首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Alternative silvicultural approaches to timber management, such as regeneration treatments with different degrees of stand retention, may mitigate negative effects of clear-cutting or shelterwood cuts in forested ecosystems, including changes in old-growth forest bird communities. The aims of this work were: (a) to compare bird species richness and densities among different silvicultural designs with variable retention (dispersed and/or aggregated) and unmanaged primary forests, and (b) to assess temporal changes at community and species levels before and after treatments. A baseline avian survey was conducted prior to harvesting to evaluate canopy gap presence and forest stand site quality influences. Subsequent to harvesting, data on bird species richness and density were collected by point-count sampling during the summer season for 5 consecutive years (4 treatments × 5 years × 6 sampling points × 5 counts). Bird species richness and density (15 species and 9.2 individuals ha−1) did not change significantly with forest site quality of the stands and canopy gap presence in unmanaged forests. However, both variables were significantly modified in managed forests, increasing over time to 18 species and reaching to 39 individuals ha−1. Inside the aggregated retention, bird communities were more similar to unmanaged primary forests than those observed within the dispersed retention or in clear-cuts. Opting for a regeneration method with dispersed and aggregated retention has great potential for managing birds in Nothofagus pumilio forests. This method retained enough vegetation structure in a stand to permit the establishment of early successional birds (at least in dispersed retention), and to maintain the bird species of old-growth forests which could persisted in the retention aggregates.  相似文献   

2.
Over the past 50 years, forested landscapes of the Pacific Northwest have become increasingly patchy, dominated by early successional forests. Several amphibian species associated with forested headwater systems have emerged as management concerns, especially after clearcutting. Given that headwater streams comprise a large portion of the length of flowing waterways in western Oregon forests, there is a need to better understand how forest management affects headwater forest taxa and their habitats. Mitigation strategies include alternatives to clearcutting, such as harvests that remove only part of the canopy and maintenance of riparian buffer strips. Our study investigates effects of upland forest thinning coupled with riparian buffer treatments on riparian and upland headwater forest amphibians, habitat attributes, and species-habitat associations. Amphibian captures and habitat variables were examined 5–6 years post-thinning within forest stands subject to streamside-retention buffers and variable-width buffers, as well as unthinned reference stands. We found no treatments effects, however, our results suggest that ground surface conditions (e.g., amount of rocky or fine substrate) play a role in determining the response of riparian and upland amphibians to forest thinning along headwater streams. Distance from stream was associated with amphibian abundance, hence retention of riparian buffers is likely important in maintaining microclimates and microhabitats needed for amphibians and other taxa. Moderate thinning and preservation of conditions in riparian and nearby upland areas by way of variable-width and streamside-retention buffers may be sufficient to maintain suitable habitat and microclimatic conditions vital to amphibian assemblages in managed headwater forests.  相似文献   

3.
Habitats worldwide are increasingly threatened by degradation and conversion. Critical to the process of habitat loss is the organismal response, which can have effects on immediate conservation measures or future restoration. Among the most threatened and underappreciated habitats are headwater streams, which are small but abundant features of montane forests. These habitats comprise a significant proportion of the total stream length, can harbor remarkable biodiversity, and are critical for numerous ecosystem processes. One of the most abundant organisms in montane headwater ecosystems are salamanders, and therefore what happens to salamanders when the forest habitats surrounding headwater streams are altered? Three main hypotheses exist: (1) mortality hypothesis; (2) retreat hypothesis; and (3) evacuation hypothesis. To examine these hypotheses we evaluated the impacts of even-aged riparian timber harvest on stream-breeding salamanders. Riparian forests along headwater streams were logged, leaving riparian buffers of 0 m, 9 m, and 30 m. Responses to each riparian alteration were measured in terms of salamander terrestrial habitat use and growth in the riparian habitat, as well as changes in population density within headwater streams. Adult and juvenile salamander densities measured in headwater streams were significantly greater in logged riparian treatments than in unaltered riparian treatments. In addition, salamanders significantly reduced their terrestrial habitat use following riparian logging with both the average distance from the stream and the relative abundance of salamanders decreasing. It is unlikely that salamanders will persist in highly modified riparian habitats, as we measured significantly reduced body conditions over short periods of time at these sites. We present corroborative evidence that salamanders evacuate the riparian habitat following intensive riparian logging, emigrating to adjacent headwater streams. Our results underscore the sensitivity of stream salamanders to riparian habitat alteration as well as the importance of riparian buffers in preserving amphibian assemblages.  相似文献   

4.
Forestry practices integrating ecological and social criteria have been replacing those based only on economic values. Traditional silviculture, such as shelterwood cuts (SC), transforms uneven-aged original stands to an even-aged managed forest. Recently, other methods have proposed to conserve some of the original heterogeneity of the old-growth forests. One proposal leaves 30% of the timber quality forest area as aggregated retention and 20% basal area as dispersed retention. The aim of this study was to analyze the feasibility of timber management with aggregated and dispersed retention in Nothofagus pumilio old-growth forests by analyzing timber and harvesting yield potential compared with traditional regeneration systems. Also, remnant tree stability of aggregated retention was analyzed.  相似文献   

5.
Headwater streams are an important and prevalent feature of the eastern North American landscape. These streams provide a wealth of ecosystem services and support tremendous biological diversity, which is predominated by salamanders in the Appalachian region. Salamanders are ubiquitous throughout the region, contributing a significant biomass that supports ecological and ecosystem processes. One of the greatest threats to salamanders is loss of headwater-riparian habitat through timber harvest. In this study, we measured larval salamander abundance at five headwater streams with different riparian buffer widths retained following logging. By sampling larval salamanders using leaf litter bags, we assessed the impacts of even-aged timber harvest on aquatic larval salamander abundances, where it was found that larvae are negatively impacted by increased stream sedimentation and a decrease in riparian buffer width. We found that retention of a 9-m buffer was effectively no different than complete removal of all riparian forest, and as such, current regulations to protect headwater streams are ineffectual. Furthermore, no significant differences were observed between the 30 m buffer treatment and uncut control treatments suggesting that a 30 m or larger riparian buffer may assuage the in-stream effects of riparian timber harvest. Management guidelines for Appalachian forests should be revised to accommodate the biology of plethodontid salamanders.  相似文献   

6.
7.
Stream–riparian areas represent a nexus of biodiversity, with disproportionate numbers of species tied to and interacting within this key habitat. New research in Pacific Northwest headwater forests, especially the characterization of microclimates and amphibian distributions, is expanding our perspective of riparian zones, and suggests the need for alternative designs to manage stream–riparian zones and their adjacent uplands. High biodiversity in riparian areas can be attributed to cool moist conditions, high productivity and complex habitat. All 47 northwestern amphibian species have stream–riparian associations, with a third being obligate forms to general stream–riparian areas, and a quarter with life histories reliant on headwater landscapes in particular. Recent recognition that stream-breeding amphibians can disperse hundreds of meters into uplands implies that connectivity among neighboring drainages may be important to their population structures and dynamics. Microclimate studies substantiate a “stream effect” of cool moist conditions permeating upslope into warmer, drier forests. We review forest management approaches relative to headwater riparian areas in the U.S. Pacific Northwest, and we propose scenarios designed to retain all habitats used by amphibians with complex life histories. These include a mix of riparian and upslope management approaches to address the breeding, foraging, overwintering, and dispersal functions of these animals. We speculate that the stream microclimate effect can partly counterbalance edge effects imposed by upslope forest disturbances, hence appropriately sized and managed riparian buffers can protect suitable microclimates at streams and within riparian forests. We propose one approach that focuses habitat conservation in headwater areas – where present management allows extensive logging – on sensitive target species, such as tailed frogs and torrent salamanders that often occur patchily. Assuming both high patchiness and some concordance among the distribution of sensitive species, protecting areas with higher abundances of these animals could justify less protection of currently unoccupied or low-density habitats, where more intensive forest management for timber production could occur. Also, we outline an approach that protects juxtaposed headwater patches, retaining connectivity among sub-drainages using a 6th-field watershed spatial scale for assuring well-distributed protected areas across forested landscapes. However, research is needed to test this approach and to determine whether it is sufficient to buffer downstream water quality and habitat from impacts of headwater management. Offering too-sparse protection everywhere is likely insufficient to conserve headwater habitats and biodiversity, while our alternative targeted protection of selected headwaters does not bind the entire forest landscape into a biodiversity reserve.  相似文献   

8.
Relatively few evaluations of aquatic macroinvertebrate and fish communities have been published in peer-reviewed literature detailing the effect of varying residual basal area (RBA) after timber harvesting in riparian buffers. Our analysis investigated the effects of partial harvesting within riparian buffers on aquatic macroinvertebrate and fish communities in small streams from two experiments in northern Minnesota northern hardwood-aspen forests. Each experiment evaluated partial harvesting within riparian buffers. In both experiments, benthic macroinvertebrates and fish were collected 1 year prior to harvest and in each of 3 years after harvest. We observed interannual variation for the macroinvertebrate abundance, diversity and taxon richness in the single-basin study and abundance and diversity in the multiple-basin study, but few effects related to harvest treatments in either study. However, interannual variation was not evident in the fish communities and we detected no significant changes in the stream fish communities associated with partially harvested riparian buffers in either study. This would suggest that timber harvesting in riparian management zones along reaches ≤200 m in length on both sides of the stream that retains RBA ≥ 12.4 ± 1.3 m2 ha−1 or on a single side of the stream that retains RBA ≥ 8.7 ± 1.6 m2 ha−1 may be adequate to protect macroinvertebrate and fish communities in our Minnesota study systems given these specific timber harvesting techniques.  相似文献   

9.
Although the importance of aquatic environments and adjacent riparian habitats for fish have been recognized by forest managers, headwater creeks have received little attention. The tailed frog, Ascaphus truei, inhabits permanent headwaters, and several US studies suggest that its populations decline following clear-cut logging practices. In British Columbia, this species is considered to be at risk because little is known of its abundance, distribution patterns in the landscape, and habitat needs. We characterized nine logged, buffered and old-growth creeks in each of six watersheds (n = 54). Tadpole densities were obtained by area-constrained searches. Despite large natural variation in population size, densities decreased with increasing levels of fine sediment (<64 mm diameter), rubble, detritus and wood, and increased with bank width. The parameters that were correlated with lower tadpole densities were found at higher levels in clear-cut creeks than in creeks of other stand types. Tadpole densities were significantly lower in logged streams than in buffered and old-growth creeks; thus, forested buffers along streams appear to maintain natural channel conditions. To prevent direct physical damage and sedimentation of channel beds, we suggest that buffers be retained along permanent headwater creeks. Creeks that display characteristics favoring higher tadpole densities, such as those that have coarse, stable substrates, should have management priority over less favorable creeks. Measures should also be taken to minimize fine sediment inputs from roads and stream crossings.  相似文献   

10.
Forest harvesting strategies that approximate natural disturbances have been proposed as a means of maintaining natural species’ diversity and richness in the boreal forests of North America. Natural disturbances impact shoreline forests and upland areas at similar rates. However, shoreline forests are generally protected from harvest through the retention of treed buffer strips. We examined bird community responses to forest management guidelines intended to approximate shoreline forest fires by comparing bird community structure in early (1–4 years) post-burned and harvested boreal riparian habitats and the adjacent shoreline forest. We sampled riparian areas with adjacent: (1) burned merchantable shoreline forest (n = 21), (2) burned non-merchantable shoreline forest (n = 29), (3) 10 m treed buffer with 25% retention in the next 30 m (n = 18), and (4) 30 m treed buffer (n = 21). Only minor differences were detected in riparian species’ abundance and bird community composition between treatments with greater differences in these parameters occurring between post-fire and post-harvest upland bird communities. Indicators of all merchantable treatments were dominated by upland species with open-habitat species and habitat generalists being typical upland indicator species of burned merchantable habitats and forest specialists typical upland indicators of harvested treatments. Riparian species indicative of burned riparian habitats were Common Yellowthroat (Geothlypis trichas), Le Conte’s Sparrow (Ammodramus leconteii) and Eastern Kingbird (Tyrannus tyrannus) and indicators of 30 m buffers were Alder Flycatcher (Empidonax alnorum) and Wilson’s Warbler (Wilsonia pusilla). Multivariate Redundancy Analysis (RDA) of the overall (riparian and upland birds) community showed greater divergence than RDA with only riparian species suggesting less effect of fire and forestry on riparian birds than on upland birds. Higher natural range of variability (NRV) of overall post-fire bird communities compared to post-harvest communities emphasizes that harvesting guidelines currently do not achieve this level of variability. However, lack of a large negative effect on common riparian species in the first 4 years post-disturbance allows for the exploration of alternative shoreline forest management that better incorporates bird community composition of post-fire riparian areas and shoreline forests.  相似文献   

11.
The composition and structure of riparian forests in the coast redwood region were analyzed in relation to the length of time since timber harvest, and the width of riparian buffer zone. Ten sites were sampled in the central range of the coast redwood forest type within a variety of post-harvest age groups and riparian buffer zone widths. Data was collected using randomly selected sample plots adjacent to perennial coastal steams. Correlation Fisher's r to z tests and two-tailed t-test were used to examine the relationship between the sample variables and the experimental parameters “years since harvest”, and “width of buffer.” Results indicate that canopy cover was negatively correlated to “years since harvest” with the highest level of canopy cover found on the youngest sites and the lowest level found on the old-growth sites. The hardwood to conifer dominance ratio and the basal area of Alnus rubra (red alder) were correlated negatively to both “years since harvest” and “buffer width” indicating that timber harvest favored hardwood species. Late seral associates such as Oxalis oregana (redwood sorrel), Anthyrium filix-femina (lady fern), and Vaccinium parviflorum (billberry) were found preferentially in older forests and sites with wider buffer zones, while non-native species such as Hedera helix (English ivy), Pampas cortedaria (pampas grass), and Myosotis latifolia (forget-me-not) were found preferentially in younger forests and areas with smaller buffer zones.  相似文献   

12.
Timber and biodiversity are considered two antagonistic ecosystem services (ES), largely influenced by silviculture and site ecological conditions. In order to address the trade-offs between these two ES over time, we performed a retrospective study at compartment level in the Pinus sylvestris forests of the Spanish Central Mountain System. Archival data from Management Plans for eight forests with contrasting silvicultural systems (uniform shelterwood system, group shelterwood system, irregular shelterwood system,) and three different site quality classes were analysed. Timber production was assessed through stand volume, harvested timber volume and a stand volume index. Biodiversity was examined through structural diversity (Gini index, Shannon tree size diversity index, Simpson’s reciprocal index and evenness index, all applied to diameter classes) and the abundance of large living trees. For all silvicultural systems investigated, stand volume and harvested timber volume have grown since the beginning of the management plans (beginning of the twentieth century in some forests). The largest yields of timber corresponded to the best quality sites with more intensive silvicultural treatments (uniform and group shelterwood systems). The uniform shelterwood system showed lower figures for structural diversity, though not always significant. The best site qualities maintained notable structural diversity values, even under the most intensive management system. The application of the different management systems over decades has revealed a synergy between timber production and structural diversity, particularly in those systems maintaining more than one age class, although results are conditioned by forest harvesting history. The interaction between historical silvicultural treatment and site quality has been identified as an important source of information to understand forest dynamics and functioning of ES provision.  相似文献   

13.
Harvesting of forests causes a range of disturbances, including changes to hydrology, nutrient inputs, water quality, food sources, habitat structure and channel morphology, which can impact streams over several years and are reflected in changes in community structure. We aimed to determine the relative magnitudes of impact and rates of recovery of benthic macroinvertebrate communities, and associated changes in biotic indices (Quantitative Macroinvertebrate Community Index and an Index of Biotic Integrity), in reaches of different sized streams within progressively logged catchments. We conducted annual summer surveys over seventeen years in fifteen New Zealand streams that differed in size (upstream catchment area between 40 and 2360 ha, mean channel widths between 2.5 and 16 m) and harvest intensity in the surrounding catchment. The largest post-harvest changes in biotic indices and community structures occurred in streams draining relatively small to medium catchments (<500 ha) where >40% of the upstream catchment had been harvested, and particularly after harvesting of overstorey riparian vegetation adjacent to study reaches. The impacts of harvest on invertebrate communities were less evident in wider streams draining catchments over 500 ha, but the largest changes from pre-harvest biotic indices and community structure still generally occurred after harvesting of riparian vegetation along these streams. The changes in community structure after harvesting of riparian vegetation typically included increases in the densities of Diptera, Mollusca and Oligochaetes, and decreases in the densities of Ephemeroptera. These results demonstrate that impacts on benthic macroinvertebrate communities increased as the proportion of upstream catchment harvested increased and/or after riparian vegetation was harvested. Some of the communities in headwater streams had largely recovered towards pre-harvest structures, whereas post-harvest recovery was less evident in relatively large streams, over the duration of the study.  相似文献   

14.
Many studies of roost selection by forest-dwelling bats have concentrated on microhabitat surrounding roosts without providing forest stand-level preferences of bats; thus, those studies have provided only part of the information needed by managers. We evaluated diurnal summer roost selection by the bat community at the forest-stand level in a diversely forested landscape in the Ouachita Mountains of central Arkansas. Over a 6-year period, we evaluated 428 roost locations for 162 individual bats of 6 species. Using Euclidean distance analysis and individual bat as the experimental unit, all 6 species were selective (P < 0.05) in their choice of roosting habitat. Five of six species preferred (P < 0.05) to roost in or near mature (≥50 years old), mixed pine-hardwood forest that had undergone recent partial harvest, midstory removal, and burning; 41.3% of roosts were located in that habitat but it comprised an average of only 22.8% of available habitat. Five of six species also preferred older (≥100 years old), relatively unmanaged, mixed pine-hardwood forest. Although 19.9% of roosts from all species were located in 50- to 99-year-old, second-growth forests of mixed pine-hardwood (average of 21.0% of available habitat), that habitat was preferred by no species of bat. In partially harvested stands, unharvested buffer strips (greenbelts) surrounding ephemeral streams were used at differing levels by each species; most (90%) eastern pipistrelle (Pipistrellus subflavus) roosts were in greenbelts whereas few (2.7%) Seminole bat (Lasiurus seminolus) roosts were in greenbelts. Older forests, thinned mature forests with reduced midstories, and greenbelts retained in harvested areas were all important roosting habitats for the bat community in the Ouachita Mountains. Our results demonstrate the importance of open forest conditions and a diversity of stand types to bat communities of the southeastern U.S.  相似文献   

15.
Timber harvest is typically the largest area of anthropogenic disturbance in forested watersheds, and harvested areas may generate from one to five times more erosion than undisturbed areas (Motha et al., 2003). When sediment from harvested areas reaches stream channels it can degrade water quality and aquatic habitat. Streamside management zones (SMZs) are often prescribed to minimize sediment delivery, but there is little information about sediment delivery through these zones. Hence the objectives of this study were to: (1) determine the frequency of sediment delivery pathways (“features”) from timber harvest units; (2) measure the physical characteristics and connectivity of these features; and (3) develop models to predict the length and connectivity of features from harvest units to streams.  相似文献   

16.
Understory plants could can act as indicators of temperate forest sustainability, health and conservation status due to their importance in ecosystem function. Harvesting impacts on understory plant diversity depends on their intensity. Variable retention has been proposed to mitigate the harmful effects of timber harvesting, but its effectiveness remains unknown in southern Patagonian Nothofagus pumilio forests. The objectives of this study were to: (i) define a baseline of understory plant diversity in old-growth forests along a site quality gradient and under canopy gaps; (ii) evaluate stands with three different variable retention treatments compared to old-growth forests; and (iii) assess temporal changes during 4 years after harvesting (YAH). A 61 ha N. pumilio forest was selected. Understory plant (Dicotyledonae, Monocotyledonae and Pteridophyta) richness, cover (including woody debris and bare forest floor) and aboveground dry biomass were characterized in summer for 5 years. Before harvesting, baseline samples were conducted along a site quality gradient and outside/inside canopy gaps. Analyzed treatments include a control of old-growth forest (OGF) and three different harvesting treatments with variable retention: (i) dispersed retention (DR) of 30 m2 ha−1 (20-30% retention); (ii) aggregated retention (AR) with one aggregate per hectare and clear-cuts (28% retention); and (iii) combined dispersed and aggregated retention (DAR) with one aggregate per hectare and dispersed retention of 10-15 m2 ha−1 (40-50% retention). Data analyses included parametric and permutational ANOVAs, multivariate classification and ordinations.Before harvesting, 31 plant species were found, where richness, cover and biomass were directly related to site quality. The presence of canopy gaps did not have a significant impact on the measured variables. After harvesting, 20 new species appeared from adjacent associated environments (two from N. antarctica forests and 18 from grasslands and peatlands). At the stand level, understory values were higher in AR > DR > DAR > OGF. Most (81-95%) plant richness at baseline conditions was conserved in all treatments, where inside the aggregates understory remained similar to OGF. Combination of aggregated and dispersed retention (DAR) better limited exotic species introduction and protected sensitive species, improving conservation in harvested stands. Changes in understory variables were observed after the first YAH in all treatments; greater changes were observed in the harvested areas than in aggregates. Changes stabilized at the fourth YAH. As a conclusion, the location of retention aggregates should be selected to preserve species understory diversity of more speciose and diverse habitats or particularly uncommon stands. Implementation of different kinds (patterns and levels) of retention for improvement of biodiversity conservation in harvested forests should be included in timber and forest management planning.  相似文献   

17.
We compared the understory communities (herbs, shrubs, and tree seedlings and saplings) of old-growth and second-growth eastern hemlock forests (Tsuga canadensis) in western Massachusetts, USA. Second-growth hemlock forests originated following clear-cut logging in the late 1800s and were 108–136 years old at the time of sampling. Old-growth hemlock forests contained total ground cover of herbaceous and shrub species that was approximately 4 times greater than in second-growth forests (4.02 ± 0.41%/m2 versus 1.06 ± 0.47%/m2) and supported greater overall species richness and diversity. In addition, seedling and sapling densities were greater in old-growth stands compared to second-growth stands and the composition of these layers was positively correlated with overstory species composition (Mantel tests, r > 0.26, P < 0.05) highlighting the strong positive neighborhood effects in these systems. Ordination of study site understory species composition identified a strong gradient in community composition from second-growth to old-growth stands. Vector overlays of environmental and forest structural variables indicated that these gradients were related to differences in overstory tree density, nitrogen availability, and coarse woody debris characteristics among hemlock stands. These relationships suggest that differences in resource availability (e.g., light, moisture, and nutrients) and microhabitat heterogeneity between old-growth and second-growth stands were likely driving these compositional patterns. Interestingly, several common forest understory plants, including Aralia nudicaulis, Dryopteris intermedia, and Viburnum alnifolium, were significant indicator species for old-growth hemlock stands, highlighting the lasting legacy of past land use on the reestablishment and growth of these common species within second-growth areas. The return of old-growth understory conditions to these second-growth areas will largely be dependent on disturbance and self-thinning mediated changes in overstory structure, resource availability, and microhabitat heterogeneity.  相似文献   

18.
Herbivores, such as beavers (Castor canadensis) and ungulates, can dramatically alter the species composition and structure of riparian vegetation communities. We examined how four different levels of beaver presence and ungulate density influenced the structure and composition of riparian vegetation communities in the mixed-wood boreal region of east-central Alberta, Canada. Beavers, as central-place foragers, focus on similar species utilized by the six ungulate species in our study area. However, we found that vegetation responded differently relative to the percent cover and heights of emergent, shrub, herbaceous dicots, and tree species depending on the varying combinations of beaver presence and ungulate densities. There was an obvious negative effect of ungulate herbivory on shrub heights and cover; however, we were unable to find any significant effects on the overall composition and structure of vegetation communities that were exclusively related to beaver activities. In areas with no beavers and lower ungulate densities there was a positive growth response in preferred species (e.g., Salix spp., Prunus spp.), which clearly demonstrated the degree of combined influence that these herbivores have on riparian communities. In these areas, Salix spp. was four times shorter than in areas where beavers were not present and ungulate densities were lower. In addition percent cover was lowest for emergent vegetation and herbaceous dicots in areas with higher ungulate densities. Many studies focus on single-species effects on forage resources, yet our research shows that the study of combined effects of multiple herbivores can provide a new insight into these complex systems.  相似文献   

19.
20.
The appropriate management of streamside forests and use of riparian strips is poorly resolved for many systems because of a lack of understanding of the extent to which riparian forests function as environmental buffers for aquatic species versus core (essential) habitat for semi-aquatic and terrestrial species. We studied streamside forests in western North Carolina and eastern Tennessee, USA, to help delineate their functional value for plethodontid salamanders. We established 30 m × 40 m plots at 17 sites (823–1716 m in elevation) in unmanaged forests with closed canopies. Plots contained a portion of a seep or first-order stream along one edge and typically extended 36–38 m into the adjoining forest. We examined use of stream and streamside habitats based on captures during area-constrained searches of cover objects. We observed 6423 plethodontid salamanders belonging to 7 terrestrial-breeding and 12 aquatic-breeding species. Terrestrial-breeders (primarily Plethodon spp.) comprised 37% of terrestrial specimens and were more abundant at higher elevations. Aquatic-breeders (primarily Desmognathus spp.) increased their proportionate use of terrestrial habitat, but declined in overall abundance with elevation. Catches of aquatic-breeders were greatest within 8 m of aquatic habitats (49% of total terrestrial catch of aquatic-breeders), particularly at low elevation sites. The terrestrial zone provided core habitat for one terrestrial-breeder (D. wrighti) and six semi-aquatic species (Desmognathus spp., Gyrinophilus porphyriticus and Eurycea wilderae) that were broadly distributed throughout plots, and acted as an aquatic buffer for four highly aquatic species (Desmognathus spp.). The remaining species were terrestrial-breeders (Plethodon spp.) that were evenly distributed across plots, suggesting that riparian strips would function as important source populations for recolonization following timbering on adjoining land. Because of the vulnerability of plethodontid salamanders to edge effects, effective management of southern Appalachian streamside habitats may require the addition of a terrestrial buffer to protect terrestrial core habitat that immediately adjoins streams and seeps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号