首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We compared growth patterns and morphology of fine roots of size-controlling and invigorating peach (Prunus persica (L.) Batsch) rootstocks. Peach trees were grafted on five rootstocks: a vigorous control (Nemaguard), three intermediate vigor rootstocks (K119-50, P30-135 and Hiawatha), and a semi-dwarfing rootstock (K146-43). Minirhizotron tubes were installed at the base of trees on each rootstock and root images captured with a minirhizotron digital camera system. Number, visible length, and diameter of new roots were recorded at fixed soil depths from April 19, 2000 to December 19, 2001. Root diameter, specific root length, root tissue density and root length density were also measured periodically for each rootstock on roots collected from in-growth cores. Rootstocks had similar seasonal patterns of new root production. Fine root production was lowest in winter and appeared to decline during the final stages of fruit growth. A rootstock with almond in its genetic background (K119-50) produced the greatest quantity of fine roots and had the greatest number of new roots below 69 cm, whereas there were no differences among the other four rootstocks in the total number of roots produced. Rootstock K146-43 had thicker fine roots than the other rootstocks. Independent of rootstock, fine roots produced during spring had greater specific root length than those produced later in the season. The seasonal pattern of fine root production did not appear to be associated with the previously reported effects of these dwarfing rootstocks on shoot growth and stem water potential early in the growing season.  相似文献   

2.
Solari LI  Johnson S  DeJong TM 《Tree physiology》2006,26(10):1333-1341
We investigated relationships between tree water status, vegetative growth and leaf gas exchange of peach trees growing on different rootstocks under field conditions. Tree water status was manipulated by partially covering (0, approximately 30 and approximately 60%) the tree canopies on individual days and then evaluating the effects of tree water status on vegetative growth and leaf gas exchange. Early morning stem water potentials were approximately -0.4 MPa for trees in all treatments, but mean midday values ranged from -1.1 to -1.7 MPa depending on rootstock and canopy coverage treatment. Relative shoot extension growth rate, leaf conductance, transpiration rate and net CO2 exchange rate differed significantly among trees in the different rootstocks and canopy coverage treatments. Shoot extension growth rate, leaf conductance, leaf transpiration rate and leaf net CO2 exchange rate were linearly correlated with midday stem water potential. These relationships were independent of the rootstock and canopy coverage treatments, indicating that tree water relations are probably directly involved in the mechanism that imparts vegetative growth control by selected peach rootstocks.  相似文献   

3.
We investigated crop load and water stress effects on diurnal stem extension growth of field-grown peach (Prunus persica (L.) Batsch) trees. Neither the presence of fruit nor reduced irrigation significantly altered the timing of diurnal fluctuations in stem growth rate. Stems with subtending fruit had significantly reduced growth compared to stems with no subtending fruit. Crop load had no significant effect on relative stem extension rates and the majority of the reduction in absolute growth was the result of a smaller zone of elongation in fruit-bearing stems than in stems with no subtending fruit. Fruit removal did not increase growth rates within 24 h. When irrigation was reduced, the length of the stem elongation zone and total daily stem growth were significantly decreased relative to well-irrigated controls and the decreases were highly correlated with stem water potential. Compared with well-irrigated controls, relative stem extension rates of water-stressed trees were reduced at several times during the 24-h period, but the degree of reduction was not proportional to the difference in stem water potentials between the treatments.  相似文献   

4.
Solari LI  Johnson S  DeJong TM 《Tree physiology》2006,26(10):1343-1350
We investigated hydraulic conductance characteristics and associated dry matter production and distribution of peach trees grafted on different rootstocks growing in the field. A single scion genotype was grown on a low ('K146-43'), an intermediate ('Hiawatha') and a high ('Nemaguard') vigor rootstock. 'K146-43' and 'Hiawatha' rootstocks had 27 and 52% lower mean leaf-specific hydraulic conductances, respectively, than the more vigorous 'Nemaguard' rootstock. Tree growth rates and patterns of biomass distribution varied significantly among rootstocks. Mean dry mass relative growth rates of trees on 'K146-43' and 'Nemaguard' were 66 and 75%, respectively, of the rates of trees on 'Nemaguard', and the scion to rootstock dry mass ratios of trees on 'K146-43' and 'Hiawatha' were 63 and 82%, respectively, of the ratio of trees on 'Nemaguard'. Thus, differences in dry matter distribution between the scion and rootstock, which may be a compensatory response to the differences in leaf specific hydraulic conductance among rootstocks, appeared to be related to differences in growth rates. Correspondingly, there was a positive linear relationship between the scion to rootstock dry mass ratio and the rootstock to scion hydraulic conductance ratio when conductance was normalized for dry mass. This study confirms that rootstock effects on tree water relations and vegetative growth potential result, at least in part, from differences in tree hydraulic conductance associated with specific peach rootstocks.  相似文献   

5.
Nursery stock of peach (Prunus persica L. Batsch, cv. O'Henry), nectarine (P. persica L. Batsch, cv. Fantasia), plum (P. salicina Lindel., cv. Casselman), apricot (P. armeniaca L., cv. Tilton), almond (P. dulcis Mill., cv. Nonpareil), prune (P. domestica L., cv. Improved French), cherry (P. avium L., cv. Bing), oriental pear (Pyrus pyrifolia Rehd., cv. 20th Century), and apple (Malus pumula Mill., cv. Granny Smith) were planted in open-top chambers on April 1, 1988 at the University of California's Kearney Agricultural Center located in the San Joaquin Valley (30 degrees 40' N 119 degrees 40' W). Trees were exposed to three atmospheric ozone partial pressures (charcoal-filtered air (C), ambient air (A), or ambient air + ozone (T)) from August 1 to November 17, 1988. The mean 12-h (0800 to 2000 h) ozone partial pressures measured in open-top chambers during the experimental period were 0.030, 0.051, and 0.117 microPa Pa(-1) in the C, A and T treatments, respectively. Leaf net CO(2) assimilation rate decreased linearly with increasing 12-h mean ozone partial pressure for the almond, plum, apricot, prune, pear, and apple cultivars. Stomatal conductances of apricot, apple, almond, and plum decreased linearly with increasing ozone partial pressure. Cross-sectional area relative growth rates of almond, plum, apricot, and pear decreased linearly with increasing ozone partial pressure. Net CO(2) assimilation rate, stomatal conductance, and trunk growth of cherry, peach and nectarine were unaffected by the ozone treatments. Reduced leaf gas exchange probably contributed to ozone-induced growth reduction of the susceptible species and cultivars. Several of the commercial fruit tree species and cultivars studied were relatively tolerant to the ozone treatments.  相似文献   

6.
We investigated the influence of bud position, cultivar, tree age, tree carbohydrate status, sampling date, drought and light exposure on the number of leaf primordia formed in dormant vegetative peach buds (Prunus persica (L.) Batsch) relative to the number of primordia formed after bud break (neoformed). During winter dormancy, vegetative peach buds from California and Italy were dissected and the number of leaf primordia recorded. Between leaf drop and bud break, the number of leaf primordia doubled from about five to about 10. Parent shoot length, number of nodes on the parent shoot, cross-sectional area of the parent shoot, bud position along the parent shoot and bud cross-sectional area were correlated with the number of leaf primordia. Previous season light exposure, drought and tree carbohydrate status did not affect the number of leaf primordia present. The number of leaf primordia differed significantly among peach varieties and tree ages at leaf drop, but not at bud break. Our results indicate that neoformation accounted for all shoot growth beyond about 10 nodes. The predominance of neoformed shoot growth in peach allows this species great plasticity in its response to current-season conditions.  相似文献   

7.
Data on the seasonal patterns of fruit growth and dark respiration of two peach (Prunus persica (L.) Batsch) cultivars were combined with temperature data to calculate the carbohydrate requirements of an "average" peach fruit from bloom to harvest. The two peach cultivars used were June Lady (an early maturing (mid-June) cultivar) and O'Henry (a late maturing (early-August) cultivar). At harvest, the mean dry weight of the June Lady fruit was 17.8 g (139.7 g fresh weight) and of O'Henry fruits was 30.9 g (213.9 g fresh weight), and the times from full bloom to harvest were 107 and 154 days, respectively. The total calculated fruit respiration requirements were 132 and 300 mmol CO(2) fruit(-1) season(-1) for June Lady and O'Henry fruits, respectively. Total calculated carbohydrate requirements for fruit growth and respiration are 23.9 and 43.8 g CH(2)O fruit(-1) season(-1) for June Lady and O'Henry fruits, respectively. Fruit respiration accounted for 16.3% of the total carbohydrate requirements of June Lady fruits and 0.5% of the total carbohydrate requirements of O'Henry fruits.  相似文献   

8.
Surface conductance to water vapor diffusion was measured in individual peach fruits (Prunus persica (L.) Batsch) and plotted as a function of fresh fruit mass for four cultivars. Surface conductance increased with fresh fruit mass, but the pattern differed with cultivar, and fruit-to-fruit variation occurred. Relationships between fruit mass and surface conductance were modeled by fitting mathematical equations to the data. The simulation model of Fishman and Génard (1998) was used to study dry mass and water components of fruit growth (1) when surface conductance varied with fruit size or was constant, and (2) when surface conductance values were high, moderate or low with respect to fruit mass. Increased surface conductance with fresh fruit mass resulted in fruit growth cessation. Fruits differing in surface conductance had similar dry mass. However, under well-watered conditions (stem water potential between -1 and -0.2 MPa), the water balance components of growth (osmotic and hydrostatic pressure, water potential and water balance) differed greatly and, as a result, the lower the surface conductance the greater the fresh fruit mass. These differences were buffered under drought conditions (stem water potential between -2.4 and -0.6 MPa).  相似文献   

9.
Root and shoot characteristics related to drought resistance were compared among cultivated peach (Prunus persica (L.) Batsch.), P. andersonii (Nevada Desert almond), P. besseyi (western sand cherry), P. maritima (beach plum), P. subcordata (Sierra or Pacific plum), and P. tomentosa (Nanking cherry). In all species, shoot characteristics were more closely associated with drought adaptation than root characteristics. The most xeric species, P. andersonii, had the lowest specific leaf area, smallest leaves, highest stomatal conductance (before stress), highest rate of carbon assimilation (A), high root length/leaf area and root weight/leaf area ratios, and the highest leaf nitrogen content on an area basis. Root hydraulic conductivity was similar for all species, indicating a lack of importance of this parameter for drought resistance. During a 5-7 day drought, water use efficiency (WUE) increased as shoot water potentials (Psi) declined to -3.0 to -4.0 MPa for the xeric P. andersonii and P. subcordata, whereas after an initial increase, WUE decreased with declining Psi in the -1.5 to -3.0 MPa range for the more mesic P. maritima, P. persica and P. tomentosa as a result of non-stomatal limitations to A. Carbon assimilation rate decreased linearly with Psi during drought in all species, but the Psi at which A reached zero was not associated with drought adaptation. We conclude that the variation in leaf characteristics among Prunus species could be exploited to improve the drought resistance of commercial cultivars.  相似文献   

10.
Water relations, leaf gas exchange, chlorophyll a fluorescence, light canopy transmittance, leaf photosynthetic pigments and metabolites and fruit quality indices of cherry cultivars 'Burlat', 'Summit' and 'Van' growing on five rootstocks with differing size-controlling potentials that decrease in the order: Prunus avium L. > CAB 11E > Maxma 14 > Gisela 5 > Edabriz, were studied during 2002 and 2003. Rootstock genotype affected all physiological parameters. Cherry cultivars grafted on invigorating rootstocks had higher values of midday stem water potential (Psi(MD)), net CO(2) assimilation rate (A), stomatal conductance (g(s)), intercellular CO(2) concentration (C(i)) and maximum photochemical efficiency of photosystem II (PSII) (F(v)/F(m)) than cultivars grafted on dwarfing rootstocks. The Psi(MD) was positively correlated with A, g(s) and C(i). Moreover, A was positively correlated with g(s), and the slopes of the linear regression increased from invigorating to dwarfing rootstocks, indicating a stronger regulation of photosynthesis by stomatal aperture in trees on dwarfing Edabriz and Gisela 5. The effect of rootstock genotype was also statistically significant for leaf photosynthetic pigments, whereas metabolite concentrations and fruit physicochemical characteristics were more dependent on cultivar genotype. Among cultivars, 'Burlat' leaves had the lowest concentrations of photosynthetic pigments, but were richest in total soluble sugars, starch and total phenols. Compared with the other cultivars, 'Summit' had heavier fruits, independent of the rootstock. 'Burlat' cherries were less firm and had lower concentrations of soluble sugars and a lower titratable acidity than 'Van' cherries. Nevertheless, 'Van' cherries had lower lightness, chroma and hue angle, representing redder and darker cherries, compared with 'Summit' fruits. In general, Psi(MD) was positively correlated with fruit mass and A was negatively correlated with lightness and chroma. These results demonstrate that: (1) water relations and photosynthesis of sweet cherry tree are mainly influenced by the rootstock genotype; (2) different physicochemical characteristics observed in cherries of the three cultivars suggest that regulation of fruit quality was mainly dependent on the cultivar genotype, although the different size-controlling rootstocks also had a significant effect.  相似文献   

11.
The effect of root and shoot pruning on early growth of hybrid poplars   总被引:1,自引:0,他引:1  
Planting stock type and quality can have an important impact on early growth rates of plantations. The goal of this study was to evaluate early growth and root/shoot development of different planting materials in typical heavy clay soils of northwestern Quebec. Using one-year-old bareroot hybrid poplar dormant stock, four planting materials were compared: (1) regular bareroot stock, (2) rootstock (stem pruned before planting), (3) whips (roots pruned before planting), and (4) cuttings (30 cm stem sections taken from the basal portion of bareroot trees, i.e. roots and shoot pruned). Rooted stock types (bareroot and rootstock) produced, on average, 1.2 times larger trees than unrooted stock types (cuttings and whips). However, shoot-pruned stock types (rootstocks and cuttings) reached similar heights and basal diameters as unpruned stock types (bareroots and whips), during the first growing season. Shoot pruning reduced leaf carbon isotopic ratios, suggesting that unpruned stock types were water-stressed during the first growing season. The stress was most likely caused by early leaf development while root growth occurred later in the summer. We conclude that shoot pruning bareroot stock is a useful management option to reduce planting stress without compromising early growth rates of hybrid poplars.  相似文献   

12.
Lescourret F  Génard M 《Tree physiology》2005,25(10):1303-1315
A virtual fruit model simulating seasonal changes in several peach (Prunus persica (L.) Batsch) fruit quality traits during the final growth stage is presented. The quality traits considered are fruit size, the proportion of total fruit mass consisting of fruit flesh, dry matter content of the flesh and the concentrations of sucrose, glucose, fructose and sorbitol in the flesh, which are used to calculate a sweetness index. The virtual peach fruit model was developed by adapting and integrating three existing process-based models describing fruit dry mass growth, fruit fresh mass growth and sugar accumulation in the flesh into one complex system. Data sets of peach fruit growth and quality obtained from one field site over several years were used to estimate parameters and evaluate the virtual peach fruit model. Output from the model showed good agreement with the field data. Insight into the complex nature of the virtual peach fruit model, i.e., its ability to show emergent properties, was accomplished by conducting a series of theoretical experiments. The virtual peach fruit model was shown to be sensitive to management and environmental factors (leaf:fruit ratio, stem water potential and, to a lesser extent, weather). Its ability to generate simple laws relating to physiological variables and quality parameters was also demonstrated. Finally, the virtual peach fruit model was able to reveal complex behaviors resulting from changes in water potentials or leaf:fruit ratios over time.  相似文献   

13.
The growth of scions and rootstocks of compatible (Prunus persica L. Batsch cv. Springtime/Prunus cerasifera L. Ehrh. cv. myrobolan P2032) and incompatible (Prunus persica L. Batsch cv. Springtime/Prunus cerasifera L. Ehrh. cv. myrobolan P18) peach/plum grafts were compared. The composition of soluble carbohydrates in phloem and cortical tissues of both peach/plum grafts and ungrafted plums and the translocation of these compounds across the union of grafted plants were examined. Sorbitol and sucrose were the dominant sugars in the phloem and cortical tissues of plum. A cyanogenic glycoside, prunasin, was present in peach tissues in amounts equivalent to those of sorbitol or sucrose, whereas only small amounts of prunasin were detected in plum tissues. The concentration of prunasin was significantly higher in the phloem of the P18 rootstock of the incompatible graft. Sorbitol was the only sugar significantly depleted in rootstock tissues of the incompatible graft when the first foliar symptoms of graft incompatibility became evident. Translocation studies with 1-(14)C-deoxyglucose showed that the relative distribution of radioactivity across the graft union was similar in both compatible and incompatible grafts. However, the total amount of radioactivity translocated across the incompatible graft was less than one-third of that translocated across the compatible graft. The results are consistent with the hypothesis of a progressive poisoning of the root system in the incompatible graft by a compound synthesized in peach foliage. The role of prunasin as a possible candidate is discussed.  相似文献   

14.
The annual development of Navelina (Citrus sinensis (L.) Osbeck) trees budded on three hybrid citrus rootstocks was studied. Two rootstocks, named #23 and #24, were obtained from the cross of Troyer citrange (C. sinensis x Poncirus trifoliata (L.) Raf.) x Cleopatra mandarin (C. reshni Hort. ex Tan.). The third rootstock, named F&A 418, came from a cross of Troyer citrange x common mandarin (C. deliciosa Ten.). Rootstocks #23 and F&A 418 are dwarfing rootstocks and reduce the size of the scion by about 75%. Rootstock #24 yields a standard size scion. Major growth differences that influenced tree size were apparent during the first summer after grafting and appeared to be related to fruit productivity, because defruiting the dwarfed scions caused a significant increase in vegetative shoot development, including summer sprouting. The reduced growth of the dwarfed scions was not restored by hormone application, indicating that a hormonal deficiency is unlikely to be the primary reason for scion dwarfing, although differences in gibberellin concentrations were found in actively growing shoots. Leaf photosynthesis was similar in scions on all three rootstocks, but the carbohydrate accumulation in fruits and fibrous roots during the summer sprouting period was significantly greater in the dwarfed trees than in the standard trees. Our results suggest that the dwarfing mechanism induced by the F&A 418 and #23 rootstocks is mediated by enhanced reproductive development and fruit growth, resulting in reduced vegetative development in the summer. Thus, a change in the pattern of assimilate distribution appears to be one of the main components of the dwarfing mechanism.  相似文献   

15.
Deans JD  Ford ED 《Tree physiology》1986,1(3):241-251
Seasonal patterns of radial root growth within 1 m of tree stems were examined in Scottish plantations of Sitka spruce trees aged 9, 15 and 20 years. Results were compared with parallel measurements of shoot extension, radial growth of stems and amounts of starch stored in tissues external to root wood. Youngest trees produced the largest annual increments in root cross-sectional area and numbers of new cells along radial files of tracheids. Irrespective of tree age, new cells were present in roots before bud burst and the onset of radial growth occurred progressively later with increasing distances from the stems. At ages 15 and 20, both stem cross-sectional area and radial root growth up to 0.5 m from the stem base had a minor peak of activity preceding and a major peak following shoot elongation. Further than 0.5 m from the stem, root growth was frequently restricted to the period following shoot extension. Starch storage in the roots reached a maximum in April and May, which was greatest for 9-year-old trees and least for 20-year-old trees. At all ages, radial root growth in early spring occurred concurrently with increased starch storage. Later in the season starch reserves declined rapidly during the period of shoot elongation and root growth occurred whilst reserves were low. At all ages for positions on the root at the base of the stem and 0.25 m from it, starch depletion, at its maximum rate during June, accounted for less than the measured increment of root wood growth at that point. This indicates a substantial translocation of substrates to these zones during growth. At the same time, the reduction in starch concentrations at more distal points from the stem far exceeded that required for local root thickening.  相似文献   

16.
Three controlled water supply treatments were applied to 1-year-old peach trees grown in root observation boxes. The treatments were: I(0), growth medium maintained at 50% field capacity; I(1), water supplied when daily net tree stem diameter change was negative or zero for 1 day; I(3) as for I(1) except that water was applied after net daily stem diameter change was negative or zero for 3 consecutive days. Trees in treatment I(0) had the greatest mean daily first-order shoot growth rates, and trees in treatment I(3) had the lowest shoot growth rates. Because leaf production rate (apparent plastochron) of first-order shoots was unaffected by treatment, differences in shoot length were due to differences in internode extension and not to the number of internodes. Trees in treatment I(0) had a greater number of second-order shoot axes than trees in treatment I(1) or I(3). Furthermore, an increase in the rate of growth of the first-order shoot axis was associated with an increased tendency for branching (i.e., the development of sylleptic second-order shoots). Increased leaf length was also associated with more frequent watering. Trees in treatment I(0) had the greatest root lengths and dry weights, and this was attributed to a greater number of first-and second-order (lateral) root axes compared with trees in the I(1) and I(3) treatments. The extension rate and apical diameter of first-order roots were reduced by the I(3) treatment. The density of second-order roots along primary root axes was not affected by any of the treatments.  相似文献   

17.
Patterns of shoot development and the production of different types of shoots were compared with scion leaf area index (LAI) to identify how eight clonal Actinidia rootstocks influence scion development. Rootstocks selected from seven Actinidia species (A. chrysantha Merri., A. deliciosa (A. Chev.) C. F. Liang et A.R. Ferguson, A. eriantha Benth., A. hemsleyana Dunn, A. kolomikta (Maxim. et Rupr.) Maxim., A. kolomikta C.F. Liang and A. polygama (Sieb. et Zucc.) Maxim.) were grafted with the scion Actinidia chinensis Planch. var. chinensis 'Hort16A' (yellow kiwifruit). Based on an earlier architectural analysis of A. chinensis, axillary shoot types produced by the scion were classified as short, medium or long. Short and medium shoots produced a restricted number of preformed leaves before the shoot apex ceased growth and aborted, resulting in a 'terminated' shoot. The apex of long shoots continued growth and produced more nodes throughout the growing seasons. Mid-season LAI of the scion was related to the proportion of shoots that ceased growth early in the season. Scions on low-vigor rootstocks had 50% or less leaf area than scions on the most vigorous rootstocks and had a higher proportion of short and medium shoots. On low-vigor rootstocks, a higher proportion of short shoots was retained during pruning to form the parent structure of the following year. Short parent shoots produced a higher proportion of short daughter shoots than long parent shoots, thus reinforcing the effect of the low-vigor rootstocks. However, overall effects of rootstock on shoot development were consistent regardless of parent shoot type and nodal position within the parent shoot. Slower-growing shoots were more likely to terminate and scions on low-vigor rootstocks produced a higher proportion of slow-growing shoots. Shoot termination also occurred earlier on low-vigor rootstocks. The slower growth of terminating shoots was detectable from about 20 days after bud burst. Removal of a proportion of shoots at the end of bud burst increased the growth rate and decreased the frequency of termination of the remaining shoots on all rootstocks, indicating that the fate of a shoot was linked to competitive interactions among shoots during initial growth immediately after bud burst. Rootstock influenced the process of shoot termination independently of its effect on final leaf size. Scions on low-vigor rootstocks had a higher proportion of short shoots and short shoots on all rootstocks had smaller final leaf sizes at equivalent nodes than medium or long shoots. Only later in the development of long shoots was final leaf size directly related to rootstock, with smaller leaves on low-vigor rootstocks. Thus, the most important effect of these Actinidia rootstocks on scion development occurred during the initial period of shoot growth immediately after bud burst.  相似文献   

18.
Spann TM  Beede RH  Dejong TM 《Tree physiology》2007,27(8):1189-1196
Effects of rootstock, shoot carbohydrate status, crop load and crown position on the number of preformed leaf primordia in the dormant terminal and lateral buds of mature and immature 'Kerman' pistachio (Pistacia vera L.) trees were investigated to determine if rootstock vigor is associated with greater shoot preformation. There was no significant variation in preformation related to the factors studied, suggesting strong genetic control of preformation in 'Kerman' pistachio. The growth differences observed among trees on different rootstocks were associated with greater stimulation of neoformed growth in trees on the more vigorous rootstocks. However, most annual extension growth in mature tree crowns was preformed, contrasting with the relatively high rate of neoformation found in young tree crowns. Large amounts of neoformed growth in young trees may allow the trees to become established quickly and secure resources, whereas predominantly preformed growth in mature trees may allow for continued crown expansion without outgrowing available resources. We hypothesized that the stimulation of neoformed growth by the more vigorous rootstocks is associated with greater resource uptake or transport, or both. Understanding the source of variation in shoot extension growth on different rootstocks has important implications for orchard management practices.  相似文献   

19.
Kull O  Tulva I 《Tree physiology》2002,22(15-16):1167-1175
We investigated shoot growth patterns and their relationship to the canopy radiation environment and the distribution of leaf photosynthetic production in a 27-m-tall stand of light-demanding Populus tremula L. and shade-tolerant Tilia cordata Mill. The species formed two distinct layers in the leaf canopy and showed different responses in branch architecture to the canopy light gradient. In P. tremula, shoot bifurcation decreased rapidly with decreasing light, and leaf display allowed capture of multidirectional light. In contrast, leaf display in T. cordata was limited to efficient interception of unidirectional light, and shoot growth and branching pattern facilitated relatively rapid expansion into potentially unoccupied space even in the low light of the lower canopy. At the canopy level, T. cordata had higher photosynthetic light-use efficiency than P. tremula, whereas P. tremula had higher nitrogen-use efficiency than T. cordata. However, at the individual leaf level, both species had similar efficiencies under comparable light conditions. Production of new leaf area in the canopy followed the pattern of photosynthetic production. However, the species differed substantially in extension growth and space-filling strategy. Light-demanding P. tremula expanded into new space with a few long shoots, with shoot length strongly dependent on photosynthetic photon flux density (PPFD). Production of new leaf area and extension growth were largely uncoupled in this species because short shoots, which do not contribute to extension growth, produced many new leaves. Thus, in P. tremula, the growth pattern was strongly directed toward the top of the canopy. In contrast, in shade-tolerant T. cordata, shoot growth was weakly related to PPFD and more was invested in long shoot growth on a leaf area basis compared with P. tremula. However, this extension growth was not directed and may serve as a passive means of avoiding self-shading. This study supports the hypothesis that, for a particular species, allocation patterns and crown architecture contribute as much to shade tolerance as leaf-level photosynthetic acclimation.  相似文献   

20.
Prunus ferganensis (Kost. & Riab) Kov. & Kost, a close relative of cultivated peach (Prunus persica (L.) Batsch.), is native to arid regions of central Asia. A distinguishing feature of P. ferganensis is its prominent, elongated, unbranched pattern of leaf venation. To determine whether the long-vein trait could be used as a marker in breeding for drought tolerance, we investigated the association between this trait and the leaf morphological and physiological parameters related to drought response in P. ferganensis, P. persica and two interspecific hybrids, one with the long-vein trait (BY94P7585) and one without (BY94P7589). The four genotypes were grafted onto "Guardian" peach rootstock and half of the plants were assigned to a drought treatment in which irrigation was limited to 25-50% of the evapotranspiration (ET) rate measured in the remaining well-watered plants, which were irrigated to runoff daily. The drought treatment reduced photosynthesis and leaf conductance by 49-83% and reduced total leaf area per plant by 17-24%, but generally did not affect mid-morning leaf water potential. Leaf gas exchange did not differ among genotypes in either treatment. Sorbitol accumulated in mature leaves in response to drought, but neither its amount nor its metabolism varied systematically with climatic adaptation among genotypes. Accumulation of transport sugars was highest in P. ferganensis, indicating that growth reduction may represent an important strategy for coping with drought in this species. Prunus ferganensis and the hybrids had higher ET than P. persica, and seemed to use water opportunistically, maintaining high gas exchange rates and consequently high ET when water was available, and avoiding low water potentials through stomatal closure as soil water declined. Leaf size (cm(2) leaf(-1)) and specific leaf area (cm(2) g(-1) dry mass) were lower in P. ferganensis and the hybrids than in P. persica. We conclude that the long-vein trait is not a reliable marker for drought tolerance, but leaf traits of P. ferganensis such as size and specific leaf area may be useful in P. persica breeding programs targeting drought tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号