首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
  • ? Tree recruitment in Mediterranean savannas is generally hampered, in contrast with the original oak forests where these savannas are derived from. We asked whether this difference in recruitment success can be explained by differential post-dispersal survival. For one year we monitored experimentally cached holm oak acorns in a savanna — forest ecosystem in Central Spain, and recorded cache pilferage, type of pilferer, boar rooting, seedling emergence, seedling survival and the cause of mortality.
  • ? Cache pilferage was significantly lower in savanna (8%) than in forest (21%). However, the higher cache survival was more than offset by lower seedling emergence and, particularly, by nine times higher seedling mortality in savanna, mainly due to desiccation. Wild boar rooting did not differ between experimental caches and controls without acorns, indicating that individual cached acorns do not trigger rooting activity.
  • ? Our results indicate that the difference in post-dispersal survival between savanna and forest is due to lower emergence and, primarily, higher seedling mortality in savanna, not to higher cache pilferage. Absence of safe sites such as shrubs, abundantly present in the forest, may well explain the lack of recruitment in the savanna. Management measures appear necessary for long-term persistence of Mediterranean savannas in general.
  •   相似文献   

    2.
    In the Iberian Peninsula Mediterranean oak forests have been transformed into a mosaic landscape of four main patch-types: forests, savannas, shrublands and grasslands. We used aerial photographs over a period of 45 years (1958–2002) to quantify the persistence and rates of transitions between vegetation patch-types in southern Portugal, where cork oak is the dominant tree species. We used logistic regression to relate vegetation changes with topographical features and wildfire history. Over the 45 years, shrublands have been the most persistent patch-type (59%), and have been expanding; forests are also persistent (55%) but have been decreasing since 1985; savannas and grasslands were less persistent (33% and 15%, respectively). Shrublands persistence was significantly correlated with wildfire occurrence, particularly on southern exposures after 1995. In contrast, forest persistence decreased with wildfire occurrence, and forests were more likely to change into shrublands where wildfire had occurred after 1995.  相似文献   

    3.
    Tree invasions cause important conservation problems, such as changes in plant community composition, reduced regeneration rates of native species, and alteration in landscape structures. One of the most invasive tree genera in the world is Acacia (Fabaceae). In Chile, Acacia dealbata Link is distributed in the mediterranean zone, mostly associated with roadsides and anthropogenic disturbances. In this paper we address the following questions: How does A. dealbata perform across a gradient of native forest and invasive stands? Will it be capable of establishing itself in non-invaded native forests and regenerating under its own canopy in the absence of disturbances? From a contrasting viewpoint, will native species such as Cryptocarya alba (Molina) Looser and Nothofagus obliqua (Mirb.) Oerst be able to survive in an A. dealbata stand, allowing re-colonization of the invaded area? We conducted survival and growth experiments on A. dealbata seedlings in three sites near Concepción, Chile (36°S-72°W) under three conditions: under Acacia stand, in a close native forest and on an intermediate matrix between these two conditions. We compared this to the performance of two native trees (Cryptocarya alba and Nothofagus obliqua). Results showed that A. dealbata and C. alba have high growth and establishment capacities within the native forest, but on the intermediate matrix only A. dealbata can grow and survive. C. alba survives at significantly higher rates than A. dealbata within Acacia stand. Nothofagus obliqua only survive at a very low rate in the native forest. Without disturbances, A. dealbata would be successful on the intermediate matrix and within native forest, while C. alba seems capable of surviving and establishing itself in invaded areas, thereby contributing to recovery and restoration of natural spaces. The interplay between Acacia dealbata and the native vegetation may show us a larger picture of how invasive species are capable of expanding even into forested ecosystems and, furthermore, how we can restore native vegetation and avoid further invasion.  相似文献   

    4.
    Acacia plantation establishment might cause soil acidification in strongly weathered soils in the wet tropics because the base cations in the soil are translocated rapidly to plant biomass during Acacia growth. We examined whether soils under an Acacia plantation were acidified, as well as the factors causing soil acidification. We compared soils from 10 stands of 8-year-old Acacia mangium plantations with soils from 10 secondary forests and eight Imperata cylindrica grasslands, which were transformed into Acacia plantations. Soil samples were collected every 5–30 cm in depth, and pH and related soil properties were analyzed. Soil pH was significantly lower in Acacia plantations and secondary forests than in Imperata grasslands at every soil depth. The difference was about 1.0 pH unit at 0–5 cm and 0.5 pH unit at 25–30 cm. A significant positive correlation between pH and base saturation at 0–20 cm depth indicated that the low pH under forest vegetation was associated with exchangeable cation status. Using analysis of covariance (ANCOVA), with clay content as the covariate, exchangeable Ca (Ex-Ca) and Mg (Ex-Mg) stocks were significantly lower in forested areas than in Imperata grasslands at any clay content which was strongly related to exchangeable cation stock. The adjusted average Ex-Ca stock calculated by ANCOVA was 249 kg ha−1 in Acacia plantations, 200 kg ha−1 in secondary forests, and 756 kg ha−1 in Imperata grasslands at 0–30 cm. Based on a comparison of estimated nutrient stocks in biomass and soil among the vegetation types, the translocation of base cations from soil to plant biomass might cause a decrease in exchangeable cations and soil acidification in Acacia plantations.  相似文献   

    5.
    On some landscapes periodic fire may be necessary to develop and maintain oak-dominated savannas. We studied the effects of two annual prescribed burns to determine their effect on microbial activity and soil and litter nutrients 1 year after the last burn. Surface litter and soil from the upper 0–5 cm soil layer in three developing savannas (oak-hickory, Quercus-Carya), oak-hickory-pine (Quercus-Carya-Pinus), and pine (Pinus) were collected one year after the second of two annual prescribed burns. Surface litter was analyzed for nutrients and soil was analyzed for phospholipid fatty acids (PLFAs) and nutrients. Surface litter chemistry differed across the three savannas for potassium (K) and boron (B), being significantly (P < 0.05) higher for unburned forest than for burned forest. Among savannas, only sulfur (S) was higher for the pine savanna and B for the oak-hickory savanna, both were higher for unburned forest than for burned forest. For soil, calcium (Ca) and B differed across savannas, being higher for burned forest than for unburned forest. Among savannas, soil pH, Ca, and B concentrations were higher in soil from burned forest than from unburned forest. Total PLFA differed among savannas, but was not affected by burning treatments. However, the amounts of biomarkers for Gram-positive and Gram-negative bacteria were higher while the amount of biomarker for fungal PLFA was lower for burned forest than for unburned forest. Our results indicate that the two annual prescribed burns moderately affected PLFA microbial community structure and litter and soil nutrient concentrations. However, the long-term effects of fire on these study sites are not known and merit further study.  相似文献   

    6.
    The post disturbance natural succession of the Mediterranean maquis, which turns open and species-rich landscapes into dense, closed stands of sclerophyllous woody vegetation is a principal threat to plant and animal diversity. Therefore, in the absence of traditional agricultural disturbance, active management regimes that include cutting and grazing are proposed to preserve biodiversity. The Mediterranean woody vegetation in Israel is strongly dominated by one species - the evergreen sclerophyllous Quercus calliprinos (Kermes oak). We hypothesized that under cutting and grazing, the evergreen Q. calliprinos has a relative regrowth advantage over other competing tree species. Here we examined the effect of grazing and the effect of tree structural traits on the regrowth after clear cutting of all trees in our study plots at Mt. Meron LTER site, Israel. All trees were removed from five blocks of 2000 m2 and each block was divided into two plots, five of which were exposed to grazing livestock while five were wire-fenced and ungrazed. The regrowth rate of Q. calliprinos under grazing was higher than that of all other tree species suggesting that in the long-term, under such a conservation management regime, the dominance of the evergreen sclerophyllous Q. calliprinos over the deciduous tree species will increase and consequently will decrease plant and animal diversity. Therefore, we conclude that to protect landscape and species diversity in Mediterranean ecosystems dominated by evergreen oaks, when cutting and grazing are applied, special care must be paid to trees that are more negatively affected by such treatment.  相似文献   

    7.
    This article investigates options for reforestation in degraded forests in Central Vietnam within the context of sustainable forestry and presents a forest management plan for the forests around the community of Phong My. In the past, the area was damaged during the war between Vietnam and the United States and after that by overcutting. Forests have gradually been degraded and now they are replaced by plantations of fast-growing Acacia (Acacia mangium). After final harvests, the stand remnants are burnt and the burnt area is again regenerated via artificial regeneration of Acacia. Here, we propose several mixtures in which Acacia stands can be augmented with other tree species. A proposed system of afforestation and subsequent management is given here with the goal of encouraging mixed species, multiple cohort stands, and disincentivizing the method of slash-and-burn. The proposed afforestation patterns were also used to calculate the future number of seedlings required to enable the enlargement of quality forests at the expense of degraded ones.  相似文献   

    8.
  • ? Water availability is one of the main factors explaining flora composition and growth in Mediterranean regions, where it may decline with climate change.
  • ? Our goal was to develop a model for forest site assessment in Mediterranean environments, focusing on water availability to assess potential vegetation composition and productivity in any places, whatever their level of disturbance.
  • ? We designed a statistical model, using global climatic and geographic variables, as well as detailed local topographic and edaphic variables, to compute a bioclimatic index for Mediterranean forest environments. This model was calibrated in France with a flora index from 325 old forests. The model explained 80.3% of the flora index variance. The method fills a gap in existing models, bridging scales from the region to forest sites.
  • ? Beyond its theoretical aspect, it was designed to allow practical tools to be derived from it for decision-making and management, such as the assessment of climate change impact on vegetation, and of forest productivity. Its development and adaptation is possible in other Mediterranean regions, and in any region where water is one of the main limiting factors.
  •   相似文献   

    9.
    Midwestern savannas historically covered >10 M ha in central North America, but are now rare due to agricultural conversion and anthropogenic modifications to disturbance regimes - particularly fire suppression. Throughout this range, Midwestern savannas are characterized by scattered overstory trees; however, with fire suppression, these systems are invaded by non-savanna trees. Restoration of encroached savannas involves removal of invading trees, yet little is known about the impacts of encroachment or encroachment removal on the relict savanna overstory trees, which define these systems. Here, we use tree ring analysis to investigate savanna tree growth rates in encroached, non-encroached, and experimentally restored Midwestern oak savannas in central Iowa. We found that woody encroachment led to pronounced declines in growth rate (ring width) of relict overstory white oak (Quercus alba), relative to Q. alba trees in competition-free, open-grown conditions, or in an encroachment-free remnant woodland. To further understand effects of encroachment removal on relict Q. alba savanna trees, we conducted a large-scale restoration experiment, where encroaching trees were mechanically removed from four encroached savannas, with an additional four savannas retained as encroached controls. Restoration led to elevated tree growth rates, with these changes generally persistent through 7 years post-restoration (2003-2009). Over the course of this post-restoration study period, ring width, basal area increment, and relative basal area increased by 49%, 59%, and 55%, respectively, in trees from restored sites, relative to trees from encroached, control sites. These results suggest that woody encroachment has strong influence on overstory savanna trees, through increased competitive dynamics; however, woody encroachment removal may help to restore relict savanna tree growth rates, even after prolonged periods of encroachment (>40 years). To restore the oak savannas at our sites, and perhaps elsewhere, we advocate a three step process: (1) mechanical woody encroachment removal, (2) maintenance of the encroachment-free state through prescribed fire, and (3) promotion of a diverse understory layer, characteristic of oak savanna in our region. While promoting oak regeneration will be important for the long-term maintenance of these sites as oak savanna, relict savanna trees appear responsive to restoration and should maintain overstory conditions through the near-term.  相似文献   

    10.
    Forests cover almost 30% of the Mediterranean region today, yet forest management activities have influenced structure and composition of both natural and planted forests. To date no study has been conducted to evaluate the impact of forest management on saproxylic beetle assemblages, although it is known that the Mediterranean is a biodiversity hotspot with a long-lasting human pressure on natural habitats. We provide an overview of saproxylic beetle assemblages of three forest types (mature Pinus halepensis forests, mature Pinus brutia forests, young Quercus calliprinos forests) in the East Mediterranean region using a one-year sample from 12 forest plots located in the north of Israel.  相似文献   

    11.
    This paper attempts to provide a new perception of the weed Chromolaena odorata (Asteraceae) which is considered as a plague in agriculture or as a soil fertility indicator. The study was conducted in the forest-savanna transition zone of C?te d??Ivoire and aimed to compare soil biological activity and plant nutrient availability under three well-represented vegetation features, including C. odorata lands (ChrO), shrub savannas (ShrS), and grass savannas (GraS). Each of these vegetation features included five plot replicates (50?m?×?50?m size) distributed in the landscape. Soil chemical parameters such as pH, organic matter, soluble phosphorus, exchangeable bases, and biological parameters such as abundance and diversity of earthworms, and soil enzymatic activities were investigated. Composite soil samples were collected and analyzed for chemical and microbial parameters while earthworms were sampled using the Tropical Soil Biology and Fertility 25?×?25?×?30?cm soil monolith method. A principal component analysis showed a clear demarcation between C. odorata plots and the savanna ones. Soluble P and exchangeable bases were significantly higher under ChrO than under both savannas. Earthworm density was twice higher under ChrO (433.3?±?90.8?ind?m?2) than under ShrS (173.9?±?61.5?ind?m?2) and GraS (176.0?±?40.6?ind?m?2) and this was accounted for by the abundance of detritivores and polyhumics. Acid and alkaline phosphatase activities under ChrO (2.9?±?0.2 and 2.5?±?0.3???mol pNP?g?1 soil?h?1, respectively) were twice higher than under both savannas. Based on the fact that ChrO and ShrS were located on similar soil types and had the same topographic position, we concluded that the establishment of C. odorata in a savanna land and its subsequent high biomass and quality-litter production were mostly the reasons of the improvement in soil biology and plant nutrient availability. Between-savanna comparison showed that ShrS, with higher CEC and exchangeable bases, was somewhat more fertile than GraS, probably because of a better soil physical status. In view of the agronomic potentials of the shrub C. odorata, it may be taken as a basis for improved fallow in Africa.  相似文献   

    12.
    Pinus halepensis forests are among the forest ecosystems in the Mediterranean Basin most affected by fire. Their distribution across lowland areas, in particular along the wildland–urban interface, increases the need to understand their ecology and responses to fire regime for their effective management. Apart from the extremely flammable tree layer, in several stands of these forests there is an increased fuel load attributed to the well-developed understorey of evergreen sclerophyllous shrubs. Taking into consideration that, in contrast with the long period required for full development of post-fire-regenerating pines, these shrubs resprout vigorously within the first post-fire weeks, it is important to explore the temporal trend of fuel accumulation to determine the risk of a second fire across a burned landscape. Two post-fire chronosequences of, in total, 12 P. halepensis stands were considered for sampling in Central Greece. The first chronosequence corresponds to pine stands characterized by the dominance of evergreen sclerophyllous shrubs in the understorey (Type 1) whereas the second chronosequence corresponds to pine stands where the cover of such shrubs was lower (Type 2). This study helps in understanding the fuel dynamics according to the type of P. halepensis forest stand and to anticipate future biomass growth. The proposed equations are simple tools, enabling land managers to estimate understorey total fuel load easily by visually recording the cover and height of the evergreen sclerophyllous shrub component, to justify understorey fuel reduction measures.  相似文献   

    13.
    Savanna vegetation is characterized by high and variable ground layer species richness regulated by functional group interactions with fire regimes and canopy cover. Frequent fire selects for C4 grasses and prairie forbs in canopy openings and C3 graminoid species and shade-adapted forbs and shrubs in canopy shade. Frequent fire also maximizes heterogeneity in partial canopy cover and species richness across the full canopy gradient. However, few studies have linked fire induced change in tree canopy cover with groundlayer vegetation dynamics in relation to this model. In 1986 and in 2007, we measured canopy cover and sampled groundlayer vegetation in 1 m2 plots along 53 transects at the Tefft Savanna, a fire managed 197 ha eastern sand savanna with strong canopy cover and elevation gradients. We analyzed temporal change in canopy cover and groundlayer vegetation, correlating percent change in canopy cover with change in ground layer functional groups. After 20 years of burning at 3 fires/decade, elevation accounted for 62% of the variation in an NMS ordination of groundlayer vegetation. However, canopy cover, which averaged 24-86% in 2007, had a significant secondary effect on the ordination. Five vegetation types classified by TWINSPAN varied significantly in elevation and canopy cover. Woody vegetation comprised 8 of the 12 species with greatest niche breadths, and tended to predominant in woodland or forest, where tree cover averaged 50% or more. Forbs had greater richness in savanna, which averaged less than 30% canopy cover. The C3 sedge Carex pensylvanica was the dominant graminoid species under woodland canopy cover, and was co-dominant with the C4 grasses Andropogon scoparius and Sorghastrum nutans under savanna canopy cover. As in other savannas, N-fixing species sorted across shade and canopy openings, and heterogeneity among transects was maximized at mid-canopy cover. Over time, canopy cover decreased up to 50%, creating more open savanna conditions at mid to high elevations. This decrease was associated with a 20-100 % increase in species richness and was significantly correlated with increasing richness and cover of C4 grasses and summer flowering prairie and woodland forbs. These results support a canopy cover model of fire-maintained savanna vegetation, with greater abundance of C4 grasses and prairie forb species associated with lower canopy cover, greater heterogeneity at mid-canopy cover, and species richness maximized across the light gradient. They also indicate that decreasing canopy cover caused by repeated burning increases species richness and abundance of C4 and prairie forb species.  相似文献   

    14.

    Context

    Loss of woodlands and degradation of vegetation and soil have been described for all Mediterranean-type ecosystems worldwide. In the Western Iberian Peninsula, overexploitation of evergreen cork oak land use systems has led to soil erosion, failures in oak recruitment, and loss of forests. Degraded and dry sites are quickly colonised by pioneer heathland rockrose (Cistus spp.) shrubs forming highly persistent patches.

    Aims

    Although traditionally shrublands have been considered as a transient successional state, we present evidence that they can represent persistent alternative states to former cork oak forests.

    Review trends and conclusions

    We first describe how Mediterranean vegetation evolved in the Iberian Peninsula and the role of fire and long-term human management as main disturbances. We then discuss alternative pathways through state-and-transition models indicating the ecological and land use variables that halt cork oak regeneration and recruitment and drive vegetation transitions towards persistent shrublands. Unless concerted management actions and restoration programmes are undertaken, the cork oak land use systems will not be sustainable.  相似文献   

    15.
    The dynamics of the Atlantic Rainforest loss and recovery are still not fully understood despite its long history of human occupation. In this study, we investigated changes in an Atlantic Rainforest region due to major biophysical and human proximate causes. First, we modeled land-cover and land-use changes from 1962 to 2000, including deforestation and forest regrowth, and thereby simulated future landscape trajectories to assess their possible effects on the conservation of forest species of the Ibiúna Plateau, a region located in Southeastern Brazil within the Atlantic Rainforest biome. We modeled four scenarios (status quo, random, lawenforcement, and land-use intensification) and simulated their resulting landscape trajectories for the year 2019 using DINAMICA. The landscape dynamics in the study region were particularly intense. During the first period of 1962–1981, the rate of forest regrowth (3% year−1) was greater than the rate of deforestation (2% year−1), whereas in the latter period of 1981–2000, increasing urbanization and the spreading of rural establishments resulted in more deforestation (2.9% year−1) than regrowth (1% year−1). These dynamics imprinted a heterogeneous landscape, leading to the predominance of progressively younger secondary forests with increasingly less capacity of hosting sensitive forest species. The influence of proximate causes on the dynamics of deforestation and forest regrowth showed consistent patterns, such as higher forest regrowth rates near rivers, on steep slopes and far from dirt roads, whereas losses in young secondary vegetation and forest were far from rivers, on gentle slopes and near urban areas. Of the modeled scenarios, only the law enforcement scenario may lead to the recovery of a network of interconnected forest patches, suggesting that simply the enforcement of current forest laws, which prohibit deforestation on unsuitable agricultural areas and along river margins and establish a minimum of 20% of forest remnant per rural property, may effectively favor forest species conservation in the short term (two decades) without the need of any forest restoration effort.  相似文献   

    16.
    Recent expansion of industrial-scale plantations into agricultural areas in Australia has the potential to assist biodiversity conservation by rehabilitating ecosystems at the landscape scale and reducing edge effects, isolation and disturbance within remnants of native vegetation. However, the efficient management of remnants for biodiversity within a plantation estate requires knowledge of both the causes and the consequences of remnant degradation. With this in mind, we examined key ecosystem features and processes relating to soil chemistry, decomposition, native tree health and regeneration and vertebrate abundance, within small forest remnants (1-4 ha) embedded within Eucalyptus globulus plantations in south west Western Australia. Soil nutrient enrichment was significantly associated with a scale of vegetation modification in order from: (1) intact forest, (2) remnants with native understorey (UDN), (3) remnants with exotic understorey (UDE), (4) plantation and (5) pasture. We propose that, in this region, UDE remnants will often remain in a degraded state even after plantation establishment and the cessation of stock grazing. This is due, in part, to more rapid rates of nutrient turnover sustaining higher nutrient availability in the soil following the replacement of ligneous understorey plants with annual ones. Cotton strips placed in surface soils were often disintegrated in UDE remnants and largely intact in UDN remnants, indicating that decomposition was accelerated in the former. Continued tree decline and regeneration failure within UDE remnants will also reinforce the UDE condition. There was less canopy seed set and little or no seedling establishment in UDE remnants compared to UDN remnants. Therefore, management interventions to assist native tree regeneration in UDE remnants are needed. Fauna trapping highlighted the desirability of retaining, and preferably restoring, small remnants in plantations. Small native mammals were found exclusively in remnants and fewer introduced Mus musculus were present in UDN remnants. Higher numbers of native lizards were found in UDN remnants, but this result was not significant (marginally).  相似文献   

    17.
    South African coastal dune forests are young, highly disturbed subtropical communities where conventional models of forest dynamics may be challenged. We tested predictions from the gap-phase regeneration model by comparing seedlings of three common species representing contrasting regeneration strategies: Acacia karroo as a ruderal, Celtis africana as a coloniser of forest gaps, and Diospyros natalensis as a late-successional species. We grew seedlings under contrasting light and nitrogen levels in a greenhouse and in the field for 1 year to compare their growth and survival rates, allocation and photosynthetic traits. Species’ growth rates generally followed the expected order: Acacia > Celtis > Diospyros, but Acacia responded strongly to light and Celtis responded strongly to nitrogen, leading to cross-overs in growth rates. The plasticity of allocation and photosynthesis did not clearly differentiate the strategies, although it was greater in the light-demanding species. Acacia and Celtis tended to survive better in Acacia stands than in forest plots. Leaf-level light compensation points (LCPs) were similar for the three species in most conditions, but auxiliary data suggest Diospyros has a lower whole-plant LCP than Acacia. Growth rates and LCPs were lower than most of those reported for primary-forest species in the literature, suggesting an unusual degree of shade-tolerance in this habitat. We discuss reasons why variation in shade-tolerance may be less important here than in the prevailing model for forest regeneration and suggest other biotic factors that may help differentiate regeneration niches.  相似文献   

    18.
    Homegardens are a common feature of indigenous dwellings in the savannas of Roraima, northern Brazil. In order to evaluate the effect of homegardens on soils, samples were taken in 5 sites each in the categories new homegardens (0–10-years old), established homegardens (15–35-years old) and old homegardens (more than 40-years old) and in adjacent savanna in Araçá Indigenous Land, Roraima, Brazil. For comparison, samples were also taken in forest islands located nearby, on a different soil type, under 10-year-old forest fallows and high forest. P and K showed the greatest increases over time in homegarden soils, in comparison with levels found in adjacent savanna and under forest. Ca and Mg also increased in comparison to adjacent savanna, but levels were less than found in forest soils, most likely due to the different parent material. Zn and Fe also showed increases in homegarden soils over time. Cu and Mn levels showed little relation to homegarden age, suggesting greater effects of factors of soil formation than anthropogenic influences. Values for pH were slightly higher in homegardens than in adjacent savanna, while Al was lower, although these changes were poorly fit by regression models. Soil organic matter increased over time under homegardens, but still was lower than levels found under fallows and forest. Soil fertility improvement under indigenous homegardens can be attributed mainly to deposition of residues around dwellings, although further investigation is needed on the role of trees in accessing nutrient pools at greater depths in savanna soils.  相似文献   

    19.
    Understory vegetation is an important component in forest ecosystems. However, the effects of understory on soil properties in subtropical forests are not fully understood. We thus conducted an experimental manipulative study in two young fast-growing plantations—Eucalyptus urophylla and Acacia crassicarpa—in southern China, by removing understory vegetation in both plantations, to estimate the effects of understory vegetation on microclimate, soil properties and N mineralization. Our data showed that, after 6 months, understory removal (UR) in both plantations had greatly increased soil surface luminous intensity (90–500 cd) and temperature (0.5–0.8 °C); soil moisture was reduced in the Eucalyptus plantation but not in the Acacia plantation. Understory removal also reduced soil organic matter (SOM), but had little impact on other soil chemical properties, including total phosphorus, C/N, pH, exchangeable cations (K, Ca, Mg), available P, ande extractable NH4–N and NO3–N. We found a significant decline of soil N mineralization and nitrification rates in the 0–5 cm soils of UR in both plantations. The decline of SOM in UR may contribute to the lower N transformations rates. This study indicates that a better understanding of understory vegetation effects on soil N cycling would be beneficial to forest management decisions and could provide a critical foundation for advancing management practices.  相似文献   

    20.
    In Rondônia State, Brazil, settlement processes have cleared 68,000 km2 of tropical forests since the 1970s. The intensity of deforestation has differed by region depending on driving factors like roads and economic activities. Different histories of land-use activities and rates of change have resulted in mosaics of forest patches embedded in an agricultural matrix. Yet, most assessments of deforestation and its effects on vegetation, soil and water typically focus on landscape patterns of current conditions, yet historical deforestation dynamics can influence current conditions strongly. Here, we develop and describe the use of four land-use dynamic indicators to capture historical land-use changes of catchments and to measure the rate of deforestation (annual deforestation rate), forest regeneration level (secondary forest mean proportion), time since disturbance (mean time since deforestation) and deforestation profile (deforestation profile curvature). We used the proposed indices to analyze a watershed located in central Rondônia. Landsat TM and ETM+ images were used to produce historical land-use maps of the last 18 years, each even year from 1984 to 2002 for 20 catchments. We found that the land-use dynamics indicators are able to distinguish catchments with different land-use change profiles. Four categories of historical land-use were identified: old and dominant pasture cover on small properties, recent deforestation and dominance of secondary growth, old extensive pastures and large forest remnants and, recent deforestation, pasture and large forest remnants. Knowing historical deforestation processes is important to develop appropriate conservation strategies and define priorities and actions for conserving forests currently under deforestation.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号