首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two-year-old seedlings ofPinus koraiensis, Pinus sylvestriformis andFraxinus mandshurica were treated in open-top chambers with elevated CO2 concentrations (700 μL·L−1, 500 μL·L−1) and ambient CO2 concentrations (350 μL·L−1) in Changbai Mountain from June to Sept. in 1999 and 2001. The net photosynthetic rate, dark respiration rate, ribulose-1,5-bisphosphate carboxlase (RuBPcase) activity, and chlorophyll content were analyzed. The results indicated the RuBPcase activity of the three species seedlings increased at elevated CO2 concentrations. The elevated CO2 concentrations stimulated the net photosynthetic rates of three tree species exceptP. sylvestriformis grown under 500 μL·L−1 CO2 concentration. The dark respiration rates ofP. koraiensis andP. sylvestriformis increased under concentration of 700 μL·L−1 CO2, out that ofF. mandshurica decreased under both concentrations 700 μL·L−1 and 500 μL·L−1 CO2. The seedlings ofF. mandshurica decreased in chlorophyll contents at elevated CO2 concentrations. Foundation item: This paper was supported by the National Natural Science Foundation of China (No. 30070158). Knowledge Innovation Item of Chinese Academy of Sciences (KZCX2-406) and “Hundred Scientists” Project of Chinese Academy of Sciences. Biography: Zhou Yu-mei (1973-) Ph. Doctor, Assistant Research fellow Institute of Applied Ecology. Chinese Academy of Sciences. Shenyang 110016. P.R. China. Responsible editor: Song Funan  相似文献   

2.
The biomass and ratio of root-shoot ofPinus sylvestriformis seedlings at CO2 concentration of 700 μL·L−1 and 500 μL·L−1 were measured using open-top chambers (OTCs) in Changbai Mountain during Jun. to Oct. in 1999. The results showed that doubling CO2 concentration was benefit to seedling growth of the species (500 μL·L−1 was better than 700 μL·L−1) and the biomass production was increased in both above-ground and underground parts of seedlings. Carbon transformation to roots was evident as rising of CO2 concentration. This project is supported by Chinese Academy of Sciences Responsible editor: Chai Ruihai  相似文献   

3.
The net CO2 assimilation rate, stomatal conductance, RuBPcase (ribulose 1,5-biphosphate carboxylose) activity, dry weight of aboveground and belowgroud part, plant height, the length and diameter of taproot ofPinus koraiensis seedlings were measured and analyzed after six-week exposure to elevated CO2 in an open-top chamber in Changbai Mountain of China from May to Oct. 1999. Seedlings were planted in four different conditions: on an open site, control chamber, 500 μL·L−1 and 700 μL·L−1 CO2 chambers. The results showed that the total biomass of the seedlings increased whereas stomatal conductance decreased. The physiological responses and growth to 500 μL·L−1 and 700 μL·L−1 CO2 varied greatly. The acclimation of photosynthesis was downward to 700 μL·L−1 CO2 but upward to 500 μL·L−1 CO2. The RuBPcase activity, chlorophyll and soluble sugar contents of the seedlings grown at 500 μL·L−1 CO2 were higher than that at 700 μL·L−1 CO2. The concentration 500 μL·L−1 CO2 enhanced the growth of aboveground part whereas 700 μL·L−1 CO2 allocated more carbon to belowground part. Elevated CO2 changed the carbon distribution pattern. The ecophysiological responses were significantly different between plants grown under 500 μL·L−1 CO2 and 700 μL·L−1 CO2. Foundation Item: This paper was supported by Chinese Academy of Sciences. Biography: HAN Shi-jie (1956-), male, Ph. Doctor, Professor in Laboratory of Ecological Process of Trace Substance in Terrestrial Ecosystem, Institute of Applied Ecology, Chinese Academy of Sciences. Responsible editor: Chai Ruihai  相似文献   

4.
Net photosynthetic rates (NPRs) of four species seedlings,Pinus koraiensis, Pinus sylvestriformis, Fraxinus mandshurica andPhellodendron amurense, were measured at different CO2 concentrations and time respectively in Changbai Mountain during the growing season in 1999. The seedlings were cultivated in open-top chambers (OTCs), located outdoors and exposed to natural sunlight. The experimental objects were divided into four groups by tree species. CO2 concentrations in chambers were kept at 500 μL·L−1 and 700 μL·L−1 and contrast chamber and contrast field were set. The results showed that the effects of elevated CO2 on NPR of the trees strongly depended on tree species and time. NPRs ofPinus koreainsis andPinus sylvestriformis seedlings increased with the rising of CO2 concentration, while that ofPhellodendron amurense andFraxinus mandshurica increased at some time and decreased at another time. This project was supported by Chinese Academy of Sciences Responsible editor: Chai Ruihai  相似文献   

5.
3年生白桦同时接受3种外源糖溶液(蔗糖、果糖、葡萄糖)和3种高浓度CO2(700、1400、2100μL·μL-1CO2)处理.处理1个月后,测定了叶片的总糖、蔗糖、果糖和蛋白质含量.结果表明:在700μL·L-1和1400μL·L-1 CO2下,外源糖溶液增加了叶片的可溶性糖和蛋白质含量,其中外源蔗糖的效果最好:外源糖溶液与2100μL·L-1CO2结合,会抑制叶片积累总糖和蛋白质:在700μL·L-1和1400μL·L-1CO2下,喷施葡萄糖、果糖的叶片在蛋白质含量上没有明显差别:同700、1400μL·L-1CO2相比,除喷施果糖植株外,2100μL·L-1 CO2明显增加了叶片的总糖、蔗糖、果糖和蛋白质含量:在喷施同种外源糖溶液的情况下,叶片的糖含量与CO2浓度呈正相关性.图6参7.  相似文献   

6.
Pinus sylvestriformis is an important species as an indicator of global climate changes in Changbai Mountain, China. The water use efficiency (WUE) of this species (11-year old) was studied on response to elevated CO2 concentration at 500±100 μL·L−1 by directly injecting CO2 into the canopy under natural condition in 1998–1999. The results showed that the elevated CO2 concentration reduced averagely stomatal opening, stomatal conductance and stomatal density to 78%, 80% and 87% respectively, as compared to normal ambient. The elevated CO2 reduced the transpiration and enhances the water use efficiency (WUE) of plant. The project was supported by Chinese Academy of Sciences Responsible editor: Chai Ruihai  相似文献   

7.
测定了3年生白桦的光合与呼吸作用对温度,湿度以及CO2浓度的响应;还测定了光补偿点,光饱和点和CO2补偿点。结果表明:在目前的空气CO2浓度下,光合和呼吸作用的最适温度分别是24℃和30℃;当相对湿度是80%时,白桦能维持较强的光合作用;呼吸作用与相对湿度无明显的相关性;光补偿点和光饱和点分别是25 molm-2s-1和1375 祄olm-2s-1;CO2补偿点是180 礚L-1;白桦在CO2浓度为2400 礚L-1时仍有吸收潜力。图4参19。  相似文献   

8.
Four-year-oldPinus sylvestriformis were exposed for four growing seasons in open top chambers to ambient CO2 concentration (approx. 350 μmol·mol−1) and high CO2 concentrations (500 and 700 μmol·mol−1) at Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences at Antu Town, Jilin Province, China (42°N, 128°E). Stomatal response to elevated CO2 concentrations was examined by stomatal conductance (g s), ratio of intercellular to ambient CO2 concentration (c i/c a) and stomatal number. Reciprocal transfer experiments of stomatal conductance showed that stomatal conductance in high-[CO2]-grown plants increased in comparison with ambient-[CO2]-grown plants when measured at their respective growth CO2 concentration and at the same measurement CO2 concentration (except a reduction in 700 μmol·mol−1 CO2. grown plants compared with plants on unchambered field when measured at growth CO2 concentration and 350 μmol·mol−1CO2). High-[CO2]-grown plants exhibited lowerc i/c a ratios than ambient-[CO2]-grown plants when measured at their respective growth CO2 concentration. However,c i/c a ratios increased for plants grown in high CO2 concentrations compared with control plants when measured at the same CO2 concentration. There was no significant difference in stomatal number per unit long needle between elevated and ambient CO2. However, elevated CO2 concentrations reduced the total stomatal number of whole needle by the decline of stomatal line and changed the allocation pattern of stomata between upper and lower surface of needle. Foundation Item: This research was supported by National Basic Research Program of China (2002CB412502), Project of Key program of the National Natural Science Foundation of China (90411020) and National Natural Science Foundation of China (30400051). Biography: ZHOU Yu-mei (1973-), female, Ph. Doctor, assistant research fellow, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P. R. China. Responsible editor: Song Funan  相似文献   

9.
Responses of soil microbial activities to elevated CO2 in experiment sites ofPinus sylvestriformis andPinus koraiensis seedlings were studied in summer in 2003. The results indicated the number of bacteria decreased significantly (p<0.05) under elevated CO2 forPinus sylvestriformis andPinus koraiensis. Amylase and invertase activities in soil increased forPinus sylvestriformis and decreased forPinus koraiensis with CO2 enrichment compared with those at ambient (350 μmol·mol−1). The size of microbial biomass C also decreased significantly at 700 μmol·mol−1 CO2. Bacterial community structure had some evident changes under elevated CO2 by DGGE (Denaturing Gradient Gel Electrophoresis) analysis of bacterial 16S rDNA gene fragments amplified by PCR from DNA extracted directly from soil. The results suggested that responses of soil microorganisms to elevated CO2 would be related to plant species exposed to elevated CO2. Foundation item: The study was supported by Major State Basic Research Development Program of China (2002CB412502) and the Knowledge Innovation Project from Chinese Academy of Sciences (KZCX1-SW-01-03). Biography: JIA Xia (1975), female, Ph. D. candidate of Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P. R. China. Responsible editor: Song Funan  相似文献   

10.
本文研究了大叶桃花心木(Swietenia macrophylla King)一年生幼苗在经过夜温处理后的光响应曲线和在饱和光强下的CO2反应曲线.结果表明:在大气CO2浓度下,叶片的最佳光合作用温度在25-31℃之间,而在饱和CO2浓度下为31-35℃.在25℃以下光合速率开始降低,主要是由于羧化效率的降低,而当温度超过31℃时,光合速率下降,是因为羧化效率的降低和呼吸速率的增加.CO2浓度对光合的促进作用在低温下受到抑制,这意味着未来在CO2浓度增高的情况下,高浓度的CO2对热带常绿植物光合的促进在冬天低温情况下表现不十分明显.图4参23.  相似文献   

11.
Soil samples were taken from depth of 0–12 cm in the virgin broad-leaved/Korean pine mixed forest in Changbai Mountain in April, 2000. 20 μL·L−1 and 200 μL·L−1 CH4 and N2O concentration were supplied for analysis. Laboratory study on CH4 oxidation and N2O emission in forest soil showed that fresh soil sample could oxidize atmospheric methane and product N2O. Air-dried soil sample could not oxidize atmospheric methane, but could product N2O. However, it could oxidize the supplied methane quickly when its concentration was higher than 20 μL·L−1. The oxidation rate of methane was increased with its initial concentration. An addition of water to dry soil caused large pulse of N2O emissions within 2 hours. There were curvilinear correlations between N2O emission and temperature (r2=0.706, p<0.05), and between N2O emission and water content (r2=0.2968, p <0.05). These suggested temperature and water content were important factors controlling N2O emission. The correlation between CH4 oxidization and temperature was also found while CH4 was supplied 200 μL·L−1 (r2=0.3573, p<0.05). Temperature was an important factor controlling CH4 oxidation. However, when 20 μL·L−1 CH4 was supplied, there was no correlation among CH4 oxidization, N2O emission, temperature and water content. Foundation item: This paper was supported by Chinese Academy of Sciences. Biography: ZHANG Xiu-jun (1960-), female, Ph. Doctor, lecture in Laboratory of Ecological Process of Trace Substance in Terrestrial Ecosystem, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110015, P.R. China. Responsible editor: Song Funan  相似文献   

12.
从1999年到2006年在中科院长白山森林生态系统定位站(42°24'N,128°28'E,海拔738m)对长期高浓度CO2熏蒸对土壤酶活性的影响进行了研究.采用开顶箱(OTC)的方式对红松和长白松进行高浓度CO2处理, CO2浓度分别受控于高浓度CO2箱(500 μmol·mol^-1)、对照箱(370 μmol·mol^-1))和裸地(370 μmol·mol^-1).经高浓度CO2(500 μmol·mol^-1)熏蒸8年后,土壤样品分别在2006年春季、夏季和秋季进行采集和分析.结果表明:在高CO2浓度(500 μmol mol^-1)条件下,转化酶活性除了红松夏季样品之外都是显著降低的;而脱氢酶活性却是增加的,但只有部分结果显著;长白松的多酚氧化酶活性都显著降低;过氧化氢酶活性在春季增加,而在其他季节均降低.总而言之,在高CO2浓度条件下,土壤酶的活性与树种有关.  相似文献   

13.
The time processes of photosynthetic induction responses to various irradiances in Korean pine (Pinus koraiensis) seedlings grown in open-light environments and in understory of forest were studied in an area near the Research Station of Changbai Mountain Forest Ecosystems, Jilin Province, China from July 15 to August 5, 1997. The results showed that at 200 μmol·m−2·s−1 photosynthetic photon flux density (PPFD) and 500 μmol·m−2·s−1 PPFD, the induction time for the photosynthetic rates of understory-grown seedlings to reach 50% and 90% steady-state net photosynthetic rates was longer than that of the open-grown seedlings. The induction responses of open-growth seedlings at 500 μmol·m−2·s−1 PPFD were slower than those at 200 μmol·m−2·s−1 PPFD, but it was the very reverse for understory-growth seedlings, which indicates that the photosynthetic induction times of Korean pine seedlings grown in the understory depended on the sunfleck intensity. Biograph: ZHOU Yong-bin (1970-), female, associate professor of Shenyang Agricultural University, Shenyang 110161, P.R. China. Responsible editor: Song Funan  相似文献   

14.
Muehlewbeckia complera was introduced to China in 2002 as indoor-hanging ornamental foliage plant. The experiment of the shade tolerance for this species was carried out in different light intensities (0.14–946.00 μmol·m−2·s−1). After 40 days in experimental areas, leaf photosynthentic characteristics indexes ofM. complera in different photosynthesis active radiation (PAR) were measured with LI-COR6400 apparatus, such as the light compensation point, light saturation point, and maximum net photosynthesis rate, at the same time, the increments of total leaf area and leaf amount were measured. The results showed that the optimum light intensity range forM. complera was from 9.26 μmol·m−2·s−1 to 569.00 μmol·m−2·s−1 (463–28150 lx, relative humidity (RH) for 46–60%, temperature at 16–22°C). Under this condition, leaf photosynthetic efficiency was tiptop. AlthoughM. complera belonged to the moderate sun-adaptation plant species, the plant growth was inhibited when PAR increased to the level of 569.000 μmol·m−2·s−1 or above.M. complera could sprout new leaves in photosynthesis active radiation of 0.16–19.22 μmol·m−2·s−1 (8–961 lx), or 10 μmol·m−2·s−1 for above 6 h. Foundation item: This study was supported by the Research Foundation of Northeast Forestry University. Biography: YUE Hua (1962-), female, Associate professor in Northeast Forestry University, Harbin 150040, P. R. China. Responsible editor: Zhu Hong  相似文献   

15.
Eco-physiological responses of seedlings of eight species,Pinus koraiensis, Picea koraiensis, Larix olgensis, Populus ussuriensis, Betula platyphylla, Tilia amurensis, Traxinus mandshurica andAcer mono from broadleaved/Korean pine forest, to elevated CO2 were studied by using open-top chambers under natural sunlight in Changbai Mountain, China in two growing seasons (1998–1999). Two concentrations of CO2 were designed: elevated CO2 (700 μmol·mol−1) and ambient CO2 (400 μmol·mol−1). The study results showed that the height growth of the tree seedlings grown at elevated CO2 increased by about 10%–40% compared to those grown at ambient CO2. And the water using efficiency of seedlings also followed the same tendency. However, the responses of seedlings in transpiration and chlorophyll content to elevated CO2 varied with tree species. The broad-leaf tree species were more sensitive to the elevated CO2 than conifer tree species. All seedlings showed a photosynthetic acclimation to long-term elevated CO2. Foundation item: The project was supported by National Key Basic Development of China (G1999043400) and the grant KZCX 406-4, KZCX1 SW-01 of the Chinese Academy of Sciences Biography: WANG Miao (1964-), maie, associate professor in Institute of applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P. R. China. Responsible editor: Song Funan  相似文献   

16.
Despite growing attention to the role of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in forest nutrient cycling, their monthly concentration dynamics in forest ecosystems, especially in subtropical forests only were little known. The goal of this study is to measure the concentrations and monthly dynamics of DOC and DON in precipitation, throughfall and stemflow for two plantations ofSchima superba (SS) and Chinese fir (Cunninghamia lanceolata, CF) in Jianou, Fujian, China. Samples of precipitation, throughfall and stemflow were collected on a rain event base from January 2002 to December 2002. Upon collection, all water samples were analyzed for DOC, NO3 −N, NH4 +−N and total dissolved N (TDN). DON was calculated by subtracting NO3 −N and NH4 +−N from TDN. The results showed that the precipitation had a mean DOC concentration of 1.7 mg·L−1 and DON concentration of 0.13 mg·L−1. The mean DOC and DON concentrations in throughfall were 11.2 and 0.24 mg·L−1 in the SS and 10.3 and 0.19 mg·L−1 in the CF respectively. Stemflow DOC and DON concentrations in the CF (19.1 and 0.66 mg·L−1 respectively) were significantly higher than those in the SS (17.6 and 0.48 mg·L−1 respectively). No clear monthly variation in precipitation DOC concentration was found in our study, while DON concentration in precipitation tended to be higher in summer or autumn. The monthly variations of DON concentrations were very similar in throughfall and stemflow at both forests, showing an increase at the beginning of the rainy season in March. In contrast, monthly changes of the DOC concentrations in throughfall of the SS and CF were different to those in stemflow. Throughfall DOC concentrations were higher from February to April, while relatively higher DOC concentrations in stemflow were found during September–November period. Foundation item: This study was supported by the Teaching and Research Award program for MOE P.R.C. (TRAPOYT). Biography: Guo Jian-fen (1977-), female, Ph. Doctor in College of Life Science, Xiamen University, Xiamen 361005, P.R. China. Responsible editor: Zhu Hong  相似文献   

17.
外源水杨酸对盐胁迫下白榆生理特性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
目的]以白榆幼苗为材料,研究不同浓度水杨酸(SA)的喷施对盐胁迫下白榆生理代谢的影响。[方法]以1年生白榆品种‘白洼一号’幼苗为材料,在0、50、100和150 mmol·L~(-1)Na Cl浓度下,喷施不同浓度SA(0、0.5、1.0、2.0 mmol·L~(-1)),处理30 d后对白榆水分生理、膜脂过氧化、光合色素含量和光合气体交换参数进行测定。[结果]表明:(1)盐胁迫下,外源SA可以显著提高白榆叶片相对含水量、可溶性糖含量,并降低丙二醛含量,但对电解质渗透率影响不显著。(2)0.5和2.0 mmol·L~(-1)SA会显著提高50和100 mmol·L~(-1)Na Cl胁迫下白榆叶片的光合色素含量,1.0 mmol·L~(-1)SA对各盐浓度下光合色素含量改善作用均不明显。(3)2.0 mmol·L~(-1)SA的添加提高了盐胁迫下白榆光合气体交换参数,1.0 mmol·L~(-1)SA明显降低了50 mmol·L~(-1)盐浓度下白榆叶片的净光合速率和气孔导度。[结论]适宜浓度的SA能改善白榆的生理参数,隶属函数法综合评价表明:0.5和2.0 mmol·L~(-1)SA对盐胁迫下白榆生理参数的改善作用较明显。  相似文献   

18.
从1999年8至10月,2000年的4至6月,2002年8月至2003年9月,在平均树高为26米的长白山阔叶红松林内,用红外气体分析仪(2250D,LI-CORInc.和LI-COR,820)测定了不同高度的二氧化碳浓度。根据测定的数据,分析了阔叶红松林二氧化碳廓线的日变化和季节变化动态。结果表明:CO2浓度的垂直分布在白天和夜间是不同的,在接近地面处CO2浓度始终最大。从季节CO2廓线看出,在植物生长季节林冠处CO2浓度有明显的成层现象,不同高度(60~2.5m)的CO2浓度3月份变化较小差值为10mmol穖ol-1,而在7月份变化较大,差值为60mmol穖ol-1。7月份林冠处(22,26,32m)CO2浓度梯度较大,浓度差为8mmol穖ol-1。计算位于涡度相关仪器之下的40米高空气柱中CO2贮存状况表明,年际贮存是负值,但对NEE的贡献很小。图4参11。  相似文献   

19.
The impacts of elevated atmospheric CO2 concentrations (500 μmol·mol−1 and 700 μmol·mol−1) on total soil respiration and the contribution of root respiration ofPinus koraiensis seedlings were investigated from May to October in 2003 at the Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences, Jilin Province, China. After four growing seasons in top-open chambers exposed to elevated CO2, the total soil respiration and roots respiration ofPinus koraiensis seedlings were measured by a Li-6400-09 soil CO2 flux chamber. Three PVC cylinders in each chamber were inserted about 30 cm into the soil instantaneously to terminate the supply of current photosynthates from the tree canopy to roots for separating the root respiration from total soil respiration. Soil respirations both inside and outside of the cylinders were measured on June 16, August 20 and October 8, respectively. The results indicated that: there was a marked diurnal change in air temperature and soil temperature at depth of 5 cm on June 16, the maximum of soil temperature at depth of 5 cm lagged behind that of air temperature, no differences in temperature between treatments were found (P>0.05). The total soil respiration and soil respiration with roots severed showed strong diurnal and seasonal patterns. There was marked difference in total soil respiration and soil respiration with roots severed between treatments (P<0.01); Mean total soil respiration and contribution of root under different treatments were 3.26, 4.78 and 1.47 μmol·m−2·s−1, 11.5%, 43.1% and 27.9% on June 16, August 20 and October 8, respectively. Foundation item: This study was supported by the Knowledge Innovation Project of the Chinese Academy of Sciences (KZCX1-SW-01) and the National Natural Science Foundation of China (30070158). Biography: LIU Ying (1976-), female, Ph. D. Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P. R. China. Responsible editor: Song Funan  相似文献   

20.
Embryo of lilacs (Syringa L) culture in vitro and the rapid propagation were studied. The orthogonal experiments, including the selection of basal medium, embryo age and other factors such as sugar, benzyladenine (BA), naphthalene acetic acid (NAA) and glutamine (Gln), were carried out. The results indicated that the optimal medium for embryo culture was Monnier medium supplemented with NAA (0.001 mg.L^-1), BA (0.1 mg.L^-1), sugar (50 g.L^-1), and Gin (400 mg.L^-1), with a germination rate of 91.7% at least; the optimal embryo age was 50 d; and Gln had significant effects on the germination rate of embryo.Moreover, the optimal medium for subculture was MS BA (2 mg.L^-1) NAA (0.001 mg.L^-1) Gln (0.5 mg.L^-1), with the propagation coefficient of 3.6 at least.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号