首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.

Promoting patchy recruitment of shade tolerant tree species into the midstory is an important step in developing structural diversity in second-growth stands. Variable-density thinning (VDT) has been proposed as a strategy for accelerating structural diversity, as its combination of within-stand treatments (harvest gaps, thinning, and non-harvested skips) should create variable overstory and understory conditions. Here we report on western hemlock (Tsuga heterophylla (Raf.) Sarg.) seedling and sapling densities in five mixed-conifer stands and Sitka spruce (Picea sitchensis (Bong.) Carr.) seedling and sapling densities in two stands in western Washington at 3,7, 10, and 16–17 years after VDT. Additionally, we report on western hemlock advance regeneration growth and survival in two stands over 14 years. Western hemlock seedling density was highest in the thinned treatment but only significantly so in Year 10. In contrast, the gaps contained significantly more western hemlock saplings in Years 7 and 10 and significantly greater growth of western hemlock advance regeneration through Year 10. Skips embedded within the VDT did not differ significantly from unharvested reserves in terms of seedling or sapling densities of either species. Sitka spruce seedling density was highest in the gap and thinned treatments, but saplings were uncommon in all treatments. Collectively, these results indicate that our variant of VDT promoted patchy, midstory recruitment of western hemlock but failed to recruit Sitka spruce saplings in either stand where it established. Consequently, more intensive variants of VDT may be required to promote midstory recruitment of species less tolerant of shade than western hemlock.

  相似文献   

2.
3.
One of the main threats to the sustainability of community forestry in the Selva Maya is insufficient regeneration of commercial tree species. We evaluated the regeneration status of 22 commercial tree species in a managed semideciduous tropical rain forest in Southern Mexico. The study was carried out in six harvesting areas along a 16-year chronosequence. In each area, 10 transects (1000 m2) were established and all trees >50 cm height and <10 cm diameter were recorded. We evaluated the relationships between seedling and sapling abundance, and canopy cover and disturbance condition (closed forest, canopy gap, log landing, skid road, primary road and secondary road). The area occupied by closed forest canopy increased with age of harvesting area (65–91% of sampled area), while the area occupied by canopy gaps decreased (22–9%). Log landings occupied less than 1% of the sampled area. The predominant canopy cover was 75–80% in all harvesting areas, even in the most recently harvested areas. The highest densities of seedlings and saplings, of both shade tolerant and intolerant species, were found in log landing and skid trails, followed by secondary roads. Even Simarouba glauca, a shade tolerant species, displayed higher densities in sites with ≤65% of canopy cover. Our results support previous findings and indicate that the levels of disturbance caused by existing harvesting procedures may be inadequate to promote sufficient regeneration of not only light demanding desirable species but also for some of the evaluated shade tolerant species of commercial interest. Seedling and sapling densities exhibited by Swietenia macrophylla, for example, are insufficient to support current harvesting rates. The application of a spatial mixed system with patch-cuts of different sizes, a consequence of group felling, could be applied to provide the necessary conditions for the regeneration of the main commercial species.  相似文献   

4.
Forest harvesting is one of the most significant disturbances affecting forest plant composition and structure in eastern North American forests, yet few studies have quantified the landscape-scale effects of widespread, low-intensity harvests by non-industrial private forest owners. Using spatially explicit data on all harvests over the last 20 years, we sampled the vegetation at 126 sites throughout central and western Massachusetts, one-third of which had not been harvested, and two-thirds of which had been harvested once since 1984. Seedling and sapling densities increased with increasing harvest intensity, but decreased to levels similar to unharvested sites by year 20 for all but the most intensive harvests. The composition of understory trees appears to be only slightly changed by harvesting, and was strongly correlated with adult tree composition. Regeneration was dominated by Betula lenta followed by Pinus strobus; Quercus spp. exhibited little sapling recruitment, even in Quercus-dominated stands. Total vascular plant species richness increased substantially with harvesting on low C:N sites (i.e., rich soils), but was only slightly increased on high C:N sites. While harvesting was associated with a statistically significant change in vascular plant composition, non-metric multidimensional scaling revealed that climate (temperature, precipitation) and C:N ratios were the major correlates of composition. Overall, the compositional impacts of harvesting were minor, perhaps because of the low-intensity of harvesting. However, our results support observations from elsewhere in the northeastern U.S. of limited oak regeneration on both harvested and unharvested sites. In addition, our results suggest that increased harvest intensity may be expected to alter forest composition, particularly on rich sites where invasive species may increase as a result of harvesting.  相似文献   

5.
Tree seedling recruitment was monitored after various types of logging in mixed conifer and deciduous forests of northern British Columbia, Canada. Predicting tree seedling recruitment after disturbance is fundamental to understanding forest dynamics and succession and is vital for forest management purposes. Seedling recruitment success in multi-species northern latitude forests varied as a function of mature tree canopy cover, gap size and position in a gap. Recruitment was abundant within canopy gaps across a wide range of gap sizes (20–5000 m2), but recruit numbers dropped off rapidly under the closed forest canopy and in the open conditions of clearcuts. Inside canopy gaps, recruitment was similar by gap position in small gaps (<300 m2) but, in these northern latitude forests, exhibited a trend of increasing density from the sunny north to shady south end of larger gaps. This was true for all tree species regardless of their shade tolerance ranking. There was no evidence of gap partitioning by any of the tree species during the regeneration phase suggesting that adaptation to the subtleties of gap size during early recruitment are not well developed in these tree species. Favorable locations for emergence and early establishment of germinants were less favorable for growth and survival of established seedlings, i.e. the regeneration niches in these forests were discordant. Tree abundance and species diversity appears to be controlled more by differentiation among growth and survival niches than by the regeneration niches. From the perspective of forest management, abundant natural regeneration of all the dominant tree species of these mixed-species forests can be obtained after partial cutting.  相似文献   

6.
7.
The main objectives were to study the effect of gap size and canopy openness on the natural regeneration dynamics considering the parameters of sapling growth, recruitment, mortality, density, species composition and above-ground biomass accumulation. The study was carried out in 32 artificial gaps with sizes varying from 100 to 1200 m2 and canopy openness from 10 to 45%, from the second to the twelfth year after gap creation. The gap size was measured using the vertical projection of the tree crowns on the ground (Brokaw's definition), and the canopy openness measurement by hemispherical photography. In the first five years, mean sapling growth (0.54 cm year−1), mortality (3.9% year−1) and AGB (26.2 Mg ha−1 or 8.7 Mg ha−1 year−1) were significantly higher in the gaps than in the forest understorey (0.17 cm year−1, 1.5% year−1 and −0.59 Mg ha−1 year−1 respectively) and positively correlated with gap size and canopy openness. In the same period, recruitment was also significantly higher in the gaps (5.8% year−1) than in the forest understorey (0.4% year−1) but decreased with gap size and negatively correlated with canopy openness. In the first five years, the relative density of pioneer species was higher in the gaps but not significantly correlated with gap size or canopy openness. AGB increased linearly since canopy opening, and twelve years after gap creation it was still higher in larger (121.2 Mg ha−1 or 10.1 Mg ha−1 year−1) rather than smaller (62.5 ha−1 or 5.2 ha−1 year−1) gaps. Twelve years after gap creation there were no significant differences in the parameters of sapling growth, recruitment, and mortality which could be attributed to the original gap size and canopy openness.  相似文献   

8.
Partial harvesting, where different numbers and arrangements of live trees are retained in forest stands, has been proposed for maintaining late-successional structure and associated vertebrate species within managed boreal forests. Using the stand dynamics model SORTIE-ND, we examined 80-year patterns of structural change in response to different intensities (30-70% basal area removal) and spatial patterns (22-273 m2 mean patch size) of harvesting. We also applied habitat models for seven late-successional vertebrates to the structural conditions present after harvesting to assess potential species responses.Partial harvesting increased understory and downed woody debris (DWD) cover and decreased overstory structure for the first 25 years after harvest, in comparison to unharvested stands, with this effect subsequently reversing as harvest-induced regeneration reached the canopy. Although harvesting enhanced long-term structural development in this regard, large trees, large snags, and large DWD all remained below unharvested levels throughout the simulation period. Harvesting also produced transient increases in early-decay DWD and ground exposure. Most changes in structural attributes increased in proportion to harvest intensity, but structural differences among harvest patterns were generally small. Dispersed harvesting induced somewhat less pronounced decreases in vertical structure, and produced more post-harvest slash, than aggregated harvesting.All seven vertebrate species decreased in abundance as harvest intensity increased from 30 to 70%. In comparison to their pre-harvest abundances in old stands, vertebrates associated with DWD (redback salamander, marten, red-backed vole) showed neutral or positive responses at one or more harvest intensities, whereas those associated with large trees and snags (brown creeper, flying squirrel) consistently exhibited substantial adverse impacts.  相似文献   

9.
Virgin beech Fagus orientalis forests in northern Iran provide a unique opportunity to study the disturbance regimes of forest ecosystems without human influence. The aim of this research was to describe characteristics of natural canopy gaps and gap area fraction as an environmental influence on the success of beech seedling establishment in mature beech stands. All canopy gaps and related forest parameters were measured within three 25 ha areas within the Gorazbon compartment of the University of Tehran’s Kheyrud Experimental Forest. An average of 3 gaps/ha occurred in the forest and gap sizes ranged from 19 to 1250 m2 in size. The most frequent (58%) canopy gaps were <200 m2. In total, canopy gaps covered 9.3% of the forest area. Gaps <400 m2 in size were irregular in shape, but larger gaps did not differ significantly in shape from a circle. Most gaps (41%) were formed by a single tree-fall event and beech made up 63% of gap makers and 93% of gap fillers. Frequency and diversity of tree seedlings were not significantly correlated with gap size. The minimum gap size that contained at least one beech gap-filling sapling (<1.3 m tall) was 23.7 m2. The median gap size containing at least one beech gap-filling sapling was 206 m2 and the maximum size was 1808 m2. The management implications from our study suggest that the creation of small and medium sized gaps in mixed beech forest should mimic natural disturbance regimes and provide suitable conditions for successful beech regeneration.  相似文献   

10.
11.
Thinnings using cut-to-length or whole-tree harvesting systems followed by underburning were evaluated for their effects on seedling and sapling demography in a pure, uneven-aged Jeffrey pine (Pinus jeffreyi Grev. & Balf.) stand containing a minor component of California white fir (Abies concolor var. lowiana [Gord.] Lemm.). Depression of seedling counts due to forest floor disturbance associated with thinning was followed by a recovery largely confined to Jeffrey pine in the whole-tree treatment where final seedling counts exceeded those found initially. The postburn substrate was more favorable for establishment of Jeffrey pine than white fir seedlings, and the largest increase in seedling counts between the initial and final inventories occurred in the burned portion of the whole-tree treatment. Live sapling losses from thinning were greatest in the cut-to-length treatment, while underburning induced complete sapling mortality. Absent treatment, several stand and site variables influenced seedling and sapling abundance, prominent among them a propensity for mahala mat (Ceanothus prostratus Benth.) to elevate counts of white fir within both size classes. These results provide land managers insight into the impacts of six combinations of thinning and burning treatment on natural regeneration in eastern Sierra Nevada Jeffrey pine and similar dry site forest types.  相似文献   

12.
林窗形成导致环境资源再分配,进而影响物种入侵、种子萌发、幼苗更新和幼树存活;林窗改变了森林空间结构和植物群落组成,增加了群落异质性,这为保持森林群落相对稳定奠定了基础,也为多种生物共存发展提供了适宜的条件。目前,关于林窗对植被更新、植物多样性影响研究较多,但至今没有一个公认的客观量化林窗定义的方法,导致研究者采用的林窗识别标准不同,无法对现有林窗研究进行有效比较,且林窗特征测定方法也尚未完善。文中对林窗的概念形成、定义发展及林窗特征(形状、大小、形成、年龄及边缘木)测定方法进行梳理,探讨目前林窗研究存在的问题,以期为未来林窗干扰相关研究提供历史脉络与研究方向。  相似文献   

13.
Eastern white pine (Pinus strobus L.) is a moderately shade-tolerant species that co-occurs with hardwood tree species in many forests of the eastern United States, as well as in pure stands. The species is valued for its timber, as well as for wildlife and recreation. Regeneration of this species is somewhat unpredictable and often occurs in patches of similarly-aged cohorts. We described the regeneration patterns of this species and examined their relation to environmental variables within hardwood forests of southwestern Virginia, USA. An average of 5.3 white pine patches per ha were observed in this study. The majority of patches consisted of saplings (85%), with 9% of patches in pole size classes, and 6% in seedling size classes. The average density of patches was 43.5 stems with an average age of 20 years. The size of patches averaged 80.6 m2. The total density of seedlings and the number of regeneration patches of all sizes of regeneration (seedlings, saplings, and poles) in plots was related to the surrounding density of large white pine trees (potential seed trees). The density of seedlings or patches was not significantly related to current vegetation cover or soil surface cover variables, but more than half of regeneration patches were located in or adjacent to old canopy gaps, most of which were old logging gaps. While seedling regeneration may occur within the understory of these forests near seed trees, advancement to the sapling and pole stage appears to be associated with canopy gap formation.  相似文献   

14.
Historical land use and management practices in the southeastern United States have resulted in the dominance of loblolly pine (Pinus taeda L.) on many upland sites that historically were occupied by longleaf pine (Pinus palustris Mill.). There is currently much interest in restoring high quality longleaf pine habitats to such areas, but managers may also desire the retention of some existing canopy trees to meet current conservation objectives. However, fast-growing natural loblolly pine regeneration may threaten the success of artificially regenerated longleaf pine seedlings. We evaluated the establishment and growth of natural loblolly pine regeneration following different levels of timber harvest using single-tree selection (Control (uncut, residual basal area ∼16 m2/ha), MedBA (residual basal area of ∼9 m2/ha), LowBA (residual basal area of ∼6 m2/ha), and Clearcut (complete canopy removal)) and to different positions within canopy gaps (approximately 2800 m2) created by patch cutting at two ecologically distinct sites within the longleaf pine range: Fort Benning, GA in the Middle Coastal Plain and Camp Lejeune, NC in the Lower Coastal Plain. The density of loblolly pine seedlings was much higher at Camp Lejeune than at Fort Benning at the end of the first growing season after harvesting. Following two growing seasons, there were no significant effects of canopy density or gap position on the density of loblolly pine seedlings at either site, but loblolly pine seedlings were taller on treatments with greater canopy removal. Prescribed fires applied following the second growing season killed 70.6% of loblolly pine seedlings at Fort Benning and 64.3% of seedlings at Camp Lejeune. Loblolly pine seedlings were generally less than 2 m tall, and completeness of the prescribed burns appeared more important for determining seedling survival than seedling size. Silvicultural treatments that include canopy removal, such as patch cutting or clearcuts, will increase loblolly pine seedling growth and shorten the window of opportunity for control with prescribed fire. Therefore, application of prescribed fire every 2-3 years will be critical for control of loblolly pine regeneration during restoration of longleaf pine in existing loblolly pine stands.  相似文献   

15.
We experimentally investigated interacting effects of canopy gaps, understory vegetation and leaf litter on recruitment and mortality of tree seedlings at the community level in a 20-year-old lowland forest in Costa Rica, and tested several predictions based on results of previous studies. We predicted that experimental canopy gaps would greatly enhance tree seedling recruitment, and that leaf litter removal would further enhance recruitment of small-seeded, shade-intolerant seedlings in gaps. We created a large (320–540 m2) gap in the center of 5 out of 10 40 m × 40 m experimental plots, and applied the following treatments bimonthly over a 14-month-period in a factorial, split–split plot design: clipping of understory vegetation (cut, uncut), and leaf litter manipulations (removal, addition, control). As expected, experimental gaps dramatically increased tree seedling recruitment, but gap effects varied among litter treatments. Litter addition reduced recruitment in gaps, but enhanced recruitment under intact canopy. Species composition of recruits also differed markedly between gap treatments: several small-seeded pioneer and long-lived pioneer species recruited almost exclusively in gaps. In contrast, a few medium-to-large-seeded shade-tolerant species recruited predominantly under intact canopy. Leaf litter represents a major barrier for seedling emergence and establishment of small-seeded, shade-intolerant species, but enhances emergence and establishment of large-seeded, shade-tolerant species, possibly through increased humidity and reduced detection by predators. Periodic clipping of the understory vegetation marginally reduced tree seedling mortality, but only in experimental gaps, where understory vegetation cover was greatly enhanced compared to intact canopy conditions. Successful regeneration of commercially valuable long-lived pioneer trees that dominate the forest canopy may require clear-cutting, as well as weeding and site preparation (litter removal) treatments in felling clearings. Management systems that mimic natural canopy gaps (reduced-impact selective logging) could favor the regeneration of shade-tolerant tree species, potentially accelerating convergence to old-growth forest composition. In contrast, systems that produce large canopy openings (clear-cutting) may re-initiate succession, potentially leading to less diverse but perhaps more easily managed “natural plantations” of long-lived pioneer tree species.  相似文献   

16.
于振良  郝占庆 《林业研究》1998,9(3):160-165
lntroductionBroad-leavedKoreanpineforestisacldriaxforestli1tCm-peratezoneofNortheaster11Cl1ina.ltscharacteristichasIligllstabilityandproductivity.Therewerenlanyresearcl1worksfocusedontl1estructure,dynandcsanditsmain-tainingmechanisn1.Researchontheforestregeneratio11wasamali1approaclltoundersta11dtlleforestdynanlicsI;j.ThereweremanyresearcI1eso11tl1erege11erationofh1iskindofforestsincel95ol5~ll].Butfewoftl1emweredoneundertheconsiderationofcanopygapdistUrbance.Sincel99O's,moreandmoreresearch…  相似文献   

17.
Despite the ecological and economic importance of Acacia senegal, little is known about the effects of anthropogenic disturbances on its natural regeneration patterns and population structure. We investigated the effects of these factors within the Lake Baringo woodland ecosystem. Data was collected from 60 plots of 20 m × 20 m systematically distributed in four A. senegal-dominated populations within the Lake Baringo woodland. Sample populations spanned a degradation gradient measured by a population disturbance index (PDI). Trees were measured for diameter at breast height (DBH) and categorized by growth stages: seedling, sapling and adult tree. Higher seedling and sapling densities were recorded in lightly than heavily disturbed populations, but only sapling density was significantly different between the two disturbance levels (P = 0.02). Lightly disturbed populations revealed a reversed J-shape size-class distribution (SCD) indicative of stable structure unlike the heavily disturbed populations. The quotient and permutation indices indicated unstable populations with episodic recruitment and mortality. Our study reveals that natural regeneration and population structure of A. senegal were affected majorly by selective harvesting and heavy browsing. Suitable management strategies to control livestock grazing and illegal tree harvesting within the woodland is required to promote conservation of the species genetic resources  相似文献   

18.
Regeneration of tree species associated with canopy gaps in broad-leaved Korean pine forests was investigated. Species diversity in gaps and under closed canopy was compared, the relationship between biodiversity and gap structure was analyzed. Results indicate that there were significant differences between tree species diversity in gaps and that under canopy (p<0.01). In terms of Shannon-Wiener index, evenness index, and abundance index, the biodiversity in gap community were higher than those under forest canopy in regeneration layer. In terms of Simpson’s dominance index, the dominance of certain species in the regeneration layer increased from gaps to closed canopy (p<0.01). In contrast, trends of biodiversity changes of succession layer in gaps and under closed canopy were opposite. Tree species diversity of different layers reacted directly to the change of gap size class. For example, Shannon-Wiener index and abundance index is higher and Simpson’s dominance index is the lowest in succession layer of medium-size gap (100–250 m2) in the broad-leaved Korean pine forest of Changbai Mountains. Shannon-Wiener index reached the highest in a size of ≥250 m2 and <100 m2, reached the lowest in a size of 200–250 m2 in the regeneration layer. Simpson’s dominance index reached its maximum when the gap size was between 200 and 250 m2. Generally, species of different layers reacted differently to the changes of gap size classes. The gap size class with more seedlings did not correspond to size class containing more medium-size trees. Tree species diversity indices in the two layers behaved reciprocally during the development process of forest gaps. __________ Translated from Chinese Journal of Applied Ecology, 2005, 16(12): 2,236–2,240 [译自: 应用生态学报, 2005, 16(12): 2,236–2,240]  相似文献   

19.
Despite the ecological and economic importance of Acacia senegal, little is known about the effects of anthropogenic disturbances on its natural regeneration patterns and population structure. We investigated the effects of these factors within the Lake Baringo woodland ecosystem. Data was collected from 60 plots of 20 m 9 20 m systematically distributed in four A. senegal-dominated populations within the Lake Baringo woodland. Sample populations spanned a degradation gradient measured by a population disturbance index(PDI). Trees were measured for diameter at breast height(DBH) and categorized by growth stages: seedling, sapling and adult tree. Higher seedling and sapling densities were recorded in lightly than heavily disturbed populations, but only sapling density was significantly different between the two disturbance levels(P = 0.02). Lightly disturbed populations revealed a reversed J-shape size-class distribution(SCD) indicative of stable structure unlike the heavily disturbed populations.The quotient and permutation indices indicated unstable populations with episodic recruitment and mortality.Our study reveals that natural regeneration and population structure of A. senegal were affected majorly by selective harvesting and heavy browsing. Suitable management strategies to control livestock grazing and illegal tree harvesting within the woodland is required to promote conservation of the species genetic resources  相似文献   

20.
It remains unclear whether or not creating gaps in planted forests can increase the plant species composition, structure, and biodiversity, and also whether it can be helpful for restoring planted forests (to a more natural state). Based on a comparison of species composition and structure among forest patches, small gaps (4-25 m2), medium gaps (25-150 m2) and large gaps (150-450 m2), we found that (1) creating gaps enhanced vascular plant diversity. Both the species richness and Shannon diversity indices of small, medium and large gaps were significantly higher than in the understory. The pattern of increasing diversity of vascular plants with gap creation could be partly attributed to the emergence of novel shade intolerant species in gaps. (2) Creating gaps favored the colonization and regeneration of native species. Gap size influenced not only the emergence and density of individuals of different species, but also the emergence of different life form types. Small gaps promoted the regeneration of some shrub species, such as Ostryopsis davidiana, Rosa hugonis, and Forsythia suspense, leading to these species becoming canopy dominants early on in succession. The medium and large gaps favored the growth of tree species, such as Populus davidiana and Betula platyphylla (early successional stage), and Quercus liaotungensis and Pinus tabulaeformis (later successional phase). (3) The canonical correspondence analysis showed that plant species composition and distribution were mainly influenced by gap size and slope aspect, and that the recorded plant species could be divided into three life forms (trees, shrubs and herbs) on the biplot diagram. (4) Finally, creating gaps provided opportunities not only for native pioneer species in the early successional stage, but also for climatic climax species to grow to canopy dominants in later successional phases, suggesting that a more natural forest will develop with plant succession. Gap size plays an important role in plant regeneration, and it could be used to produce desired successional communities in near natural management for planted forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号