首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
土壤干旱对小麦叶片渗透调节和光合作用的影响   总被引:8,自引:1,他引:8  
本文研究了土壤干旱对小麦叶片渗透调节和光合作用的影响.小麦叶片水势、相对含水量、饱和渗透势、光合速率、蒸腾速率和气孔导度随土壤干旱程度加剧呈现出先缓降后陡降的趋势,其变化的土壤相对含水量阈值相同.小麦旗叶的渗透调节能力约为0.5MPa,不同叶位叶片渗透调节能力不同,其强弱顺序为旗叶>倒二叶>倒三叶.干旱使叶片膨压丧失时的渗透势从正常水分处理的-1.61MPa降到-2.33MPa,弹性模量从5.74MPa增加到6.35MPa.干旱条件下的光合速率、气孔导度、气孔限制值和叶片光合放氧能力都下降,而细胞间隙CO_2含量增加,说明光合速率的降低是非气孔因素即叶肉细胞光合活性限制的结果.  相似文献   

2.
The responses of four wheat ( Triticum aestivum L.) varieties to soil moisture were determined by measuring plant parameters such as relative leaf water content (RLWC) and the chlorophyll, proline and sugar contents of the leaf over two seasons. Two levels of irrigation treatments were adopted: irrigated and rainfed. The rainfed plants had consistently higher amounts of proline and sugar but lower RLWC and chlorophyll content. As drought intensified, differences between the irrigated and the rainfed plants with respect to all of these characters increased. The RLWC values of the irrigated plants were significantly higher in the morning but lower values were found at noon, showing some recovery in the afternoon.  相似文献   

3.
Research has indicated osmotic adjustment as a mechanism by which leaves and roots of cotton plants overcome a drought period. However, the relevance of this mechanism in reproductive tissues of modern cultivars under drought has not been fully investigated. The objectives of this study were to measure osmoregulation and carbohydrate balance in reproductive tissues and their subtending leaves grown under water‐deficit conditions. Two cotton cultivars were grown under controlled environment and field conditions. Plants were exposed to water‐deficit stress at peak flowering, approximately 70 days after planting. Measurements included stomatal conductance, proline concentration, soluble carbohydrates and starch concentration, and water potential components. Stomatal conductance of drought‐stressed plants was significantly lower compared to control, while osmotic adjustment occurred in reproductive tissues and their subtending leaves by different primary mechanisms. Pistils accumulated higher sucrose levels, maintaining cell turgor in plants exposed to drought at similar levels to those in well‐watered plants. However, subtending leaves lowered osmotic potential and maintained cell turgor by accumulating more proline. Soluble carbohydrates and starch concentration in leaves were more affected by drought than those of floral tissues, with corresponding reduction in dry matter, suggesting that flowers are more buffered from water‐deficit conditions than the adjacent leaves.  相似文献   

4.
土壤水分胁迫下小麦叶片的渗透调节与膨压维持   总被引:7,自引:0,他引:7  
李德全  邹琦 《华北农学报》1991,6(4):100-105
两年的试验结果表明,在土壤缓慢脱水和长期水分胁迫下,四个小麦品种叶片均产生渗透调节,孕穗期和灌浆期渗透调节能力较强,渗透调节的幅度为0.40~0.64MPa,抗旱性强的品种大于抗旱性弱的品种.由于渗透调节在土壤含水量60%左右或轻度胁迫下,叶片膨压基本不变.五个生育期四个处理水平叶水势与膨压回归分析,从水势每下降一个单位,膨压降低的单位数看,昌乐5号(0.146)<山农587(0.151)<烟农15(0.162)<济南13(0.240),抗旱性强的品种由于渗透调节能力强,膨压降低的单位数小,维持膨压的程度高.  相似文献   

5.
PEG干旱胁迫对红三叶抗性生理生化指标的影响研究   总被引:3,自引:3,他引:0  
为快速比较红三叶(Trifolium pretense)植株抗旱性,采用不同浓度PEG-6000溶液对4个野生红三叶材料和1个红三叶品种进行不同程度的水分胁迫处理,研究不同水分胁迫对各材料叶片中生理生化指标的影响。结果表明:不同PEG干旱胁迫处理下,巫溪红三叶叶片含水量降幅较低,20% PEG处理下与对照相比下降幅度为28.49%,叶片电导率均最低,为对照的2.78倍,MDA含量增幅较小,为对照的2.84倍,叶片细胞膜系统有较强的抗旱能力;而红三叶06-4叶片含水量降幅最大,在强度渗透胁迫下与对照相比下降幅度为35.32%,叶片电导率在20% PEG处理时为对照5.01倍,MDA含量增幅最大,为对照的4.24倍,其忍耐干旱的性能相对较弱。渗透胁迫下各品种叶片游离脯氨酸含量显著增加,当PEG浓度为20%时,巫溪红三叶脯氨酸含量急剧上升,为对照的30.84倍。红三叶各材料的SOD活性在轻度干旱胁迫时均提高,胁迫程度增强时SOD活性下降。PEG胁迫导致红三叶各材料叶片相对含水量下降、细胞膜透性增大、MDA含量上升、脯氨酸含量增加而SOD活性下降,但4个材料和1个红三叶品种对应指标的变化幅度存在差异,巫溪红三叶表现出较强的抗旱性,而‘红三叶06-4’抗旱性较弱。  相似文献   

6.
为研究干旱胁迫对无花果的抗旱生理生化机制,评价无花果对干旱胁迫的反应,以‘布兰瑞克’无花果为试验材料,采取保护地控水试验法,将土壤含水量设置为4个水平,分别为常规供水(CK,田间持水量的65%~75%)、轻度干旱(LD,田间持水量的50%~55%)、重度干旱(MD,田间持水量的40%~45%)、极度干旱(ED,田间持水量的30%~35%),对比不同干旱胁迫对无花果产量及叶片理化特性的影响。结果表明,无花果叶片相对含水量、叶绿素相对含量随胁迫程度的增大而明显降低,均在ED处理下达最小值,分别较CK降低35.81%、44.40%。叶片蛋白、可溶性糖、丙二醛(MDA)含量随着胁迫程度的增大明显增加,均在ED处理达到最大值,较CK分别增加260%、120%、473%;叶片游离脯氨酸(Pro)渗透调节物质含量明显增加;过氧化氢酶(CAT)、超氧化物歧化酶(SOD)、过氧化物酶(POD)等酶的活性随胁迫程度的增大而显著增强,均在ED处理下达到最大且分别高于CK 33%、90%、360%、6.2%;平均单果重在MD处理下出现最大值为62.11 g,较CK增加20%。ED处理下小区产量最大,达13.90 kg,较CK增加41%。综上,干旱胁迫对无花果产量及叶片生理生化指标有明显影响,在一定范围内胁迫程度越强,无花果产量越低;无花果自身能通过调节渗透物质和酶活性对环境条件做出反应。  相似文献   

7.
Until now, the carbohydrate dynamics in leaves of rapeseed under drought have largely been unknown. For this reason, a growth chamber study was conducted to examine whether the accumulation of carbohydrates under drought stress contributes to osmotic adjustment in leaf tissue. Plants of the cultivar Titan were subjected to temporary drought in the vegetative and reproductive stages. A third variant of long‐term drought covered the period from leaf development to flowering. The level of sucrose decreased under moderate water deficit, but accumulated under severe long‐term drought. Concentrations of glucose, fructose and trehalose were significantly enhanced and that of raffinose decreased in all the variants of drought. There was no evidence that any of the carbohydrates analysed in this study or the activities of soluble acid and cell wall invertases contributed to a drought‐induced accumulation of osmolytes. The results of this study indicate that osmotic adjustment in response to drought in leaves of the rapeseed cultivar Titan is only limited. It is virtually impossible that carbohydrates function as osmoprotectants in leaves of this cultivar, rising above that of the frequently detected accumulation of proline in rapeseed under water deficit.  相似文献   

8.
Growth of pearl millet (Pennisetum glaucum (L.) R. Br.) is affected in areas with limited and erratic rainfall, often combined with nitrogen deficiency. Therefore, effects of severe drought and nitrogen availability on mechanisms of dehydration avoidance were investigated. Five pearl millet genotypes were cultivated in soil differing in nitrogen availability, low (N1), medium (N2) or high (N3) in a climate chamber. Thirty‐five days after sowing, the plants were exposed to drought for 12 days. Drought decreased leaf area and stomatal conductance strongly and caused leaf rolling. In the youngest fully expanded leaves, drought led to an osmotic adjustment from around ?0.5 to ?0.9 MPa, in N1 and N2 substantially achieved by potassium accumulation. Nitrate contributed to the osmotic adjustment in N2 and N3, proline only slightly, increasingly from N1 to N2, whereas the sum of glucose, fructose and sucrose did not play a role. The dehydration independent osmotic force for water uptake (osmotic potential at full turgor) was under drought strongest at N2 and in the landrace Dembi Yellow stronger than in the cultivars Ashana and Ugandi. This contributed to the higher relative water content (RWC) of ‘Dembi Yellow’, whereas due to other factors nitrogen had no effect on the RWC.  相似文献   

9.
Three cultivars of maize ( Zea mays L.) were grown in the experimental field at Hiroshima University, Japan under two levels of K fertilization with a non-irrigated water stress treatment and an irrigated control during June to August 1990. Leaf water potential, osmotic potential and stomatal conductance were measured 21 d after withholding water. Diurnal changes in degree of leaf rolling were measured on the 22nd day after withholding water. Leaf water potential and osmotic potential at full turgor were lower in the non-irrigated plants than irrigated and they were lower in the high K plants than the low K plants. Lowering of osmotic potential (osmotic adjustment) helped to maintain turgor under low water potential conditions. Turgor potential was increased by the higher K fertilization. Higher turgor potential may contribute to the higher stomatal conductance observed in non-irrigated high K plants. The degree of leaf rolling increased towards noon, and it was lower in high K plants than in low K plants. High K plants recovered from leaf rolling faster than the low K plants during the afternoon. High K. plants could maintain higher turgor potential throughout the day than the low K plants. Degree of leaf rolling was the lowest in the cultivar K-8388 which maintained the highest turgor potential via osmotic adjustment and it recovered from leaf rolling faster than the other two cultivars. Higher levels of K fertilization may be beneficial for maize plants to tolerate to water stress conditions.  相似文献   

10.
外源ABA对渗透胁迫下玉米幼苗根系渗透调节的影响   总被引:18,自引:0,他引:18  
王玮  张枫  李德全 《作物学报》2002,28(1):121-126
用ABA处理不同抗旱性的两个玉米品种幼苗根系, 测定了根系的水势、渗透势、渗透调节能力及4种渗透调节物质的变化, 结果表明: 渗透胁迫条件下, ABA能提高根系的水势、降低渗透势、增加渗透调节能力, 且对抗旱性强的鲁玉14号的作用大于抗旱性弱的掖单13号. 正常供水条件下, ABA处理对根系水势的提高有一定的作用, 但对渗透势及  相似文献   

11.
Moderate drought stress increases the root-to-shoot ratio in sugar-beet plants. The question arises whether abscisic acid occurs in these plants and whether it plays a role in their adaptation to limited water supply. Thus, after identification by GC/MS, the content of free ABA and its alkaline hydrolysable conjugates was determined by capillary GLC in sugar-beet plants of pot and field experiments with differentiated water supply. It was shown that leaves had a higher content of free ABA than tap roots. Within the leaf apparatus the young organs contained more ABA than the fully developed leaves. Moderate drought stress increased both free and alkaline hydrolysable ABA contents in leaves of intact plants, whereas the ABA content of tap roots was not demonstrably influenced. In contrast, severe and rapid osmotic stress treatment of detached leaves by dipping the petioles in mannitol solutions increased the free ABA content at the expense of the hydrolysable conjugates. This suggests an ABA release by the latter. Therefore, sugar-beet plants seem to have two mechanisms for increasing the free ABA content under drought stress conditions: the gradual synthesis of ABA including its conjugates and the release of free ABA from ABA conjugates.  相似文献   

12.
The study investigates the differential accumulation of osmolytes and their contribution to osmotic adjustment in leaf tissue of peanut under drought stress. Plants of four peanut cultivars, obtained from ICRISAT, with varying degrees of drought tolerance were subjected to 10, 15, and 20 days of drought stress by withholding irrigation to 20-day-old seedlings. Leaf samples were collected on 31st, 36th, and 41st days from these stressed plants along with their respective controls. The results indicated that ICGV 91114 was the most drought-tolerant variety followed by ICGS 76 and J 11, while JL 24 was the most drought susceptible. The leaves of ICGV 91114 maintained higher RWC and chlorophyll pigments under water stress compared to JL 24. The contents of all the biochemicals were found to be the maximum in ICGV 91114 and least in JL 24 during stress periods. Drought induced increase in the contents of TSS and TRS were significantly higher in ICGV 91114 under 15 days of water stress compared to the other three varieties and stress periods, while TLP, total free amino acids and total proline were higher in 20-day-old stressed plants of ICGV 91114 and the lowest in 10-day-old stressed plants of JL 24. In the control plants of all four varieties, there was a steady increase in the contents of all these biochemicals with an increase in the age of the plants. The results suggest that osmolytes act as important compatible solutes to maintain osmotic balance, to protect cellular macromolecules, and scavenge free radicals under water stress conditions.  相似文献   

13.
Talinum paniculatum is an important leafy vegetable and medicinal plant, used in many parts of South America, Africa and Asia. Its adaptation to abiotic stress has received little attention and therefore worthy of interest, especially as environmental conditions are rendering arable lands increasingly unfavourable for agriculture. Therefore, this study was undertaken to examine the influence of salt stress on the vegetative growth of the plant by subjecting seedlings to 0, 25, 50, 100, 200 and 300 mm NaCl stress for 10 days. The dry weight, ion concentrations, relative water content, oxidative damage, proline, osmotic potential and some antioxidants were determined. The plants were found to retain Na+ mainly in the root, with less affected leaf K+ concentration, and consequently very low shoot Na+/K+ ratios (<0.2) under all the stress treatments. The proline content significantly increased under the 100–300 mm treatments (18‐ to 244‐fold), with a corresponding significant reduction in osmotic potential and hence high osmotic adjustment. The antioxidant enzyme activities and non‐enzyme antioxidants showed significant increase only under the highest salinity. Taken together, these results suggest that shoot Na+ exclusion is characteristic of this plant and is mainly responsible for its adaptation to low salinity.  相似文献   

14.
Leaf senescence leads to a progressive decline in the photosynthetic competence of the leaf. This paper describes some effects of source:sink imbalance on leaf protein catabolism and senescence in soybean. We manipulated pod growth by restricting 100 or 50 % (PR-100 or PR-50, respectively) of young pods at the R4 stage in plastic drinking straws. This effectively reduces final seed mass without interrupting the vascular connections of pods. Nodulating (NOD+) and non-nodulating (NOD−) isolines of the 'Clay' soybean were grown in drainage lysimeters and three pod-restriction (PR) treatments were compared. Pod restriction decreased seed biomass per plant as a result of lower individual seed mass, which was only partially balanced by the increase in seed number. The nitrogen concentration in seeds remained unchanged in NOD+ plants, while it increased with the degree of sink restriction in seeds of NOD− plants. Leaf soluble protein, CO2 exchange rate and seed nitrogen content were consistently lower in NOD− plants; the leaf protein level remained stable with time in PR-100 plants, decreased for PR-50 and dropped for controls. Endoprotease (HBase) and carboxypeptidase (CPase) activities were significantly lower in leaves from PR-100 plants, while aminopeptidase activity was enhanced, indicating a de novo synthesis of leaf protein. This is consistent with the reported accumulation of vegetative storage proteins (VSPs) in soybean and other legumes after moderate or severe sink reduction. Thus, small modifications of the source:sink ratio such as those obtained by the non-destructive PR technique have an impact on leaf protein catabolism. Nodulating and non-nodulating soybean isolines showed similar responses to PR in terms of leaf senescence initiation and progression, but the rate of the processes appear to be largely influenced by plant N status.  相似文献   

15.
粤选1号匍匐翦股颖新品系是丛Penncross建坪的老果岭中分离出的无性系。在广州地区夏季果岭草坪密度、绿叶盖度、叶片老化指数、抗坏血酸含量显著高于原品种Penncross,叶片质膜相对透性低。持续高温(36℃)胁迫下,新品系叶片中游离脯氨酸含量显著增加,而原品种在高温胁迫第3d才开始显著增加,新品系游离脯氨酸含量明显高于原品种;高温胁迫下新品系叶片可溶性蛋白含量增加并高于Penncross,而Penncross在高温胁迫2d后显著下降;新品系匍匐茎可溶性糖含量增加,高温胁迫5d后,Penncross显著高于新品系;新品系匍匐茎淀粉含量显著高于Penncross;高温胁迫对叶片相对含水量和叶绿素含量无明显影响。  相似文献   

16.
摘要: 以两种黄瓜砧木中国南瓜(Cucurbita moschata)杂交种“360-3×112-2”和黑籽南瓜(C. ficifolia)的幼苗为试材,在营养液培养的条件下进行80mmol?L-1 NaC1胁迫,研究了南瓜幼苗的生长、相对含水量、各器官的渗透势和叶片中渗透调节物质含量的变化。结果表明,NaCl胁迫后,两种南瓜幼苗的生长显著受到抑制,“360-3×112-2”幼苗的耐盐性比黑籽南瓜强,“360-3×112-2”幼苗的相对含水量降低较少,各器官的渗透势降低较多,叶片中渗透调节物质含量增加较多。较高的耐盐性与它具较强的渗透调节能力有关。  相似文献   

17.
Improved adaptation of potato to limited water availability is needed for stable yields under drought. The maintenance of the cell water status and protection of cellular components against dehydration are important for drought tolerance, and the N status of plants affects the regulation of various respective metabolic processes. A 2‐year pot trial with 17 potato cultivars was conducted under a rain‐out shelter including two water regimes and two N‐levels to investigate genotypic differences concerning osmotic adjustment (OA) and relevant biochemical traits in relation to nitrogen (N) supply. Drought stress resulted in a rapid decrease in the leaf osmotic potential. The N, protein and proline contents increased under drought, while the N protein/NKjeldahl ratio decreased. Initially, total soluble sugars increased at both N‐levels but dropped back to the control level at high N‐availability under prolonged drought while remaining high in N‐deficient plants. Results indicate that potatoes have only a limited capacity of active OA and that increasing sugar and proline concentrations are rather associated with the protection of cellular components. High N supply promoted the N protein/NKjeldahl ratio at short‐term drought and enhanced proline accumulation. Significant genotypic differences were observed for all investigated traits.  相似文献   

18.
The effect of cold acclimation on the water status and the fate of carbohydrates was studied in white clover (Trifolium repens L., cv Huia) subjected to chilling and/or freeze-thaw cycles. Treatments were applied in a controlled environment, with a constant photoperiod, for 6 weeks to plants either acclimated or non-acclimated to low temperature.

Cold acclimated plants had a higher concentration of starch in the stolons at the end of the acclimation period than non-acclimated plants (54 vs. 15 mg g−1 DW). During the experiment, the leaves of cold acclimated plants subjected to frosts maintained a higher relative water content (RWC) than did leaves of plants not acclimated for which we observed a strong dehydration of 80%.

Under chilling, cold acclimated plants demonstrated an osmotic adjustment. We showed that only 30–40% of the variation of the osmotic potential was explained by variation in free sugar concentration, suggesting that compounds other than carbohydrates participated in the osmotic regulation.

Chilling increased the carbohydrate content and frost decreased the starch concentration in non-acclimated plants only.

We showed in white clover that the cold acclimation contributed to frost and chilling tolerance by the maintenance of the hydration of tissues. We demonstrated that osmotic adjustment was not completely explain by the accumulation of free sugars.  相似文献   


19.
胡梦芸  李辉  张颖君  刘茜 《作物学报》2009,35(4):724-732
以15%聚乙二醇(PEG-6000)模拟水分胁迫,以不同浓度外源葡萄糖(Glc)处理小麦幼苗,探讨外源Glc对水分胁迫下小麦幼苗生长发育和光合特性的影响。结果表明,水分胁迫显著降低了小麦叶片水势和光合作用,抑制植株的生长,而水分胁迫下外源Glc处理能明显增加叶片水势和光合色素含量,并使水分胁迫和水分胁迫后复水处理条件下,小麦幼苗叶片的净光合速率(Pn)、气孔导度(Gs)胞间CO2浓度(Ci)和叶片水分利用效率(WUE)显著升高,而使蒸腾速率(Tr)下降。同时,外源Glc处理显著提高了水分胁迫下叶片中可溶性糖和脯氨酸的积累,促进不定根和侧根的生长,植株干重比单一干旱处理提高14.32%~40.39%。由此表明,水分胁迫下外源Glc通过促进小麦根系生长和提高叶组织的渗透调节能力,改善叶片的水分状况,提高了叶片的光合功能,促进小麦幼苗的生长,降低了水分胁迫对小麦幼苗生长的抑制作用。  相似文献   

20.
甜椒对不同程度水分胁迫-复水的生理生化响应   总被引:6,自引:0,他引:6  
对甜椒穴盘苗进行了不同程度的水分胁迫-复水处理,探讨了叶片某些生理生化特性的变化。结果如下:叶片RWC、渗透势随基质水分减少而降低,渗调能力逐步增强。POD、SOD、CAT酶活性随水分减少而上升,SOD对水分胁迫最敏感,复水后主要由POD、CAT负责清除H2O2和过氧化物;游离氨基酸、脯氨酸随基质水分减少急剧上升,复水后大幅下降,可能为轻度胁迫下主要的渗调物质。RWC降至45%(停水后3d)时,可溶性蛋白和可溶性糖显著积累,明显晚于氨基酸,但它们基础含量高,主要在较为严重的水分胁迫时发挥作用。虽然水分胁迫使保护酶活性和渗透调节能力均提高,但任何程度的胁迫均不可避免地伤害幼苗。穴盘苗生产中,建议“水分胁迫锻炼”时间以不超过3d(RWC≥45%)为宜。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号