首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 718 毫秒
1.
针对已有基于遥感信息的收获指数估算对籽粒灌浆过程中作物生物量变化和收获指数变化过程考虑不足且估算精度有待进一步提高的现状,该研究以冬小麦为研究对象,基于冠层高光谱数据、地上生物量和动态籽粒产量等数据,在提出灌浆至成熟阶段动态收获指数(Dynamic Harvest Index, DHI)和构建花后累积地上生物量比例动态参数(Dynamic fG, D-fG)基础上,提出了敏感波段中心构建归一化差值光谱指数(Normalized Difference Spectral Index, NDSI)估算D-fG的作物动态收获指数估测技术方法并进行精度验证。在此基础上,通过敏感波段宽度扩展确定了冬小麦D-fG估算敏感波段最大宽度,并实现了最大波宽下D-fG和DHI的遥感获取。结果表明,筛选的5个敏感波段中心λ(366 nm, 489 nm)、λ(443 nm, 495 nm)、λ(449 nm, 643 nm)、λ(579 nm, 856 nm)、λ(715 nm, 849 nm)构建NDSI进行D-fG遥感估算均达到了较高精度水平,均方根误差(Root Mean Square Error, RMSE)在0.036~0.050之间,归一化均方根误差(Normalized Root Mean Square Error, NRMSE)在10.46%~14.59%之间;基于敏感波段中心的DHI估算中,RMSE在0.039~0.053之间,NRMSE在10.50%~14.28%之间;估算D-fG的5个敏感波段中心最大波段宽度分别为30、68、58、20和86 nm,基于最大波宽获取DHI估算结果中,RMSE在0.054~0.055之间,NRMSE在14.38%~14.65%之间。可见,该研究所提收获指数遥感估算方法具有一定的可行性,为获取冬小麦动态收获指数提供了新思路和新方法,也为窄波段高光谱卫星遥感和宽波段多光谱卫星遥感获取大范围作物收获指数空间信息提供一定技术参考。  相似文献   

2.
高光谱反射率与大豆叶面积及地上鲜生物量的相关分析   总被引:40,自引:6,他引:34  
以ASD FieldSpec光谱仪实测了不同生长季大豆的冠层高光谱,同期采集了对应大豆LAI、地上鲜生物量。逐波段分析了冠层光谱反射率、导数光谱与大豆LAI、地上鲜生物量的相关关系;采用单变量线性回归逐波段分析了冠层光谱反射率、导数光谱与大豆LAI、地上鲜生物量确定性系数随波长的变化趋势;并建立了以近红外与可见光波段的冠层光谱反射率的比值植被指数RVI与大豆LAI、地上鲜生物量的高光谱遥感估算模型。结果表明,冠层光谱反射率在350~680 nm、760~1050 nm波谱区与大豆LAI、地上鲜生物量相关性  相似文献   

3.
叶面积指数(LAI,leaf area index)和地上部生物量是评价冬小麦长势的重要农学参数,其实时动态监测对冬小麦的长势诊断、产量预测和管理调控等具有重要意义。该研究通过分析叶面积指数、地上部生物量与冬小麦冠层光谱参数的相关性,筛选出冬小麦长势指标敏感波段及最佳带宽范围;基于敏感光谱波段下图像的彩色因子,构建冬小麦叶面积指数和地上部生物量监测模型。结果表明,叶面积指数、地上部生物量长势指标的敏感波段及最佳带宽范围为(560±6)和(810±10)nm。敏感波段560、810 nm波段下获得的图像特征因子中,RGB颜色空间R810、G560、B810对叶面积指数的拟合效果最好,决定系数高达0.989;HSI颜色空间H810、S810、I560对地上部生物量的拟合效果最好,决定系数为0.937。试验数据检验表明,叶面积指数、地上部生物量监测模型的均方根误差RMSE分别为0.4515、3.3556,相对误差分别为15.7%、15.9%,所构建监测模型的精确度较高。因此,基于敏感光谱波段及相应图像特征构建的监测模型可有效对冬小麦叶面积指数、地上部生物量进行实时、快速、准确监测与诊断。  相似文献   

4.
基于无人机数码影像的冬小麦株高和生物量估算   总被引:4,自引:4,他引:0  
高效、快速地获取作物的株高和生物量信息,对农业生产有重要意义。该文利用2015年4月-6月获得了冬小麦拔节期、挑旗期和开花期的高清数码影像。首先基于无人机高清数码影像生成冬小麦的作物表面模型(crop surface model,CSM),利用CSM提取出冬小麦的株高(Hcsm),然后利用提取的21种数码影像图像指数,构建了拔节期、挑旗期和开花期混合的多生育期生物量估算模型,并进行单生育期和多生育期模型对比分析;最后选择逐步回归(stepwise regression,SWR)、偏最小二乘(partial least square,PLSR)、随机森林(random forest,RF)3种建模方法对多生育期估算模型进行对比,挑选出冬小麦生物量估算的最优模型。结果表明,提取的Hcsm和实测株高(H)具有高度拟合性(R2=0.87,RMSE=6.45 cm,NRMSE=11.48%);与仅用数码影像图像指数构建的生物量估算模型相比(R2=0.721 2,RMSE=0.137 2 kg/m2,NRMSE=26.25%),数码影像图像指数融入H和Hcsm所得模型效果更佳,其中融入Hcsm的模型精度和稳定性(R2=0.819 1,RMSE=0.110 6 kg/m2,NRMSE=21.15%)要优于加入株高H所构建的估算模型(R2=0.794 1,RMSE=0.117 9 kg/m2,NRMSE=22.56%);SWR生物量估算模型(R2=0.7212)效果优于PLSR(R2=0.677 4)和RF(R2=0.657 1)生物量估算模型。该研究为冬小麦生长状况高效、快速监测提供参考。  相似文献   

5.
棉花地上鲜生物量的高光谱估算模型研究   总被引:2,自引:1,他引:2       下载免费PDF全文
通过测试棉花6个生育时期350~2500 nm波段的冠层高光谱数据,采用连续统去除和波段深度归一化的分析方法,计算出棉花反射光谱550~750 nm波段深度参数(Dc);同时,将冠层反射光谱数据与棉花鲜生物量进行逐步回归分析,确定了近红外波段763 nm及红光波段670 nm是棉花鲜生物量的2个敏感波段,并组成了高光谱归一化植被指数(NDVI)和比值植被指数(RVI);基于Dc参数和NDVI、RVI植被指数,建立了棉花地上鲜生物量的5种单变量线性与非线性函数模型,分析表明,RVI的指数函数模型反演的棉花地上鲜生物量的估计值与实测值的相关系数最大(R=0.7289**RMSE=0.8776);5种函数模型方程,经检验均达到1%的极显著水平,其中,以指数函数、幂函数和双曲线函数构建的棉花鲜生物量估算模型精度相对较高;该研究采用高光谱植被参数和指数,实时、无损、动态、定量提取了棉花地上鲜生物量,为分析、模拟、评价、预测棉花群体大小,设计理想棉花群体及棉花高光谱遥感估产提供了科学的依据。  相似文献   

6.
基于卫星光谱尺度反射率的冬小麦生物量估算   总被引:1,自引:1,他引:0  
为探索基于光学卫星遥感数据的冬小麦地上生物量估算方法,本研究通过3年田间试验,获取冬小麦4个关键生育期(拔节期、抽穗期、开花期和灌浆期)和3种施氮水平下的地上生物量以及对应的近地冠层高光谱反射率数据。通过将高光谱数据重采样为具有红边波段的RapidEye、Sentinel-2和WorldView-2卫星波段反射率数据,构建任意两波段归一化植被指数。同时,将卫星波段反射率数据与6种机器学习和深度学习算法相结合,构建冬小麦生物量估算模型。研究结果表明:任意两波段构建的最佳植被指数在冬小麦开花期对生物量的敏感性最强(决定系数R2为0.50~0.56)。在不同施氮水平条件下,高施氮水平增强了植被指数对生物量的敏感性。Sentinel-2波段数据所构建的植被指数优于其他两颗卫星波段数据。对6种机器学习和深度学习算法,总的来说,基于深度神经网络(Deep Neural Networks,DNN)算法所构建的模型要优于其他算法。在单一生育期中,在拔节期(R2为0.69~0.78,归一化均方根误差为26%~31%)和开花期(R2为0.69~0.70,归一化均方根误差为24%~25%)的估算精度最高。Sentinel-2波段数据与DNN算法结合的估算精度最高,在全生育期中预测精度R2为0.70。施氮水平的提高同样增强了DNN模型的估算精度,3颗卫星波段数据在300 kg/hm2施氮条件下的预测精度R2都在0.71以上,均方根误差小于219 g/m2。研究结果揭示了光学卫星遥感数据在不同生育期和施氮条件下估算冬小麦生物量的潜力。  相似文献   

7.
结合SPA和PLS法提高冬小麦冠层全氮高光谱估算的精确度   总被引:3,自引:1,他引:2  
【目的】 冠层高光谱全波段信息可以在小麦拔节期快速无损地估算叶片的氮含量。本研究结合连续投影算法 (SPA) 和偏最小二乘 (PLS) 技术,筛选了冬小麦拔节期冠层光谱对叶片氮含量的敏感特征波段,以期为冬小麦关键生育期氮素含量的遥感估算提供理论依据和技术支持。 【方法】 以陕西关中地区2015—2016年冬小麦小区试验为基础,基于连续投影算法 (SPA) 提取冬小麦叶片全氮含量的冠层光谱敏感波段,并结合偏最小二乘 (PLS) 回归法建立基于敏感特征波段的冬小麦拔节期叶片氮含量估算模型。 【结果】 SPA算法从冬小麦338~2510 nm的冠层光谱中优选出了1985 nm、2474 nm、1751 nm、1916 nm、2507 nm、1955 nm、2465 nm和344 nm共计8个叶片全氮含量的敏感特征波段,波段数目下降了98.9%,有效降低了光谱信息的冗余;基于敏感特征波段构建的叶片氮含量偏最小二乘回归模型的决定系数和均方根误差分别为0.82和0.28,模型验证方程的决定系数和均方根误差分别为0.84和0.21,模型的相对预测偏差大于2,具有较高的精度和良好的预测能力。 【结论】 与常用植被指数的叶片氮含量估算模型相比,连续投影算法 (SPA) 结合偏最小二乘 (PLS) 方法的叶片氮含量估算精度更高,稳定性更强,可以作为冬小麦拔节期叶片氮含量的高光谱估算方法。   相似文献   

8.
通过构建基于SPOT\|5光谱参数的玉米成熟期地上生物量、 碳氮累积量的遥感估算模型,为耕地生产力估测、 农田生态保护和碳氮循环研究提供依据。利用皮尔逊相关分析法分析玉米成熟期地上生物量、 碳氮累积量与同期14个预选光谱参数之间的相关性,筛选出适宜的光谱参数;通过回归分析,比较得出最优遥感估算模型。在构建的14个光谱参数中,土壤校正植被指数(SAVI)与玉米成熟期地上生物量和碳累积量均呈显著的正相关,相关系数分别达到0.831和0.846,因此以SAVI为底数的幂函数模型估算生物量和碳累积量的拟合效果最好,决定系数(R2)分别达到0.698和 0.722,在0.01水平下的F检验均呈显著性;与氮累积量相关性最强的是由近红外波段和绿波段构建的比值指数(R3/R1),相关系数达到0.844;从而以R3/R1为自变量的线性模型对氮累积量拟合效果最佳,决定系数(R2)达到0.713,在0.01水平下的F检验呈显著性。因此,利用SPOT\|5的土壤校正植被指数(SAVI)、 近红外波段和绿波段的比值指数(R3/R1)构建的遥感模型来估算玉米成熟期生物量、 碳氮累积量是可行的。  相似文献   

9.
为了快速、无损地监测花生冠层LAI,获取其长势信息,于2014年通过大田试验选用5个品种花生作为供试品种,使用ASD FieldSpec HandHeld便携式野外光谱仪采集花生不同生育时期的冠层高光谱数据,同时使用SUNSCAN冠层分析系统实测花生冠层叶面积指数(LAI),并应用光谱微分技术和统计分析技术,分别分析4种光谱形式和6种植被指数与LAI的相关关系,建立估算模型。结果表明:高光谱反射率及其光谱变换形式中最优波段与LAI的相关性均极显著,其中一阶微分光谱ρ'在793nm波段处构建的估测方程对花生冠层LAI的估算效果最好(r=-0.5391,P<0.01,RE=0.2497),其模拟值与实测值的拟合度达极显著水平(R=0.4435,P<0.01);一阶微分光谱ρ'在734nm波段处LAI的实测值与模拟值的拟合效果最好(R=0.5485,P<0.01)。6种植被指数所选的最优组合波段与LAI均通过了0.01水平的显著性检验 (r≥0.5731,P<0.01),其中归一化植被指数NDVI[760,976]对花生冠层LAI的估算效果最好(r=-0.6421,P<0.01,RE=0.2167),模拟值与实测值的拟合度达极显著水平(R=0.6731,P<0.01),且优于ρ'对LAI的估算效果;LAI实测值与模拟值拟合效果最好的为DVI[760,976] (R=0.6893,P<0.01)。研究结果表明一阶导数光谱和植被指数对花生冠层LAI的估算精度均较高,植被指数的估算精度尤高,研究同时进一步证实了导数光谱和植被指数能较好地消除土壤、大气等环境背景信息的影响。  相似文献   

10.
基于根系加权土壤水分有效性的冬小麦水分生产函数   总被引:2,自引:2,他引:0  
为了准确评估作物水分亏缺程度及其敏感性动态对作物产量的影响,该研究结合基于根系加权土壤水分有效性的植物水分亏缺指数(Plant Water Deficit Index,PWDI)与基于归一化热单元指数的S型累积水分敏感指数,建立了3种不同形式的作物水分生产函数(Crop Water Production Function,CWPF),即Blank加法模型(PWDI-B)、Jensen(PWDI-J)和Rao(PWDI-R)乘法模型。通过2 a冬小麦栽培田间蒸渗仪试验(北京昌平)和1 a冬小麦栽培田间滴灌试验(山东黄河三角洲),优化了土壤水分胁迫修正系数中参数,进而对PWDI估算精度及CWPF产量估算效果进行检验与评价。结果表明:蒸渗仪试验基于根系加权估算的PWDI与实测值吻合良好,决定系数R2为0.78,标准化均方根误差(Normalized Root Mean Squared Error,NRMSE)为0.16;滴灌试验PWDI均值与作物株高(r=?0.95)、生物量及产量(r≤?0.79)均具有较好的相关性,表明根系加权PWDI能较准确地反映不同试验条件下冬小麦的水分亏缺程度及其对作物生长的影响;此外,无论是蒸渗仪试验还是滴灌试验,所建的3个CWPF对冬小麦产量的估算精度均在可接受范围内(R2≥0.78,NRMSE≤0.11),且PWDI-R估算精度依次高于PWDI-J、PWDI-B、以及线性回归模型(即PWDI均值与产量的线性拟合模型)。因此,根系加权PWDI与S型水分敏感指数累积函数融合可用于合理构建冬小麦水分生产函数,其中PWDI-R乘法模型可优先推荐用于研究区冬小麦产量估算和灌溉制度优化,从而为当地冬小麦田间水分管理提供理论依据。  相似文献   

11.
基于综合指标的冬小麦长势无人机遥感监测   总被引:10,自引:7,他引:3  
作物长势监测可以及时获取作物的长势信息,该文尝试建立新型长势指标,监测小麦总体长势情况。将反映小麦长势的叶面积指数(leaf area index,LAI)、叶片叶绿素含量、植株氮含量、植株水分含量和生物量5个指标按照均等权重综合成一个指标,综合长势指标(comprehensive growth index,CGI)。利用450~882 nm范围内单波段和任意两个波段构建归一化光谱指数(normalized difference spectral index,NDSI),比值光谱指数(ratio spectral index,RSI)和简单光谱指数(simple spectral index,SSI),计算CGI与光谱指数的相关性,筛选出相关性好的光谱指数,结合偏最小二乘回归(partial least squares regression,PLSR)建立反演模型。以CGI为指标,运用无人机高光谱影像对2015年小麦多生育期的长势监测。结果表明:1)冬小麦各生育期,总体上CGI与光谱指数的决定系数R~2均好于各项单独指标与相应光谱指数的R~2。仅孕穗期CGI和RSI(754,694)的R~2比叶绿素和RSI(486,518)的R~2低,开花期的CGI和R570的R~2比生物量和R834的R~2低以及灌浆期CGI和SSI(582,498)的R~2比植株含水量和SSI(790,862)的R~2低。2)拔节期,孕穗期,开花期,灌浆期和全生育期PLSR模型的建模R~2分别为0.70,0.72,0.78,0.78和0.61。拔节期,孕穗期和开花期的无人机CGI影像验证模型的均方根误差RMSE(root mean square error)分别为0.050,0.032和0.047。CGI与相应光谱指数的R~2高于单独各项指标与相应光谱指数的R~2,光谱指数能够很好反映CGI包含的信息。无人机高光谱影像反演CGI精度较高,能够判断出小麦总体的长势差异,可为监测小麦长势提供参考。  相似文献   

12.
作物产量准确估算在农业生产中具有重要意义。该文利用无人机获取冬小麦挑旗期、开花期和灌浆期数码影像和高光谱数据,并实测产量。首先利用无人机数码影像和高光谱数据分别提取数码影像指数和光谱参数,然后将数码影像指数和光谱参数与冬小麦产量作相关性分析,挑选出相关性较好的9个指数和参数,最后以选取的数码影像指数和光谱参数为建模因子,通过MLR(multiple linear regression,MLR)和RF(random forest,RF)对产量进行估算。结果表明:数码影像指数和光谱参数与实测产量均有很强的相关性。利用数码影像指数和光谱参数通过MLR和RF构建的产量估算模型均在灌浆期表现精度最高,在灌浆期,数码影像指数和光谱参数构建的MLR模型R~2和NRMSE分别为0.71、12.79%,0.77、10.32%。对模型对比分析可知,以光谱参数为因子的MLR模型精度较高,更适合用于估算冬小麦产量。利用无人机遥感数据,通过光谱参数建立的MLR模型能够快速、方便地对作物进行产量预测,并可以根据不同生育期的产量估算模型有效地对作物进行监测。  相似文献   

13.
基于多源无人机影像特征融合的冬小麦LAI估算   总被引:3,自引:3,他引:0  
为探讨无人机多源影像特征融合估测作物叶面积指数的能力,该研究以冬小麦为研究对象,利用多旋翼无人机搭载高清数码相机和UHD185成像光谱仪获取研究区冬小麦关键生育期(扬花期、灌浆期)的可见光和高光谱影像。综合考虑可见光、高光谱影像特征与冬小麦叶面积指数的相关性及影像特征重要性进行特征筛选,然后,以可见光植被指数、纹理特征、可见光植被指数+纹理特征、高光谱波段、高光谱植被指数及高光谱波段+植被指数分别作为输入变量构建多元线性回归、支持向量回归和随机森林回归的叶面积指数估测模型(单传感器数据源);以优选的两种影像特征结合支持向量回归、随机森林回归构建叶面积指数估测模型(两种传感器数据源),比较分析单源与多源影像特征监测冬小麦叶面积指数的性能。进一步地,考虑到小区土壤空间异质性会影响冬小麦叶面积指数估测结果,该研究探讨了不同影像采样面积下基于单源遥感数据构建的小麦叶面积指数估测模型精度。研究结果表明:在扬花期和灌浆期,使用两种影像优选特征构建的随机森林回归估测模型精度最佳,验证集决定系数分别为0.733和0.929,均方根误差为0.193和0.118。可见光影像采样面积分别为30%和50%,高光谱影像采样面积为65%时,基于单源影像特征构建的随机森林回归估测模型在扬花期和灌浆期效果最好。综上,该研究结果可为无人机遥感监测作物生理参数提供有价值的依据和参考。  相似文献   

14.
近年来,高光谱遥感数据广泛应用于农作物叶面积指数(LAI)反演。与常用的多光谱遥感数据相比,高光谱数据能否提高农作物LAI反演的精度和稳定性还存在争议。针对这一问题,该研究利用实测冬小麦冠层高光谱反射率数据,构造了不同光谱分辨率和波段组合的5种光谱数据。基于ACRM(a two-layer canopy reflectance model)模型、2套参数化方案及上述5种光谱数据,对冬小麦LAI进行反演,分析光谱分辨率、高光谱数据波段选择、模型参数不确定性3方面因素对LAI反演精度与稳定性的影响。研究结果表明:当波段选择适宜、模型参数不确定性较小且光谱数据分辨率较高时,LAI反演精度与稳定性更高,提高光谱分辨率对LAI反演精度的改进作用随光谱分辨率的升高而降低;反之,当高光谱数据波段选择不当或者模型参数不确定性较大时,提高光谱数据的分辨率并未提高LAI反演精度。该研究解释了"高光谱遥感数据能否提高植被参数反演精度"问题,为进一步发挥高光谱数据在农作物LAI反演中的潜力提供了科学参考。  相似文献   

15.
基于随机森林算法的冬小麦生物量遥感估算模型对比   总被引:13,自引:8,他引:5  
为了寻求高效的冬小麦生物量估算方法,该研究获取了2014年陕西省杨凌区拔节期、抽穗期和灌浆期的冬小麦生物量和对应的RADARSAT-2全极化雷达、GF1-WFV多光谱数据,并利用随机森林算法(random forest,RF)将光谱、雷达后向散射、光学植被指数和雷达植被指数结合进行冬小麦生物量回归建模。将相关系数分析(correlation coefficient, r)、袋外数据(out-of-bag data,OOB)重要性和灰色关联分析(grey relational analysis, GRA)与随机森林算法(RF)进行整合,构建了3种冬小麦生物量估算模型:r-RF、OOB-RF和GRA-RF,并分别利用3种估算模型对冬小麦生物量进行了估算。结果表明:r-RF、OOB-RF和GRA-RF3种模型分别采用3、4、10组数据时,验证决定系数分别为0.70、0.70和0.65,平均绝对误差分别为0.162、0.164和0.172 kg/m2,均方根误差分别为0.218、0.221和0.236 kg/m2,r-RF和OOB-RF比GRA-RF对冬小麦生物量有更好而的预测能力。研究结果证实了随机森林算法对冬小麦生物量进行遥感估算的潜力。  相似文献   

16.
春玉米磷素营养的光谱响应及诊断   总被引:6,自引:2,他引:6  
通过盆栽试验监测不同磷营养水平春玉米典型生育期叶片光谱变化,并对叶片光谱反射率与叶片磷含量做了相关分析。结果表明,春玉米大喇叭口期是磷素营养的光谱响应敏感期,3507~30.nm和14201~800.nm是磷素营养的光谱敏感波段。该生育期构建的单波段高光谱变量、窄波段光谱变量和宽波段光谱变量与叶片磷含量都存在显著或极显著的回归关系;窄波段光谱变量比值指数R6725/6256和R61745/15856与叶片磷含量的回归关系达到了极显著水平,R625/555达到显著水平。可见光波段光谱变量与磷含量的回归关系优于近红外波段光谱变量与磷含量的回归关系,表明可见光波段叶片光谱反射率可能更适合春玉米磷营养状况的评价。不同波段宽度的光谱变量分析表明,在敏感波段范围内,801~00.nm波段平均的叶片宽波段光谱反射率没有降低对叶片磷含量的估算精度。  相似文献   

17.
为研究不同氮磷水平下冬小麦籽粒蛋白质含量高光谱遥感监测模型,提高模型精度,本文通过连续5年定位试验研究不同氮磷耦合水平下,不同生育时期冬小麦冠层光谱反射率、植株氮含量以及成熟期籽粒蛋白质含量,以相关、回归等统计分析方法,建立基于不同生育时期植株氮含量的籽粒蛋白质含量监测模型;然后通过灰色关联度分析,筛选植株氮含量的最佳植被指数,以偏最小二乘回归法,建立基于植被指数的植株氮含量监测模型;最后以植株氮含量为链接点,按照"植被指数—植株氮含量—籽粒蛋白质含量"之间的联系,建立融合植被指数与植株氮含量的冬小麦成熟期籽粒蛋白质含量监测模型。结果表明:在拔节期、孕穗期、抽穗期、灌浆期、成熟期基于植株氮含量建立的成熟期籽粒蛋白质含量监测模型,具有较好的监测精度;拔节期、孕穗期、抽穗期、灌浆期、成熟期分别基于修正叶绿素吸收反射率指数(MCARI_1)、归一化差值叶绿素指数(NDCI)、修正归一化差异指数(mNDVI)、MCARI_1、NDCI植被指数建立植株氮含量监测模型,监测精度(R~2)分别为0.826、0.854、0.867、0.859和0.819;以植株氮含量为链接点,通过"植被指数—植株氮含量—籽粒蛋白质含量"的间接联系,建立基于拔节期、孕穗期、抽穗期、灌浆期、成熟期植被指数且融合植株氮含量的籽粒蛋白质含量监测模型,R~2分别为0.935、0.972、0.990、0.979和0.936;以独立数据对模型进行验证,模型预测值与实测值间相对误差(RE)分别为11.26%、10.74%、8.41%、10.25%和11.36%,均方根误差(RMSE)分别为2.221 g×kg~(-1)、1.825 g×kg~(-1)、1.214 g×kg~(-1)、1.767 g×kg~(-1)和2.137 g×kg~(-1)。说明基于不同生育时期植被指数链接植株氮含量可以对成熟期籽粒蛋白质含量进行有效监测,且模型具有较好的年度间重演性和品种间适应性。  相似文献   

18.
为了能够根据遥感数据类型实现指数的优化选择进而提高叶面积指数的反演精度,该研究分析了不同波段宽度(5~80 nm)对植被指数反演叶面积指数精度的影响。通过比较反演模型的决定系数均值,筛选出14个模型精度较高的植被指数,并探讨了不同波段宽度的选取对各指数叶面积指数反演精度的影响。结果表明,波段宽度对不同植被指数的影响可分为3类:1)OSAVI2等指数波宽越窄,反演精度越高,更适合应用于高光谱遥感数据;2)SR[800,680]等指数随着波段宽度的增加,反演精度先升后降,最适波宽为35 nm,适用于中等光谱分辨率的遥感数据;3)SR[675,700]等指数随着波段宽度的增大,反演精度不断提高,在多光谱数据中有更好的应用潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号