首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subluteolytic doses of prostaglandin F2alpha analogue (oestrophan) given i.m. and oxytocin (OT) antagonist (CAP) and noradrenaline (NA) infused into the abdominal aorta were used to test the importance of luteal OT in pulsatile secretion of prostaglandin F2alpha (PGF) during luteolysis in heifers (n = 17). In experiment 1, heifers were pre-infused for 30 minutes with saline on either day 17 of the oestrous cycle (group 1; n = 4) or on day 18 of the oestrous cycle (group 2; n = 3), and with CAP (8 mg per animal) on day 17 of the oestrous cycle (group 3; n = 4). Next, heifers were injected with oestrophan (30 microg per animal). Injection of oestrophan in Group 3 increased OT concentrations (P < 0.001) to values similar to those observed during spontaneous luteolysis (50 to 70 pg ml(-1)). PGFM concentrations in this group also increased (P < 0.001), but were lower (P < 0.05) than the values in groups 1 and 2, CAP given prior to oestrophan decreased both PGFM elevation (P < 0.06) and its area under the curve (P < 0.01), compared to the saline pretreated heifers. In experiment 2 NA (4 mg) was infused twice for 30 minutes at five hour intervals to release OT on day 17 of the oestrous cycle (n = 6). However, during hormone analysis it appeared that three of six heifers had elevated PGFM concentrations (group 1) and three others did not (group 2). NA caused the correlated increase of progesterone and OT secretion (r = 0.68; P < 0.05) in both groups but it only influenced PGF secretion in group 1 only (P < 0.05). We postulate that OT can amplify and modulate the course of induced luteolysis as a regulator of the amplitude of pulsatile PGF secretion. PGF analogue stimulates secretion of endogenous PGF from the uterus in cattle and this may be an important component of the luteolytic response to exogenous PGF.  相似文献   

2.
This study evaluated the influence of exogenous estradiol-17 beta (E2) administration on LH concentrations and the number of animals returning to estrus after the termination of pregnancy or pseudopregnancy in gilts. Gilts were mated (pregnant; n = 11) on the 1st d of estrus or received 5 mg of estradiol valerate i.m. at d 11 to 15 after the onset of estrus (pseudopregnant; n = 9). Gilts were treated with prostaglandin F2 alpha (PGF2 alpha, 15 and 10 mg) at 12-h intervals on d 44 of pregnancy or pseudopregnancy. The day of abortion or luteolysis (progesterone less than .2 ng/mL) was considered d 0. Six pregnant and four pseudopregnant gilts received s.c. an E2 capsule (24 mg of E2) on d -20 and additional E2 capsules on d -13 and -6. The E2 capsules were removed on the day after PGF2 alpha administration. Blood samples were collected at 12-h intervals from d -21 to -3, at 6-h intervals from d -2 to 21 or the onset of estrus, and at 15-min intervals for 8 h on d -2, 1, 4, 7, 10, 14, and 18. After each 8-h sampling period, gilts were treated i.v. with GnRH at .5 micrograms/kg of BW and blood samples collected at 10-min intervals for 3 h. A greater (P less than .05) proportion of sham-treated gilts than of E2-treated gilts exhibited a preovulatory-like LH surge after abortion/luteolysis. It was evident that E2 supplementation before luteolysis reduced the ability of pregnant and pseudopregnant gilts to return to estrus.  相似文献   

3.
We determined whether a single injection of slow-release estradiol-17beta (SRE2) would induce pseudopregnancy in gilts and whether PGF2alpha would regress the corpora lutea (CL) of pseudopregnancy. Crossbred gilts (n = 40) were induced to ovulate by treatment with 400 IU of hCG + 200 IU of eCG (PG600, Intervet, Millsboro, DE) given at 180 d of age (d = 0). On d 14, gilts were injected i.m. with one of five doses (n = 8 gilts/dose) of SRE2 (0, 12.5, 25, 50, or 100 mg). Blood samples were collected before SRE2 and twice weekly until d 73 to monitor serum progesterone (P4) and estradiol (E2). On d 59, gilts received (i.m.) 10 mg of PGF2alpha (Lutalyse, Pharmacia Upjohn, Kalamazoo, MI) and were checked for estrus for 7 d. On d 62, mammary development was scored (0 = no development; 1 = some development; 2 = teat and gland development) by a neutral observer. Treatment with SRE2 increased (P < .05) peak E2 concentrations, duration of luteal function, and mammary gland score. There were no differences (chi-square, P > .05) among doses of SRE2 in the percentage of pseudopregnant gilts that showed luteolysis after PGF2alpha. We conclude that a single injection of SRE2 can induce pseudopregnancy and that the CL can be regressed with PGF2alpha, providing a simple method for controlling estrus in gilts.  相似文献   

4.
The purpose of the present study was to determine the effect of progesterone or progesterone + estradiol-17beta on oxytocin-induced prostaglandin F2alpha (PGF2alpha) secretion in postpartum beef cows. Thirty-four anestrous postpartum beef cows were ovariectomized (d 32 [Groups 1 to 3] or d 23 [Groups 4 to 6] postpartum [d 0 = parturition]) and allotted to six treatments (Group 1; negative control) to simulate short (Groups 2 through 5) or normal (Group 6) length estrous cycles. Steroid treatments for the respective groups were as follows: Group 1) no estradiol-17beta or progesterone treatment (n = 8; negative control); Group 2) progesterone (d 34 to 40; n = 6); Group 3) estradiol-17beta (d 32 to 33) and progesterone (d 34 to 40; n = 6); Group 4) progesterone (d 23 to 29), no estradiol-17beta (d 32 to 33), and progesterone (d 34 to 40; n = 5); Group 5) progesterone (d 23 to 29), estradiol-17beta (d 32 to 33), and progesterone (d 34 to 40; n = 5); and Group 6) progesterone (d 23 to 29), estradiol-17beta (d 32 to 33), and progesterone (d 34 to 50; n = 4; positive control). Oxytocin (100 IU) was injected (i.v.) at the end of each treatment to test the ability of the postpartum uterus to secrete PGF2alpha as measured by a stable metabolite of PGF2alpha, 15keto-13,14 dihydro-PGF2alpha (PGFM). Peak concentrations ofPGFM (P < 0.08) and total PGFM secreted (area under the curve; P < 0.05) were increased on d 6 following first (Group 2) or second (Group 4) exposure to progesterone and were similar to peak concentrations and total PGFM secreted 16 d following a simulated normal estrous cycle (Group 6). Administration of estradiol-17beta before first progesterone exposure (Group 3) did not reduce peak concentrations of PGFM or total PGFM secreted relative to the preceding groups. Peak concentrations of PGFM (P < 0.08) and total PGFM secreted (P < 0.05) were reduced following a second progesterone exposure, provided that cows were pretreated with estradiol-17beta (Group 5). In summary, oxytocin-induced release of PGFM was inhibited on d 6 following second exposure to progesterone only when cows were pretreated with estradiol-17beta. Therefore, estradiol-17beta and progesterone were both associated with the timing of PGF2, secretion in postpartum cows.  相似文献   

5.
The aims of this study were to study the effects of fasting on progesterone (P4) production in the pig and to verify whether fasting influences luteal expression of PGF(2alpha) receptor (FPr) and prostaglandin secretion. Superovulated prepubertal gilts were used; half of them were fasted for 72h starting on day 2 (F2) or 9 (F9) of the induced estrous cycle, respectively, while two groups (C2 and C9) served as respective controls. Plasma P4 and PGFM concentrations were determined by RIA while FPr mRNA expression in CLs collected at the end of fasting period was measured by real-time PCR. In experiment 1, plasma P4 concentrations in fasted gilts were significantly (P<0.01) higher than in controls starting from day 3 (F2; n=6) and 10 (F9; n=6). FPr mRNA expression was similar in F2 and C2 (n=6) CLs while it was significantly (P<0.05) higher in F9 than in C9 (n=6) CLs. In experiment 2, cloprostenol administered on day 12 significantly (P<0.05) increased FPr mRNA expression in CLs from both F9 (n=6) and C9 (n=6) gilts. At the time of cloprostenol injection PGFM levels were significantly higher (P<0.05) in the fasted group and cloprostenol-induced luteolysis in fasted but not in normally fed gilts. Results from this study indicate that fasting in prepubertal gilts induced to ovulate stimulates luteal P4 and PGFM production as well as FPr mRNA expression, thus increasing luteolytic susceptibility.  相似文献   

6.
Repeated intramuscular injection of 1 mg prostaglandin F2 alpha (PGF2 alpha) during the luteal phase of the oestrous cycle of the goat hastened luteolysis and resulted in rapid increases in jugular concentrations of 13,14-dihydro-15-keto PGF2 alpha (PGFM), the primary metabolite of PGF2 alpha, and of oxytocin; similar injections of PGF2 alpha in indomethacin-treated goats had a reduced effect on PGFM and oxytocin concentrations, and failed to induce luteolysis. The same injections of PGF2 alpha were without effect on PGFM and oxytocin concentrations in ovariectomised goats. The results suggest that exogenous PGF2 alpha, or endogenous PGF2 alpha released at luteolysis, may induce the release of ovarian oxytocin in the goat.  相似文献   

7.
We have studied in the porcine endometrium the expression of oxytocin receptor (OTR) mRNA and the effect of progesterone (P4) on oxytocin/oxytocin receptor (OT/OTR) function concerning intracellular Ca2+ mobilisation ([Ca2+]i), prostaglandin F2alpha (PGF2alpha) and E2 (PGE2; PG) secretion. Tissue was taken from cyclic and early pregnant pigs (days 14-16). A higher expression of OTR mRNA (P < 0.05) was observed in the endometrium of cyclic than pregnant pigs. The stimulatory (P < 0.05) effect of OT (10(-7) M) on [Ca2+]i mobilisation was noticed within 15-60 s and 30-60 s in endometrial stromal cells of cyclic and pregnant pigs, respectively. In the presence of P4 (10(-5) M) basal and OT-stimulated [Ca2+]i concentrations decreased in stromal cells during luteolysis and pregnancy. In stromal cells P4 delayed mobilisation of [Ca2+]i in response to OT by 15 s during luteolysis and had no effect during pregnancy. In cyclic and pregnant epithelial cells OT stimulated mobilisation of [Ca2+]i in 45 s and 60 s, respectively. Oxytocin increased (P < 0.05) PGF2alpha secretion during luteolysis and pregnancy and PGE2 during luteolysis from endometrial slices. Progesterone did not inhibit this stimulatory effect. During luteolysis OT increased (P < 0.05) PGF2alpha in epithelial and stromal cells and PGE2 secretion in epithelial cells. In the presence of P4 this effect of OT was reduced only in stromal cyclic cells (6 h culture). The presence of P4 decreased the effect of OT on [Ca2+]i mobilisation only in stromal cells. We found that, in most conditions, P4 did not inhibit the OT-stimulated secretion of PG in the porcine endometrium.  相似文献   

8.
Oxytocin (OT) stimulates endometrial secretion of prostaglandin (PG) F(2 alpha) during corpus luteum regression in swine but there is differential responsiveness to OT among endometrial cell types. To determine if progesterone influenced responsiveness of luminal epithelial, glandular epithelial, and stromal cells to 100 nM OT during luteolysis in swine, cells were isolated from endometrium of 15 gilts by differential enzymatic digestion and sieve filtration on day 16 postestrus and cultured continuously in the presence of 0, 10 or 100 nM progesterone. For phospholipase C (PLC) activity and PGF(2 alpha) secretion, stromal cells were most responsive to OT (P<0.01) in the absence of progesterone, whereas luminal epithelial cells were unresponsive and glandular epithelial cells displayed an intermediate response to OT (P<0.09). Progesterone enhanced PLC activity linearly in glandular epithelial cells (P<0.05) and influenced it quadratically in stromal cells (P=0.05). The effect of OT and progesterone on PLC activity in luminal epithelial cells was not significant, and progesterone did not increase PLC activity in response to OT in any cell type. Culture in the presence of progesterone, enhanced PGF(2 alpha) secretion in response to OT in luminal epithelial cells (P<0.05) but not in glandular epithelial or stromal cells. Progesterone also increased overall PGF(2 alpha) release from glandular epithelial (P<0.05) and stromal cells (P<0.06) across both levels of OT treatment. These results indicate that progesterone enhanced PGF(2 alpha) secretion from luminal epithelial cells in response to OT and increased basal PGF(2 alpha) release from glandular epithelial and stromal cells.  相似文献   

9.
Ethanol stimulates the production of prostaglandins in many species. The purpose of this study was to verify the effect of ethanol on the production of prostaglandin F2α (PGF2α) and luteolysis in bovine females. In the first experiment, Holstein cows at day 17 of the oestrous cycle were treated with 100% ethanol (0.05 ml/kg of body weight, IV; n = 5), saline (0.05 ml/kg of body weight, IV; n = 4) or synthetic prostaglandin (150 μg of D‐cloprostenol/cow, IM; n = 4). The plasma concentrations of 13, 14‐dihydro‐15‐keto PGF2α (PGFM; the main metabolite of PGF2α measured in the peripheral blood) were assessed by radioimmunoassay (RIA). There was an acute release of PGFM in response to ethanol comparing to other treatments (p ≤ 0.05). However, only cows treated with PGF2α underwent luteolysis. In the second experiment, endometrial explants of cross‐bred beef cows (n = 4) slaughtered at day 17 of the oestrous cycle were cultured for 4 h. During the last 3 h, the explants were cultured with medium supplemented with 0, 0.1, 1, 10 or 100 μl of 100% ethanol/ml. Medium samples were collected at hours 1 and 4 and concentrations of PGF2α were measured by RIA. Ethanol did not induce PGF2α production by the endometrium. In conclusion, ethanol does not cause luteolysis in cows because it stimulates production of PGF2α in extra‐endometrial tissues.  相似文献   

10.
Experiments were undertaken to determine whether the conceptus renders a corpus luteum resistant to the luteolytic action of prostaglandin F2 alpha (PGF2 alpha), and modulates release of this prostaglandin by the uterus of early pregnant ewes. Prostaglandin F2 alpha was luteolytic when administered to indomethacin-treated ewes on d 10 and 11 of the estrous cycle. The same PGF2 alpha treatment was not luteolytic when applied on d 19 and 20 of pregnancy in ewes treated with indomethacin. Pulsatile release of PGF2 alpha (measured by 15-keto-13,14-dihydro PGF2 alpha-PGF2 alpha plasma level, PGFM) was observed between d 14 and 16 of the cycle but not during the same period of pregnancy. Ablation of the conceptus on d 17 resulted in progressive restoration of PGFM surges and subsequent luteolysis. Estradiol-17 beta (E2-17 beta) administration on d 12 of the cycle induced earlier PGFM surges and luteal regression. The same E2-17 beta treatment administered on d 14, 19 and 33 of pregnancy failed to induced PGFM pulses and luteolysis. In the absence of the conceptus (surgical ablation), E2-17 beta treatment was luteolytic (PGFM surges) on d 17 but not on d 33. We conclude that the conceptus controls the amount and pattern of PGF2 alpha released by the uterus, as well as the sensitivity of the uterus to E2-17 beta as early as d 14 of pregnancy. Simultaneously, an embryonic protective effect takes place at the luteal level.  相似文献   

11.
Eighteen suckled Brahman cows were allotted randomly to treatments arranged in a three-period crossover design according to calving date and prior treatment such that each cow received 30, 150 and 300 IU oxytocin (OT) i.v. on d 10, 20 or 30 postpartum. Blood was collected via an indwelling jugular catheter every 15 min for 195 min. Samples collected before OT administration were used to determine basal plasma 13,14-dihydro-15-keto prostaglandin F2 alpha (PGFM) concentration. Day, time and the day X dose interaction affected PGFM (P less than .0001). All doses of OT elevated PGFM on all days postpartum (P less than .0001). Basal PGFM was greater (P less than .0001) on d 10 (252.2 +/- 51.2 pg/ml) than on d 20 (78.2 +/- 14.8 pg/ml) or on d 30 (64.8 +/- 7.4 pg/ml). The rise in PGFM in response to OT was greatest on d 10 and decreased (P less than .001) with increasing days postpartum. On d 10, 150 IU of OT caused a greater (P less than .0007) rise in PGFM than either 30 or 300 IU. On d 20, the 300-IU dose raised PGFM more (P less than .005) than either 30 or 150 IU, whereas on d 30 no differences among doses were detected. Cows had higher basal PGFM and a greater response to OT on d 10 postpartum than on d 20 or 30; cows were more responsive on d 20 than on d 30. All doses of OT elevated PGFM at all three times postpartum; however, differences between doses were not detected.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
This study was conducted to examine the effects of metestrus administration of SyncroMate-B (SMB) on PGF2alpha secretion and corpus luteum (CL) development. In a study replicated over 2 yr, cows were observed for spontaneous estrus in yr 1, and cows received an injection of 25 mg of PGF2alpha and were observed for subsequent estrus in yr 2. At standing estrus (estrus = d 1), cows were randomly allotted to receive either the standard SMB regimen (n = 40) on d 3 of the estrous cycle or no treatment (n = 8). Fifty percent (n = 20) of SMB-treated cows were administered PGF2alpha on d 10 of the estrous cycle 48 h prior to implant removal. Twice-daily blood samples were collected in the morning (AM) and evening (PM) from d 2 AM through d 14 AM of the treated estrous cycle and subsequently analyzed for progesterone (P4) and PGF2alpha metabolite (PGFM). Prior to statistical analysis, SMB- and SMB/PGF2alpha-treated cows were sorted according to P4 concentration at d 10 of the treated estrous cycle to either a CL functional group (P4 > or = 1 ng/mL; n = 20) or a CL nonfunctional group (P4 < 1 ng/mL; n = 17). Following d 10 AM administration of PGF2alpha, functional and nonfunctional groups were further subdivided based on treatment. The groups were as follows: untreated control cows (n = 8); SMB-treated cows retaining a functional CL (SMB-F; n = 8); SMB-treated cows with a nonfunctional CL (SMB-N; n = 11); SMB/PGF2alpha-treated cows retaining a functional CL (SMB/PG-F; n = 12); and SMB/PGF2alpha-treated cows with a nonfunctional CL (SMB/PG-N; n = 6). Of all SMB-treated cows, 54% retained a functional CL through d 10 AM of the treated estrous cycle. Mean serum P4 concentrations increased for cows in all groups until d 7, after which P4 concentrations increased for cows in SMB/PG-F, SMB-F, and control groups and decreased for cows in SMB/PG-N and SMB-N groups. Following PGF2alpha administration on d 10, mean serum P4 concentrations remained < 1 ng/mL for cows in SMB/PG-N and SMB-N groups, decreased to < 1 ng/mL for cows in the SMB/ PG-F group, and remained > 1 ng/mL for cows in SMB-F and control groups. Mean serum PGFM concentrations tended (P = .06) to increase in cows with nonfunctional CL compared with control cows on d 8 AM and were greater (P < .05) in cows with functional CL on d 8 PM through d 9 PM. These results indicate that retention of a functional rather than a nonfunctional CL following metestrus administration of SMB is dependent on a premature release of uterine PGF2alpha.  相似文献   

13.
The aim of this study was to clarify the relationship between circulating oxytocin (OT) and PGF(2alpha) metabolite (PGFM) in mares at the third stage of labor and placental expulsion time in order to investigate a cause of retained placenta of which the incidence increase in a heavy draft mare. Blood was sampled every 5 min from foaling to expulsion of the placenta in 18 heavy draft mares to evaluate circulating OT and PGFM. The relationships between OT and PGFM concentration and recorded placental expulsion times were investigated. The results were as follows (1) The highest level of OT concentration was observed close to foaling in 15 mares. (2) The OT concentrations close to foaling were variable with a large difference from the lowest concentration, 22.1 pg/ml, to the highest concentration, 209.3 pg/ml. (3) The highest level of PGFM was observed close to foaling in 17 mares. (4) During the 60 min following foaling, the OT concentrations of the mares (n=11) that had a shorter placental expulsion time (i.e., <1 h), were significantly higher than those of the mares (n=7) that had a longer placental expulsion time (i.e., >1 h; P<0.05). Collectively, the OT concentration immediately after foaling is negatively related to the placental expulsion time. Deficiency of OT secretion at foaling have should be considered as one of the causes of retained placenta in heavy draft mares.  相似文献   

14.
Fertility in cattle is related positively to concentrations of progesterone in blood during the estrous cycle preceding insemination. This study determined whether treatment of heifers with prostaglandin F2 alpha (PGF2 alpha) or human chorionic gonadotropin (hCG) during d 2 to 4 of an estrous cycle affected progesterone during that cycle and whether hormone secretion during the cycle and onset of subsequent estrus were related to progesterone secretion. Nine Holstein heifers were assigned to an experiment designed as a triplicate Latin square, and each heifer received each of three treatments during three consecutive estrous cycles. Treatments were: saline (control, 1 ml) on d 2, 3 and 4 after estrus; hCG, 1000 IU on d 2, 3 and 4; and PGF2 alpha, 25 mg on d 3 with repeated doses 12 and 24 h later. Progesterone throughout the estrous cycle was higher in heifers given hCG than in those given saline. Progesterone during the first week of the cycle was lower in heifers given PGF2 alpha than those given saline, but means for these two groups were similar thereafter. Number of peaks of 15-keto,13,14-dihydro-PGF2 alpha (PGFM) during 24 h after onset of luteolysis was lower in heifers given hCG than in those given saline or PGF2 alpha. Patterns of secretion of luteinizing hormone and estradiol at subsequent estrus were not affected by treatment. Temporal relationships among hormone secretion and onset of estrus were unaffected by treatment.  相似文献   

15.
Our objectives were to determine whether repeated administration of prostaglandin F2alpha (PGF2alpha) to simulate the endogenous mode of secretion would be more effective than a single injection in inducing luteolysis and enable use of smaller doses less likely to cause adverse side effects. The main study comprised 43 dioestrous mares, who were given im. either a single 10 mg dose of natural PGF2alpha (n = 22) or 2 doses of 0.5 mg PGF2, 24 h apart (n = 21). The intensity of side effects was assessed in 8 dioestrous mares given 5, 1.5, 0.5 or 0 mg PGF2alpha in consecutive cycles. Two doses of 0.5 mg PGF2alpha 24 h apart caused lysis of the corpus luteum in all mares, whether this was determined from a fall in plasma progesterone concentrations or reproductive tract/behavioural changes; and when 10 mg PGF2, was given, the corpus luteum was lysed in 17 of 22 mares i.e. a lower proportion (P = 0.0485). A single dose of 0.5 mg PGF2a was no more effective than saline in inducing luteolysis.The intensity of side effects of PGF2alpha increased with dose. Although the 0.5 mg dose was no more likely than saline to cause sweating or muscle spasms, it raised plasma cortisol concentrations and prevented the decline in heart rate seen after saline. We conclude that a 2 dose regimen of administration increases the luteolytic efficacy of PGF2alpha and thereby provides a way to minimise adverse side effects.  相似文献   

16.
Effects of estradiol benzoate (EB) and zearalenone (Z) on luteal maintenance and plasma hormone concentrations were studied in 45 gilts. Gilts were allocated to receive either 20 mg Z, 2 mg EB or no treatment (C) on d 1 to 5 (T1), 6 to 10 (T2) or 11 to 15 (T3) of an estrous cycle (five per treatment). Onset of estrus was designated as d 0 of the estrous cycle. Zearalenone was added to the daily ration and EB was administered via an intramuscular injection. Blood samples were collected every 10 min over a 4-h period on the first 2 d prior to onset of treatment; the first, third and fifth days of treatment; and the first two and the fifth day after the end of the treatment periods. Gilts receiving EB and Z during T2 and T3 had longer (P less than .05) inter-estrous intervals than C gilts. The range in inter-estrous intervals for Z and EB treatments was 28 to 74 and 27 to 63 d, respectively. Mean plasma progesterone concentrations were elevated (P less than .05) during T2 and T3 in EB and Z-treated gilts when compared with C females. Estradiol benzoate treatment during T2 and T3 reduced (P less than .05) mean plasma luteinizing hormone (LH) concentrations more than C or Z treatments. Mean plasma concentrations of 13, 14-dihydro-, 15-keto-prostaglandin F2 alpha (PGFM) during T3 were higher (P less than .05) in C and Z gilts on d 13 and 15 post-estrus when compared with EB gilts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The effect of arginine vasopressin on the stimulation of prostaglandin F2 alpha (PGF2 alpha) release has been examined in vivo. Fifty-eight heifers received one intravenous injection of 10 IU arginine vasopressin on either Day 0 (n = 14), Day 6 (n = 12), Day 13 (n = 14) and Day 18 or 19 or 20 (Day 18-20, n = 18) after the onset of oestrus (Day 0) to determine the effect of arginine vasopressin at different times of the oestrous cycle. Frequent blood samples were taken before and after arginine vasopressin injection for the measurement of 13,14-dihydro-15-keto-PGF2 alpha (PGFM) by radioimmunoassay (RIA). Blood samples for progesterone determinations were taken 2 hr before and 24 hr after arginine vasopressin to monitor luteal function. The data show that arginine vasopressin causes an increase (P less than 0.005) in PGFM concentrations only at Day 18-20 of the cycle in 67% of the experimental heifers.  相似文献   

18.
Prostaglandin F(2alpha) (PGF(2alpha)) is the primary luteolysin in the cow, and luteal endothelin-1 (ET-1) interacts with PGF(2alpha) during the process of luteolysis. In contrast, a developing corpus luteum (CL) is refractory to exogenous administration of PGF(2alpha). Thus, the present study was aimed to investigate the functional relationship between ET-1 and PGF(2alpha) in the mid-CL (PGF(2alpha)-sensitive) and early-CL (PGF(2alpha)-refractory). In the mid-CL model, cows (n = 6/treatment) were assigned to receive one of five types of treatments on day 10 of the estrous cycle: (1) an injection of saline; control, (2) a 500 microg of PGF(2alpha) analogue (sufficient dose to induce luteolytis); full-PG, (3) an intraluteal injection of 0.25 mg ET-1; ET-1, (4) a 125 micro g of PGF(2alpha) (insufficient dose to induce luteolytis); 1/4PG or (5) an intraluteal injection of 0.25 mg ET-1 after administration of a insufficient dose of PGF(2alpha) analogue; 1/4PG/ET. In the early-CL model, cows were assigned to receive one of two types of treatments on day 5 of the estrous cycle: (1) a sufficient dose of PGF(2alpha) analogue; PG (n = 5) or (2) an intraluteal injection ET-1 after a sufficient dose of PGF(2alpha); PG/ET (n = 7). In the mid-CL model, 1/4PG/ET resulted in a rapid reduction of progesterone (P) concentrations similar to that in full-PG from the next day. However, the levels of P in 1/4PG/ET (1.5-2.5 ng/ml) kept significantly higher than that in full-PG (< 0.5 ng/ml). ET-1 or 1/4PG did not decrease plasma P concentrations (4-6 ng/ml). The plasma ET-1 levels increased with the full-PG administration. In the early-CL model, both treatments had no effect on plasma P increase and ET-1 levels. The overall results indicate that the intraluteal ET-1 injection after administration of insufficient dose of PGF(2alpha) induces the depression of P secretion in vivo during the mid luteal phase in the cow, supporting the concept that ET-1 is one of a local mediator of functional luteolysis in the cow. The result further indicates that the early-CL is not only PG-refractory but also ET-1-refractory.  相似文献   

19.
Oxytocin (OT) stimulates pulsatile secretion of uterine prostaglandinF2alpha in ruminants, but the role of OT in the estrous cycle regulation of pigs is not clear. These studies were performed to determine the effect of exogenous OT on interestrous interval of intact cyclic gilts. Intrauterine infusion of 80 USP units three times daily on d 10 to 16 after estrus did not decrease interestrous interval (24.5+/-1.3 d) compared with control gilts (22.5+/-1.3 d). In contrast, i.m. injections of 20 USP units of OT twice daily or 80 USP units of OT three times daily on d 10 to 16 after estrus decreased (P < 0.05) interestrous interval (20.0+/-0.3 or 19.5+/-0.4 d, respectively) compared with control gilts (20.5+/-0.3 d). When gilts received a single i.m. injection of 0 or 1 mg of estradiol valerate on d 11 and twice daily i.m. injections of 0 or 20 USP units OT on d 10 to 16 after estrus, an interaction (P = 0.05) between OT and estradiol valerate was detected. In the absence of exogenous estradiol valerate, injection of OT decreased interestrous interval (19.0+/-0.5 d) compared with injection of vehicle (20.4+/-0.5 d). However, when gilts were injected with 1 mg of estradiol valerate to inhibit luteolysis, OT did not prevent the increase in interestrous interval (25.4+/-0.5 d) compared with injections of vehicle (24.7+/-0.5 d). These results indicate that 1) exogenous OT administered by intrauterine infusion on d 10 to 16 did not decrease interestrous interval of intact cyclic gilts, 2) exogenous OT administered i.m. on d 10 to 16 shortened interestrous interval, and 3) exogenous OT did not prevent the increase in interestrous interval induced by estradiol valerate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号