefore, the pharmacokinetics of voriconazole were investigated in this study in Magellanic penguins. Pharmacokinetic models were constructed and applied to predict the pharmacokinetics of voriconazole during long‐term treatment in Magellanic penguins, since the voriconazole treatment duration in chronic aspergillosis cases can last up to several months. Plasma voriconazole concentration–time data from adult Magellanic penguins (Spheniscus magellanicus; n = 15) following a single oral (PO) dose of either 2.5 mg/kg or 5 mg/kg in a herring in three separate study periods 7–12 months apart were collected. Mean plasma voriconazole concentrations were above the targeted MIC for Aspergillus fumigatus for 2 hr following a single 2.5 mg/kg voriconazole dose while the plasma concentrations exceeded the MIC for least 24 hr following a 5 mg/kg dose. Nonlinear mixed‐effects modeling was used to fit two pharmacokinetic models, one with first‐order and another with saturable elimination, to the single‐dose data. Fits were good for both, as long as dose was included as a covariate for the first‐order model so that clearance was lower and the half‐life longer for animals receiving the 5 mg/kg dose. Although the single‐dose data suggested saturated elimination at higher concentrations, the model with saturable elimination did not predict plasma voriconazole concentrations well for a clinical aspergillosis case receiving long‐term treatment, possibly because of induction of metabolizing enzymes with chronic exposure. Pharmacokinetic models should accurately predict plasma drug concentrations for different dosage regimens in order to be applicable in the field. Future studies should focus on determining clearance at steady‐state to be able to refine the pharmacokinetic models presented here and improve model performance for long‐term oral voriconazole administration in Magellanic penguins.  相似文献   

18.
OBJECTIVE: To determine the pharmacokinetics and safety of orally administered voriconazole in African grey parrots. ANIMALS: 20 clinically normal Timneh African grey parrots (Psittacus erithacus timneh). PROCEDURES: In single-dose trials, 12 parrots were each administered 6, 12, and 18 mg of voriconazole/kg orally and plasma concentrations of voriconazole were determined via high-pressure liquid chromatography. In a multiple-dose trial, voriconazole (18 mg/kg) was administered orally to 6 birds every 12 hours for 9 days; a control group (2 birds) received tap water. Treatment effects were assessed via observation, clinicopathologic analyses (3 assessments), and measurement of trough plasma voriconazole concentrations (2 assessments). RESULTS: Voriconazole's elimination half-life was short (1.1 to 1.6 hours). Higher doses resulted in disproportional increases in the maximum plasma voriconazole concentration and area under the curve. Trough plasma voriconazole concentrations achieved in the multiple-dose trial were lower than those achieved after administration of single doses. Polyuria (the only adverse treatment effect) developed in treated and control birds but was more severe in the treatment group. CONCLUSIONS AND CLINICAL RELEVANCE: In African grey parrots, voriconazole has dose-dependent pharmacokinetics and may induce its own metabolism. Oral administration of 12 to 18 mg of voriconazole/kg twice daily is a rational starting dose for treatment of African grey parrots infected with Aspergillus or other fungal organisms that have a minimal inhibitory concentration for voriconazole < or = 0.4 microg/mL. Higher doses may be needed to maintain plasma voriconazole concentrations during long-term treatment. Safety and efficacy of various voriconazole treatment regimens in this species require investigation.  相似文献   

19.
Voriconazole is a new antifungal drug that has shown effectiveness in treating serious fungal infections and has the potential for being used in large animal veterinary medicine. The objective of this study was to determine the plasma concentrations and pharmacokinetic parameters of voriconazole after single-dose intravenous (i.v.) and oral administration to alpacas. Four alpacas were treated with single 4 mg/kg i.v. and oral administrations of voriconazole. Plasma voriconazole concentrations were measured by a high-performance liquid chromatography method. The terminal half-lives following i.v. and oral administration were 8.01 ± 2.88 and 8.75 ± 4.31 h, respectively; observed maximum plasma concentrations were 5.93 ± 1.13 and 1.70 ± 2.71 μg/mL, respectively; and areas under the plasma concentration vs. time curve were 38.5 ± 11.1 and 9.48 ± 6.98 mg·h/L, respectively. The apparent systemic oral availability was low with a value of 22.7 ± 9.5%. The drug plasma concentrations remained above 0.1 μg/mL for at least 24 h after single i.v. dosing. The i.v. administration of 4 mg/kg/day voriconazole may be a safe and appropriate option for antifungal treatment of alpacas. Due to the low extent of absorption in alpacas, oral voriconazole doses of 20.4 to 33.9 mg/kg/day may be needed.  相似文献   

20.
OBJECTIVE: To determine the effects of IV administration of lidocaine on thermal antinociception in conscious cats. ANIMALS: 6 cats. PROCEDURE: 2 experiments were performed in each cat (interval of at least 2 months). In experiment 1, lidocaine pharmacokinetics were determined for each conscious cat following IV administration of a bolus of lidocaine (2 mg/kg). In experiment 2, data from experiment 1 were used to calculate appropriate doses of lidocaine that would achieve predetermined plasma lidocaine concentrations in the cats; lidocaine (or an equivalent volume of saline [0.9% NaCl] solution as the control treatment) was administered IV to target pseudo-steady-state plasma concentrations of 0, 0.5, 1, 2, 5, and 8 microg/mL. Skin temperature and thermal threshold were determined at the start of the experiment (baseline) and at each concentration. Samples of venous blood were obtained at each target concentration for plasma lidocaine concentration determination. RESULTS: In experiment 2, actual plasma lidocaine concentrations were 0.00 +/- 0.00 microg/mL, 0.25 +/- 0.18 microg/mL, 0.57 +/- 0.20 microg/mL, 1.39 +/- 0.13 microg/mL, 2.33 +/- 0.45 microg/mL, and 4.32 +/- 0.66 microg/mL for target plasma concentrations of 0, 0.5, 1, 2, 5, and 8 microg/mL, respectively. Compared with baseline values, no significant change in skin temperature or thermal threshold was detected at any lidocaine plasma concentration (or saline solution equivalent). Skin temperature or thermal threshold values did not differ between lidocaine or control treatments. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that these moderate plasma concentrations of lidocaine did not affect thermal antinociception in cats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号