首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bauer GA  Berntson GM 《Tree physiology》2001,21(2-3):137-144
We examined changes in root system architecture and physiology and whole-plant patterns of nitrate reductase (NR) activity in response to atmospheric CO2 enrichment and N source to determine how changes in the form of N supplied to plants interact with rising CO2 concentration ([CO2]). Seedlings of Betula alleghaniensis Britt. and Pinus strobus L., which differ in growth rate, root architecture, and the partitioning of NR activity between leaves (Betula) and roots (Pinus), were grown in ambient (400 microl l(-1)) and elevated (800 microl l(-1)) [CO2] and supplied with either nitrate (NO3-) or ammonium (NH4+) as their sole N source. After 15 weeks of growth, plants were harvested and root system architecture, N uptake kinetics, and NR activity measured. Betula alleghaniensis responded to elevated [CO2] with significant increases in growth, regardless of the source of N. Pinus strobus showed no significant response in biomass production or allocation to elevated [CO2]. Both species exhibited significantly greater growth with NH4+ than with NO3-, along with lower root:shoot biomass ratios. Betula showed significant increases in total root length in response to elevated [CO2]. However, root N uptake rates in Betula (for both NO3- and NH4+) were either reduced or unchanged by elevated [CO2]. Pinus showed the opposite response to elevated [CO2], with no change in root architecture, but an increase in maximal uptake rates in response to elevated [CO2]. Nitrate reductase activity (on a mass basis) was reduced in leaves of Betula in elevated [CO2], but did not change in other tissues. Nitrate reductase activity was unaffected by elevated [CO2] in Pinus. Scaling this response to the whole-plant, NR activity was reduced in elevated [CO2] in Betula but not in Pinus. However, because Betula plants were larger in elevated [CO2], total whole-plant NR activity was unaffected.  相似文献   

2.
Naturally seeded Scots pine (Pinus sylvestris L.) trees, age 25-30 years, were subjected to two soil-nitrogen-supply regimes and to elevated atmospheric CO(2) concentrations by the branch-in-bag method from April 15 to September 15 for two or three years. Gas exchange in detached shoots was measured in a diffuse radiation field. Seven parameters associated with photosynthetic performance and two describing stomatal conductance were determined to assess the effects of treatments on photosynthetic components. An elevated concentration of CO(2) did not lead to a significant downward regulation in maximum carboxylation rate (V(cmax)) or maximum electron transport rate (J(max)), but it significantly decreased light-saturated stomatal conductance (g(sat)) and increased minimum stomatal conductance (g(min)). Light-saturated rates of CO(2) assimilation were higher (24-31%) in shoots grown and measured at elevated CO(2) concentration than in shoots grown and measured at ambient CO(2) concentration, regardless of treatment time or nitrogen-supply regime. High soil-nitrogen supply significantly increased photosynthetic capacity, corresponding to significant increases in V(cmax) and J(max). However, the combined elevated CO(2) + high nitrogen-supply treatment did not enhance the photosynthetic response above that observed in the elevated CO(2) treatment alone.  相似文献   

3.
Nocturnal water flux has been observed in trees under a variety of environmental conditions and can be a significant contributor to diel canopy water flux. Elevated atmospheric CO(2) (elevated [CO(2)]) can have an important effect on day-time plant water fluxes, but it is not known whether it also affects nocturnal water fluxes. We examined the effects of elevated [CO(2)] on nocturnal water flux of field-grown Eucalyptus saligna trees using sap flux through the tree stem expressed on a sapwood area (J(s)) and leaf area (E(t)) basis. After 19 months growth under well-watered conditions, drought was imposed by withholding water for 5 months in the summer, ending with a rain event that restored soil moisture. Reductions in J(s) and E(t) were observed during the severe drought period in the dry treatment under elevated [CO(2)], but not during moderate- and post-drought periods. Elevated [CO(2)] affected night-time sap flux density which included the stem recharge period, called 'total night flux' (19:00 to 05:00, J(s,r)), but not during the post-recharge period, which primarily consisted of canopy transpiration (23:00 to 05:00, J(s,c)). Elevated [CO(2)] wet (EW) trees exhibited higher J(s,r) than ambient [CO(2)] wet trees (AW) indicating greater water flux in elevated [CO(2)] under well-watered conditions. However, under drought conditions, elevated [CO(2)] dry (ED) trees exhibited significantly lower J(s,r) than ambient [CO(2)] dry trees (AD), indicating less water flux during stem recharge under elevated [CO(2)]. J(s,c) did not differ between ambient and elevated [CO(2)]. Vapour pressure deficit (D) was clearly the major influence on night-time sap flux. D was positively correlated with J(s,r) and had its greatest impact on J(s,r) at high D in ambient [CO(2)]. Our results suggest that elevated [CO(2)] may reduce night-time water flux in E. saligna when soil water content is low and D is high. While elevated [CO(2)] affected J(s,r), it did not affect day-time water flux in wet soil, suggesting that the responses of J(s,r) to environmental factors cannot be directly inferred from day-time patterns. Changes in J(s,r) are likely to influence pre-dawn leaf water potential, and plant responses to water stress. Nocturnal fluxes are clearly important for predicting effects of climate change on forest physiology and hydrology.  相似文献   

4.
Accurate estimates of root respiration are crucial to predicting belowground C cycling in forest ecosystems. Inhibition of respiration has been reported as a short-term response of plant tissue to elevated measurement [CO(2)]. We sought to determine if measurement [CO(2)] affected root respiration in samples from mature sugar maple (Acer saccharum Marsh.) forests and to assess possible errors associated with root respiration measurements made at [CO(2)]s lower than that typical of the soil atmosphere. Root respiration was measured as both CO(2) production and O(2) consumption on excised fine roots ( 20,000 micro l l(-1). Root respiration was significantly affected by the [CO(2)] at which measurements were made for both CO(2) production and O(2) consumption. Root respiration was most sensitive to [CO(2)] near and below normal soil concentrations (< 1500 micro l l(-1)). Respiration rates changed little at [CO(2)]s above 3000 micro l l(-1) and were essentially constant above 6000 micro l l(-1) CO(2). These findings call into question estimates of root respiration made at or near atmospheric [CO(2)], suggesting that they overestimate actual rates in the soil. Our results indicate that sugar maple root respiration at atmospheric [CO(2)] (350 micro l l(-1)) is about 139% of that at soil [CO(2)]. Although the causal mechanism remains unknown, the increase in root respiration at low measurement [CO(2)] is significant and should be accounted for when estimating or modeling root respiration. Until the direct effect of [CO(2)] on root respiration is fully understood, we recommend making measurements at a [CO(2)] representative of, or higher than, soil [CO(2)]. In all cases, the [CO(2)] at which measurements are made and the [CO(2)] typical of the soil atmosphere should be reported.  相似文献   

5.
Bareroot jack pine (Pinus banksiana Lamb.) seedlings (2 + 0) and bareroot white spruce (Picea glauca (Moench) Voss) transplants (1 1/2 + 1 1/2) were taken from cold storage and planted on a clearcut forest site in northeastern Ontario on several dates between May 6 and June 5 during which period soil temperature at 15 cm depth increased from 0 to 18 degrees C. Additional cold-stored trees were transferred to a greenhouse where they were grown in pots for 0, 7 or 28 days and then placed with their roots in aerated water maintained at one of a range of constant temperatures between 0 and 22 degrees C. In both species, daytime xylem pressure potentials (Psi(x)) and needle conductances (g(wv)) decreased with decreasing soil or water temperature. At all root temperatures, g(wv) was lower, and Psi(x) higher, in jack pine than in white spruce. After 28 days in the greenhouse, g(wv) of jack pine seedlings, and Psi(x) of white spruce, was higher than in plants just removed from cold storage. In both species, water-flow resistance through the soil-plant-atmosphere continuum (RSPAC) increased as root temperature decreased. At all root temperatures, RSPAC was higher in plants just removed from cold storage than in plants grown in the greenhouse for 28 days, during which time many new unsuberized roots were formed. At root temperatures above 10 degrees C, RSPAC of both species was higher in trees newly planted in mineral soil than in trees with roots in aerated water; presumably because the roots of planted trees had limited hydraulic contact with the soil. On the day following removal from cold storage, relative plant water flow resistance increased, in both species, more rapidly with declining root temperature than could be accounted for by the change with temperature in the viscosity of water, thus indicating an effect of temperature on root permeability. The same effect was evident in jack pine seedlings, but not white spruce transplants, that had been grown for 28 days in the greenhouse after removal from cold storage.  相似文献   

6.
Sefcik LT  Zak DR  Ellsworth DS 《Tree physiology》2006,26(12):1589-1599
Seedling responses to elevated atmospheric CO(2) concentration ([CO(2)]) and solar irradiance were measured over two growing seasons in shade-tolerant Acer saccharum Marsh. and Fagus grandifolia J.F. Ehrh. and shade-intolerant Prunus serotina, a J.F. Ehrh. and Betula papyrifera Marsh. Seedlings were exposed to a factorial combination of [CO2] (ambient and elevated (658 micromol mol-1)) and understory shade (deep and moderate) in open-top chambers placed in a forest understory. The elevated [CO(2)] treatment increased mean light-saturated net photosynthetic rate by 63% in the shade-tolerant species and 67% in the shade-intolerant species. However, when measured at the elevated [CO(2)], long-term enhancement of photosynthesis was 10% lower than the instantaneous enhancement seen in ambient-[CO(2)]-grown plants (P < 0.021). Overall, growth light environment affected long-term photosynthetic enhancement by elevated [CO(2)]: as the growth irradiance increased, proportional enhancement due to elevated [CO(2)] decreased from 97% for plants grown in deep shade to 47% for plants grown in moderate shade. Results suggest that in N-limited northern temperate forests, trees grown in deep shade may display greater photosynthetic gains from a CO(2)-enriched atmosphere than trees growing in more moderate shade, because of greater downregulation in the latter environment. If photosynthetic gains by deep-shade-grown plants in response to elevated [CO(2)] translate into improved growth and survival of shade-intolerant species, it could alter the future composition and dynamics of successional forest communities.  相似文献   

7.
Rising atmospheric carbon dioxide (CO2) concentration ([CO2]) could alter terrestrial carbon (C) cycling by affecting plant growth, litter chemistry and decomposition. How the concurrent increase in tropospheric ozone (O3) concentration ([O3]) will interact with rising atmospheric [CO2] to affect C cycling is unknown. A major component of carbon cycling in forests is fine root production, mortality and decomposition. To better understand the effects of elevated [CO2] and [O3] on the dynamics of fine root C, we conducted a combined field and laboratory incubation experiment to monitor decomposition dynamics and changes in fine root litter chemistry. Free-air CO2 enrichment (FACE) technology at the FACTS-II Aspen FACE project in Rhinelander, Wisconsin, elevated [CO2] (535 microl 1-1) and [O3] (53 nl 1-1) in intact stands of pure trembling aspen (Populus tremuloides Michx.) and in mixed stands of trembling aspen plus paper birch (Betula papyrifera Marsh.) and trembling aspen plus sugar maple (Acer saccharum Marsh.). We hypothesized that the trees would react to increased C availability (elevated [CO2]) by increasing allocation to C-based secondary compounds (CBSCs), thereby decreasing rates of decomposition. Because of its lower growth potential, we reasoned this effect would be greatest in the aspen-maple community relative to the aspen and aspen-birch communities. As a result of decreased C availability, we expected elevated [O3] to counteract shifts in C allocation induced by elevated [CO2]. Concentrations of CBSCs were rarely significantly affected by the CO2 and O3 treatments in decomposing fine roots. Rates of microbial respiration and mass loss from fine roots were unaffected by the treatments, although the production of dissolved organic C differed among communities. We conclude that elevated [CO2] and [O3] induce only small changes in fine root chemistry that are insufficient to significantly influence fine root decomposition. If changes in soil C cycling occur in the future, they will most likely be brought about by changes in litter production.  相似文献   

8.
Photosynthetic rates of 13-month-old Pinus radiata D. Don, Nothofagus fusca (Hook f.) ?rst. and Pseudotsuga menziesii (Mirb.) Franco seedlings grown and measured at elevated atmospheric concentrations of CO(2) (~620 microl l(-1)) were 32 to 55% greater than those of seedlings grown and measured at ambient (~310 microl l(-1)) concentrations of CO(2). Seedlings grown in ambient and elevated concentrations of CO(2) had similar rates of photosynthesis when measured at ~620 microl l(-1) CO(2), but when measured at ~310 microl l(-1) CO(2), the P. radiata and N. fusca seedlings which were grown at elevated CO(2) had lower rates of photosynthesis than the seedlings grown at an ambient concentration of CO(2). Stomatal conductances in general were lower when measured at ~620 microl l(-1) CO(2) than at ~310 microl l(-1) CO(2). Stomatal conductances declined in all species grown at both CO(2) concentrations when the leaf-air water vapor concentration gradient (DeltaW) was increased from 10 to 20 mmol H(2)O mol(-1) air. The percent enhancement in photosynthesis for P. radiata and P. menziesii at elevated CO(2) was greater at 20 mmol than at 10 mmol DeltaW, suggesting that elevated CO(2) may moderate the effects of atmospheric water stress. Dry matter allocation patterns were not significantly different for plants grown in ambient or high CO(2) air.  相似文献   

9.
Townend J 《Tree physiology》1993,13(4):389-399
Two-year-old Sitka spruce (Picea sitchensis (Bong.) Carr.) plants from four clones were grown in naturally lit growth chambers for 6 months at either ambient (350 ppm) or ambient + 250 ppm (600 ppm) CO(2) concentration. Plants were grown in large boxes filled with peat, in a system that allowed the roots of individual plants to be harvested easily at the end of the growing season. Half of the boxes were kept well watered and half were allowed to dry out slowly over the summer. Plants growing in elevated CO(2) showed a 6.9% increase in mean relative growth rate compared to controls in the drought treatment and a 9.8% increase compared to controls in the well-watered treatment, though there was considerable variation in response among the different clones and water treatments. Rates of net CO(2) assimilation were higher and stomatal conductances were lower in plants grown in elevated CO(2) than in ambient CO(2) in both the well-watered and drought treatments. Both of these factors contributed to the doubling of instantaneous water use efficiency. The partitioning of biomass to roots was unaffected by elevated CO(2), but the ratio of needle mass/stems + branches mass decreased. Together with reduced stomatal conductance, this probably caused the observed increases in xylem pressure potentials with elevated CO(2).  相似文献   

10.
Beech (Fagus sylvatica L.) seedlings were cultivated from seeds sown in pots or directly in the ground in outdoor chambers that were transparent to solar radiation, and provided either ambient air or CO(2)-enriched air (ambient + 350 &mgr;mol mol(-1)). The rooting volume was high in all experiments. In the short-term experiment, potted plants were assigned to a factorial CO(2) x nutrient treatment (optimal nutrient supply and severe nutrient shortage) for 1 year. In the long-term experiment, plants were grown directly in the ground and received an optimal supply of water and nutrients in both CO(2) treatments for 3 years. Nutrient stress caused carboxylation capacity (V(m)) to decrease in the potted seedlings exposed to CO(2)-enriched air during their first growing season. In the long-term experiment with optimal nutrient supply, CO(2)-enriched air did not affect V(m), but caused an upward acclimation of maximum electron transport rate (J(m)). Consequently, there was a 14% increase in the J(m)/V(m) ratio, indicating nitrogen reallocation to maintain an equilibrium between RuBP consumption and RuBP regeneration. Both V(m) and J(m) decreased during the growing season in both CO(2) treatments. Although upward acclimation of J(m) was no longer apparent at the end of the third growing season, plants in CO(2)-enriched air maintained a higher J(m)/V(m) ratio than plants in ambient air, indicating that photosynthetic acclimation always occurred. Second flush leaves appeared during each growing season. When expressed on the basis of foliar nitrogen concentration, their photosynthetic characteristics (V(m) and J(m)) were enhanced compared with other leaves. Because the number of second flush leaves was also increased in the elevated CO(2) treatment, this response should be taken into account when modeling the effects of elevated CO(2) concentration on canopy photosynthesis. Stomatal conductance decreased in response to atmospheric CO(2) enrichment; however, the stomatal response to irradiance followed a single relationship based on two stomatal conductance models.  相似文献   

11.
Pedunculate oak (Quercus robur L.) seedlings were grown for 3 or 4 months (second- and third-flush stages) in greenhouses at two atmospheric CO2 concentrations ([CO2]) (350 or 700 micromol mol(-1)) and two nitrogen fertilization regimes (6.1 or 0.61 mmol N l(-1) nutrient solution). Combined effects of [CO2] and nitrogen fertilization on partitioning of newly acquired carbon (C) and nitrogen (N) were assessed by dual 13C and 15N short-term labeling of seedlings at the second- or third-flush stage of development. In the low-N treatment, root growth, but not shoot growth, was stimulated by elevated [CO2], with the result that shoot/root biomass ratio declined. At the second-flush stage, overall seedling biomass growth was increased (13%) by elevated [CO2] regardless of N fertilization. At the third-flush stage, elevated [CO2] increased growth sharply (139%) in the high-N but not the low-N treatment. Root/shoot biomass ratios were threefold higher in the low-N treatment relative to the high-N treatment. At the second-flush stage, leaf area was 45-51% greater in the high-N treatment than in the low-N treatment. At the-third flush stage, there was a positive interaction between the effects of N fertilization and [CO2] on leaf area, which was 93% greater in the high-N/elevated [CO2] treatment than in the low-N/ambient [CO2] treatment. Specific leaf area was reduced (17-25%) by elevated [CO2], whereas C and N concentrations of seedlings increased significantly in response to either elevated [CO2] or high-N fertilization. At the third-flush stage, acquisition of C and N per unit dry mass of leaf and fine root was 51 and 77% greater, respectively, in the elevated [CO2]/high-N fertilization treatment than in the ambient [CO2]/low-N fertilization treatment. However, there was dilution of leaf N in response to elevated [CO2]. Partitioning of newly acquired C and N between shoot and roots was altered by N fertilization but not [CO2]. More newly acquired C and N were partitioned to roots in the low-N treatment than in the high-N treatment.  相似文献   

12.
To assess the effects of elevated CO(2) concentration ([CO(2)]) on the photosynthetic properties around spring budbreak, we monitored the total leaf sugar and starch content, and chlorophyll fluorescence in 1-year-old needles of Sakhalin spruce (Picea glehnii Masters) seedlings in relation to the timing of budbreak, grown in a phytotron under natural daylight at two [CO(2)] levels (ambient: 360?μmol mol(-1) and elevated: 720?μmol mol(-1)). Budbreak was accelerated by elevated [CO(2)] accompanied with earlier temporal declines in the quantum yield of PSII electron transport (Φ(PSII)) and photochemical quenching (q(L)). Plants grown under elevated [CO(2)] showed pre-budbreak leaf starch content twice as high with no significant difference in Φ(PSII) from ambient-CO(2)-grown plants when compared at the same measurement [CO(2)], i.e., 360 or 720?μmol mol(-1), suggesting that the enhanced pre-budbreak leaf starch accumulation might not cause down-regulation of photosynthesis in pre-existing needles under elevated [CO(2)]. Conversely, lower excitation pressure adjusted for the efficiency of PSII photochemistry ((1?-?q(P)) F(v)'/F(m)') was observed in plants grown under elevated [CO(2)] around budbreak when compared at their growth [CO(2)] (i.e., comparing (1?-?q(P)) F(v)'/F(m)' measured at 720?μmol mol(-1) in elevated-CO(2)-grown plants with that at 360?μmol mol(-1) in ambient-CO(2)-grown plants), which suggests lower rate of photoinactivation of PSII in the elevated-CO(2)-grown plants around spring budbreak. The degree of photoinhibition, as indicated by the overnight-dark-adapted F(v)/F(m), however, showed no difference between CO(2) treatments, thereby suggesting that photoprotection during the daytime or the repair of PSII at night was sufficient to alleviate differences in the rate of photoinactivation.  相似文献   

13.
It has been hypothesized that increasing atmospheric CO(2) concentration enhances accumulation of carbon in fine roots, thereby altering soil carbon dynamics and nutrient cycling. To evaluate possible changes to belowground pools of carbon and nitrogen in response to elevated CO(2), an early and a late successional species of pine (Pinus taeda L. and Pinus ponderosa Dougl. ex Laws, respectively) were grown from seed for 160 days in a 35 or 70 Pa CO(2) partial pressure at low or high temperature (30-year weekly mean and 30-year weekly mean + 5 degrees C) and a soil solution nitrogen concentration of 1 or 5 mM NH(4)NO(3) at the Duke University Phytotron. Seedlings were harvested at monthly intervals and growth parameters of the primary root, secondary root and tap root fractions evaluated. Total root biomass of P. ponderosa showed a positive CO(2) response (105% increase) (P = 0.0001) as a result of significant increases in all root fractions in the elevated CO(2) treatment, but all other main effects and interactions were insignificant. In P. taeda, there were significant interactions between CO(2) and temperature (P = 0.04) and CO(2) and nitrogen (P = 0.04) for total root biomass. An allometric analysis indicated that modulation of the secondary root fraction was the main response of the trees to altered environmental conditions. In P. ponderosa, there was an increase in the secondary root fraction relative to the primary and tap root fractions under conditions of low temperature. In P. taeda, there was a shift in carbon accumulation to the secondary roots relative to the primary roots under low temperature and low nitrogen. Neither species exhibited shifts in carbon accumulation in response to elevated CO(2). We conclude that both species have the potential to increase belowground biomass substantially in response to rising atmospheric CO(2) concentration, and this response is sensitive to temperature and nitrogen in P. taeda. Both species displayed small shifts in belowground carbon accumulation in response to altered temperature and nitrogen that may have substantial ecosystem consequences over time.  相似文献   

14.
An understanding of root system capacity to acquire nitrogen (N) is critical in assessing the long-term growth impact of rising atmospheric CO2 concentration ([CO2]) on trees and forest ecosystems. We examined the effects of mycorrhizal inoculation and elevated [CO2] on root ammonium (NH4+) and nitrate (NO3-) uptake capacity in sweetgum (Liquidambar styraciflua L.) and loblolly pine (Pinus taeda L.). Mycorrhizal treatments included inoculation of seedlings with the arbuscular mycorrhizal (AM) fungus Glomus intraradices Schenck & Smith in sweetgum and the ectomycorrhizal (EM) fungus Laccaria bicolor (Maire) Orton in loblolly pine. These plants were then equally divided between ambient and elevated [CO2] treatments. After 6 months of treatment, root systems of both species exhibited a greater uptake capacity for NH4+ than for NO3-. In both species, mycorrhizal inoculation significantly increased uptake capacity for NO3-, but not for NH4+. In sweetgum, the mycorrhizal effect on NO3- and NH4+ uptake capacity depended on growth [C02]. Similarly, in loblolly pine, the mycorrhizal effect on NO3- uptake capacity depended on growth [CO2], but the effect on NH4+ uptake capacity did not. Mycorrhizal inoculation significantly enhanced root nitrate reductase activity (NRA) in both species, but elevated [CO2] increased root NRA only in sweetgum. Leaf NRA in sweetgum did not change significantly with mycorrhizal inoculation, but increased in response to [CO2]. Leaf NRA in loblolly pine was unaffected by either treatment. The results indicate that the mycorrhizal effect on specific root N uptake in these species depends on both the form of inorganic N and the mycorrhizal type. However, our data show that in addressing N status of plants under high [CO2], reliable prediction is possible only when information about other root system adjustments (e.g., biomass allocation to fine roots) is simultaneously considered.  相似文献   

15.
Exposure to ozone (O(3)) and changes in soil fertility influence both the metabolism of plant roots and their interaction with rhizosphere organisms. Because one indication of altered root metabolism is a change in belowground respiratory activity, we used specially designed measurement chambers to assess the effects of O(3) and nutrient availability on belowground respiratory activity of potted three-year-old ponderosa pine (Pinus ponderosa Dougl. ex Laws.). Seedlings were exposed to a factorial combination of three O(3) treatments and three fertilization treatments in open-top O(3) exposure chambers. Ozone exposure decreased and high nutrient supply increased total plant dry weight, but root/shoot ratios were not affected. In general, exposure to O(3) increased rates of belowground O(2) uptake and CO(2) release and the respiratory quotient (RQ, CO(2)/O(2)), although seasonal differences were detected. In October, following the second season of O(3) exposure, rates of belowground O(2) uptake and CO(2) release and RQ were increased in trees in the high-O(3) exposure treatment by 22, 73 and 32%, respectively, over values in control trees in charcoal-filtered air. Increasing nutrient supply resulted in decreasing rates of belowground O(2) uptake and CO(2) release but it had little effect on RQ. In the high-nutrient supply treatment, rates of belowground O(2) uptake and CO(2) release were decreased by 38 and 39%, respectively, compared with rates in the low-nutrient supply treatment. At the end of the second growing season, the high-nutrient supply treatment had decreased lateral root total nonstructural carbohydrates by 22% compared with the low-nutrient supply treatment. Nutrient availability altered the belowground respiratory response to O(3), such that the response to O(3) was greatest in the low-nutrient supply treatment. Significant O(3) effects on belowground respiratory activity were apparent before any reduction in total plant growth was found, suggesting that roots and rhizosphere organisms may be early indicators of physiological dysfunction in stressed seedlings.  相似文献   

16.
Longleaf pine (Pinus palustris Mill.) seedlings were exposed to two concentrations of atmospheric CO(2) (365 or 720 micro mol mol(-1)) in combination with two N treatments (40 or 400 kg N ha(-1) year(-1)) and two irrigation treatments (target values of -0.5 or -1.5 MPa xylem pressure potential) in open-top chambers from March 1993 through November 1994. Irrigation treatments were imposed after seedling establishment (i.e., 19 weeks after planting). Seedlings were harvested at 4, 8, 12, and 20 months. Elevated CO(2) increased biomass production only in the high-N treatment, and the relative growth enhancement was greater for the root system than for the shoot system. In water-stressed trees, elevated CO(2) increased root biomass only at the final harvest. Root:shoot ratios were usually increased by both the elevated CO(2) and low-N treatments. In the elevated CO(2) treatment, water-stressed trees had a higher root:shoot ratio than well-watered trees as a result of a drought-induced increase in the proportion of plant biomass in roots. Well-watered seedlings consistently grew larger than water-stressed seedlings only in the high-N treatment. We conclude that available soil N was the controlling resource for the growth response to elevated CO(2) in this study. Although some growth enhancement was observed in water-stressed trees in the elevated CO(2) treatment, this response was contingent on available soil N.  相似文献   

17.
The specific rate of CO(2) efflux (respiration) from roots of intact fruiting calamodin plants (Citrus madurensis Lour.) showed no diel trend, and did not respond significantly to short-term (2 day) changes in shoot irradiance. Mean root respiration rate was about 8.4 nmol CO(2) g(-1) s(-1) at 20 degrees C, and increased with temperature with a Q(10) of about 2. In calamodin plants, the proportion of total root length that was white averaged 6.0 mm m(-1). Respiration of roots of apple plants (Malus domestica Borkh.), planted in spring as rootstocks and grown at high irradiance and N supply, declined from about 5.3 to 2.8 nmol CO(2) g(-1) s(-1) between 46 and 138 days after bud burst. At 50% irradiance, root respiration was reduced more than 25% at 46 and 92 days after bud burst, but was not significantly affected later in the season. Reducing shoot irradiance reduced the proportion of total root length that was white, e.g., from 217 to 146 mm m(-1) at 46 days after bud burst. For plants previously grown at low irradiance, increasing shoot irradiance for 6 days increased the rate of root respiration by 5 to 10%. For plants previously grown at high irradiance, reducing shoot irradiance for 6 days reduced root respiration by about 20% early in the season, but had no significant effect later in the season. For plants grown with low-N supply (5% of the high-N), root respiration was reduced early in the season, but was not significantly affected later. Reducing the N supply increased slightly the proportion of total root length that was white. For plants previously grown with low-N, increasing the N supply for 6 days reduced further the rate of root respiration. For plants previously grown with high-N, reducing the N supply for 6 days did not significantly affect the rate of root respiration. Specific respiration rates of root systems excised from mature trees growing outdoors peaked in June, at about 2.4 nmol CO(2) g(-1) s(-1), and then declined for the remainder of the growing season.  相似文献   

18.
Osmotic adjustment of loblolly pine (Pinus taeda L.) seedlings to fluctuating water supply in elevated CO(2) was investigated. Seedlings were grown in controlled-environment chambers in either 350 or 700 micro l l(-1) CO(2) with weekly watering for four months, after which they were either watered weekly (well-watered treatment) or every two weeks (water-stress treatment) for 59 days. Osmotic adjustment was assessed by pressure-volume analysis of shoots and by analysis of soluble carbohydrates and free amino acids in roots during the last drying cycle. In well-watered seedlings, elevated CO(2) increased the concentration of soluble sugars in roots by 68%. Water stress reduced the soluble sugar concentration in roots of seedling growing in ambient CO(2) to 26% of that in roots of well-watered seedlings. Elevated CO(2) mitigated the water stress-induced decrease in the concentration of soluble sugars in roots. However, this was probably due, in part, to carbohydrate loading during the first four months when all seedlings were grown in the presence of a high water supply, rather than to osmotic adjustment to water stress. Water stress caused a doubling in the concentration of free primary amino acids in roots, whereas elevated CO(2) reduced primary amino acid and nitrogen concentrations to 32 and 74%, respectively, of those in roots of seedlings grown in ambient CO(2). There was no indication of large-scale osmotic adjustment to water stress or that elevated CO(2) enhanced osmotic adjustment in loblolly pine.  相似文献   

19.
Specific chloroplast proteins, gas exchange and dry matter production in oak (Quercus robur L.) seedlings and clonal cherry (Prunus avium L. x pseudocerasus Lind.) plants were measured during 19 months of growth in climate-controlled greenhouses at ambient (350 vpm) or elevated (700 vpm) CO(2). In both species, the elevated CO(2) treatment increased the PPFD saturated-rate of photosynthesis and dry matter production. After two months at elevated CO(2), Prunus plants showed significant increases in leaf (55%) and stem (61%) dry mass but not in root dry mass. However, this initial stimulation was not sustained: treatment differences in net assimilation rate (A) and plant dry mass were less after 10 months of growth than after 2 months of growth, suggesting acclimation of A to elevated CO(2) in Prunus. In contrast, after 10 months of growth at elevated CO(2), leaf dry mass of Quercus increased (130%) along with shoot (356%) and root (219%) dry mass, and A was also twice that of plants grown and measured at ambient CO(2). The amounts of Rubisco and the thylakoid-bound protein cytochrome f were higher in Quercus plants grown for 19 months in elevated CO(2) than in control plants, whereas in Prunus there was less Rubisco in plants grown for 19 months in elevated CO(2) than in control plants. Exposure to elevated CO(2) for 10 months resulted in increased mean leaf area in both species and increased abaxial stomatal density in Quercus. There was no change in leaf epidermal cell size in either species in response to the elevated CO(2) treatment. The lack of acclimation of photosynthesis in oak grown at elevated CO(2) is discussed in relation to the production and allocation of dry matter. We propose that differences in carbohydrate utilization underlie the differing long-term CO(2) responses of the two species.  相似文献   

20.
We studied the effects of elevated concentrations of carbon dioxide ([CO2]) and ozone ([O3]) on growth, biomass allocation and leaf area of field-grown O3-tolerant (Clone 4) and O3-sensitive clones (Clone 80) of European silver birch (Betula pendula Roth) trees during 1999-2001. Seven-year-old trees of Clones 4 and 80 growing outside in open-top chambers were exposed for 3 years to the following treatments: outside control (OC); chamber control (CC); 2 x ambient [CO2] (EC); 2 x ambient [O3] (EO); and 2 x ambient [CO2] + 2 x ambient [O3] (EC+EO). When the results for the two clones were analyzed together, elevated [CO2] increased tree growth and biomass, but had no effect on biomass allocation. Total leaf area increased and leaf abscission was delayed in response to elevated [CO2]. Elevated [O3] decreased dry mass of roots and branches and mean leaf size and induced earlier leaf abscission in the autumn; otherwise, the effects of elevated [O3] were small across the clones. However, there were significant interactions between elevated [CO2] and elevated [O3]. When results for the clones were analyzed separately, stem diameter, volume growth and total biomass of Clone 80 were increased by elevated [CO2] and the stimulatory effects of elevated [CO2] on stem volume growth and total leaf area increased during the 3-year study. Clone 80 was unaffected by elevated [O3]. In Clone 4, elevated [O3] decreased root and branch biomass by 38 and 29%, respectively, whereas this clone showed few responses to elevated [CO2]. Elevated [CO2] significantly increased total leaf area in Clone 80 only, which may partly explain the smaller growth responses to elevated [CO2] of Clone 4 compared with Clone 80. Although we observed responses to elevated [O3], the responses to the EC+EO and EC treatments were similar, indicating that the trees only responded to elevated [O3] under ambient [CO2] conditions, perhaps reflecting a greater quantity of carbohydrates available for detoxification and repair in elevated [CO2].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号