首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Danofloxacin, a veterinary fluoroquinolone antimicrobial drug, is actively secreted into milk by an as yet unknown mechanism. One of the main determinants of active drug secretion into milk is the transporter (BCRP/ABCG2). The main purpose was to determine whether danofloxacin is an in vitro substrate for Bcrp1/BCRP and to assess its involvement in danofloxacin secretion into milk. In addition, the role of potential drug-drug interactions in this process was assessed using ivermectin. Danofloxacin was transported in vitro by Bcrp1/BCRP, and ivermectin efficiently blocked this transport. Experiments with Bcrp1(-/-) mice showed no evidence of the involvement of Bcrp1 in plasma pharmacokinetics of danofloxacin. However, the milk concentration and milk-to-plasma ratio of danofloxacin were almost twofold higher in wild-type compared with Bcrp1(-/-) mice. The in vivo interaction with ivermectin was studied in sheep after co-administration of danofloxacin (1.25 mg/kg, i.m.) and ivermectin (0.2 mg/kg, s.c.). Ivermectin had no significant effect on the plasma levels of danofloxacin but significantly decreased danofloxacin concentrations in milk by almost 40%. Concomitant administration of multiple drugs, often used in veterinary therapy, may not only affect their pharmacological activity but also their secretion into milk, because of potential drug-drug interactions mediated by BCRP.  相似文献   

2.
The pharmacokinetics of danofloxacin was studied following intravenous (i.v.), intramuscular (i.m.) and subcutaneous (s.c.) administration of 6 mg/kg to healthy rabbits. Danofloxacin concentration were determined by high-performance liquid chromatography assay with fluorescence detection. Minimal inhibitory concentrations (MICs) assay of danofloxacin against 30 strains of Staphylococcus aureus from several European countries was performed in order to compute pharmacodynamic surrogate markers. The danofloxacin plasma concentration versus time data after i.v. administration could best be described by a two-compartment open model. The disposition of i.m. and subcutaneously administered danofloxacin was best described by a one-compartment model. The terminal half-life for i.v., i.m. and s.c. routes was 4.88, 6.70 and 8.20 h, respectively. Clearance value after i.v. dosing was 0.76 L/kg.h. After i.m. administration, the absolute bioavailability was mean (+/-SD) 102.34 +/- 5.17% and the Cmax was 1.87 mg/L. After s.c. administration, the absolute bioavailability was mean (+/-SD) 96.44 +/- 5.95% and the Cmax was 1.79 mg/L. Danofloxacin shows a favourable pharmacokinetics profile in rabbits reflected by parameters such as a long half-life and a high bioavailability. However, in consideration of the low AUC/MIC indices obtained, its use by i.m. and s.c. route against the S. aureus strains assayed in this study cannot be recommended given the risk for selection of first mutant subpopulations.  相似文献   

3.
REASONS FOR PERFORMING STUDY: Danofloxacin is a fluoroquinolone developed for veterinary medicine showing an excellent activity. However, danofloxacin pharmacokinetics profile have not been studied in horses previously. OBJECTIVE: To study the pharmacokinetics following i.v., i.m. and intragastric (i.g.) administration of 1.25 mg/kg bwt danofloxacin to 6 healthy horses. METHODS: A cross-over design was used in 3 phases (2 x 2 x 2), with 2 washout periods of 15 days (n = 6). Danofloxacin (18%) was administered by i.v. and i.m. routes at single doses of 1.25 mg/kg bwt. For i.g. administration an oral solution was prepared and administered via nasogastric tube. Danofloxacin concentrations were determined by HPLC assay with fluorescence detection. Tolerability at the the site of i.m. injection was monitored by creatine kinase (CK) activity. RESULTS: Danofloxacin plasma concentration vs. time data after i.v. and i.g. administration could best be described by a 2-compartment open model. The disposition of i.m. administered danofloxacin was best described by a one-compartment model. The terminal half-lives for i.v., i.m. and i.g. routes were 6.31, 5.36 and 4.74 h, respectively. Clearance value after i.v. dosing was 0.34 l/kg bwt/h. After i.m. administration, absolute bioavailability was mean +/- s.d. 88.48 +/- 11.10% and Cmax was 0.35 +/- 0.05 mg/l. After i.g. administration, absolute bioavailability was 22.36 +/- 6.84% and Cmax 0.21 +/- 0.07 mg/l. CK activity following i.m. dosing increased 3-fold over pre-injection levels 12 h after dosing and subsequently approached (but did not reach) normal values at 72 h post dose. CONCLUSIONS: Systemic danofloxacin exposure achieved in horses following i.m. administration was consistent with the predicted blood levels needed for a positive therapeutic outcome for many equine infections. Conversely, danofloxacin utility by the i.g. route was limited by low bioavailability. Tolerability associated with i.m. administration was high. POTENTIAL RELEVANCE: Pharmacokinetics, blood levels and good tolerability of i.v. and i.m. administration of danofloxacin in horses indicates that it is likely to be effective for treating sensitive bacterial infections.  相似文献   

4.
The plasma pharmacokinetics of danofloxacin and enrofloxacin in broiler chickens was investigated following single intravenous (i.v.) or oral administration (p.o.) and the steady-state plasma and tissue concentrations of both drugs were investigated after continuous administration via the drinking water. The following dosages approved for the treatment of chickens were used: danofloxacin 5 mg/kg and enrofloxacin 10 mg/kg of body weight. Concentrations of danofloxacin and enrofloxacin including its metabolite ciprofloxacin were determined in plasma and eight tissues by specific and sensitive high performance liquid chromatography methods. Pharmacokinetic parameter values for both application routes calculated by noncompartmental methods were similar for danofloxacin compared to enrofloxacin with respect to elimination half-life (t1/2: approximately 6-7 h), mean residence time (MRT; 6-9 h) and mean absorption time (MAT; 1.44 vs. 1.20 h). However, values were twofold higher for body clearance (ClB; 24 vs. 10 mL/min. kg) and volume of distribution at steady state (VdSS; 10 vs. 4 L/kg). Maximum plasma concentration (Cmax) after oral administration was 0.5 and 1.9 micrograms/mL for danofloxacin and enrofloxacin, respectively, occurring at 1.5 h for both drugs. Bioavailability (F) was high: 99% for danofloxacin and 89% for enrofloxacin. Steady-state plasma concentrations (mean +/- SD) following administration via the drinking water were fourfold higher for enrofloxacin (0.52 +/- 0.16 microgram/mL) compared to danofloxacin (0.12 +/- 0.01 microgram/mL). The steady-state AUC0-24 h values of 12.48 and 2.88 micrograms.h/mL, respectively, derived from these plasma concentrations are comparable with corresponding area under the plasma concentration-time curve (AUC) values after single oral administration. For both drugs, tissue concentrations markedly exceeded plasma concentrations, e.g. in the target lung, tissue concentrations of 0.31 +/- 0.07 microgram/g for danofloxacin and 0.88 +/- 0.24 microgram/g for enrofloxacin were detected. Taking into account the similar in vitro activity of danofloxacin and enrofloxacin against important pathogens in chickens, a higher therapeutic efficacy of water medication for enrofloxacin compared to danofloxacin can be expected when given at the approved dosages.  相似文献   

5.
The pharmacokinetic aspects of diminazene aceturate were studied in lactating goats and sheep after single intravenous and intramuscular administrations of 3.5 mg/kg b.wt. Plasma and milk concentrations were determined by use of reversed phase high-performance liquid chromatography (HPLC) after ion-pair extraction. Following intravenous injection, the disposition of diminazene in goats and sheep conformed to a two-compartment model with rapid distribution and slower elimination phases. Values of (t1/2 beta) were obtained indicating a slower final disappearance of the drug from plasma of sheep (21.17 h) than in goats (16.39 h). Diminazene concentrations were maintained for more than 4 days in the plasma of goats and sheep. In both species of animals, diminazene was rapidly absorbed following intramuscular administration of 3.5 mg/kg b.wt. The peak plasma concentrations (Cmax) were 7.00 and 8.11 micrograms/ml and were attained at (Tmax) 0.92 and 1.12 hours in goats and sheep, respectively. The elimination half-life (t1/2el) of diminazene after intramuscular administration was shorter in goats (16.54 h) than in sheep (18.80 h). Systemic bioavailabilities (F%) of diminazene after intramuscular administration were 94.94% and 82.64% in goats and sheep, respectively. Diminazene could be detected in milk of goats and sheep within 10 min post-injection. Milk concentrations of the drug were lower in goats than in sheep and were detected for 5 and 6 days following both routes of administration, respectively.  相似文献   

6.
The pharmacokinetics of the novel cephalosporin cefovecin were investigated in a series of in vivo, ex vivo and in vitro studies following administration to adult cats at 8 mg/kg bodyweight. Bioavailability and pharmacokinetic parameters were determined in a cross-over study after intravenous (i.v.) and subcutaneous (s.c.) injections. [14C]cefovecin was used to evaluate excretion for 21 days after s.c. administration. Protein binding was determined in vitro in feline plasma and ex vivo in transudate from cats surgically implanted with tissue chambers. After s.c. administration, cefovecin was characterized by rapid absorption with mean peak plasma concentrations of 141+/-12 microg/mL being achieved within 2 h of s.c. injection with full bioavailability (99%). The mean elimination half-life was 166+/-18 h. After i.v. administration, volume of distribution was 0.09+/-0.01 L/kg and mean plasma clearance was 0.35+/-0.04 mL/h/kg. Approximately 50% of the administered radiolabelled dose was eliminated over the 21-day postdose period via urinary excretion and up to approximately 25% in faeces. In vitro and ex vivo plasma protein binding ranged from 99.8% to 99.5% over the plasma concentration range 10-100 microg/mL. Ex vivo protein binding in transudate was as low as 90.7%. From 8 h postdose, concentrations of unbound (free) cefovecin in transudate were consistently higher than in plasma, with mean unbound cefovecin concentrations being maintained above 0.06 microg/mL (MIC90 of Pasteurella multocida) in transudate for at least 14 days postdose. The slow elimination and long-lasting free concentrations in extracellular fluid are desirable pharmacokinetic attributes for an antimicrobial with a 14-day dosing interval.  相似文献   

7.
Danofloxacin is a new fluoroquinolone antibacterial, developed specifically for veterinary use. Its in vitro activity and pharmacokinetic properties have been investigated to assess its potential for use in the therapy of respiratory disease in cattle. The minimum inhibitory concentration of danofloxacin against 90% (MIC90) of contemporary European and North American field isolates of Pasteurella haemolytica, Pasteurella multocida and Haemophilus somnus, the most important bacterial respiratory pathogens of cattle, was 0.125 micrograms/ml. The plasma and lung kinetics of danofloxacin following parenteral administration of 1.25 mg/kg were evaluated in two studies. Danofloxacin was rapidly absorbed following intramuscular and subcutaneous injection and bioavailability was virtually complete (101% and 94% respectively). Plasma concentration profiles of danofloxacin were similar for intramuscular and subcutaneous routes with no significant differences in the area under the plasma concentration-time curves (AUC) following one, three or five consecutive daily doses, although slightly higher peak plasma concentrations were achieved by the intramuscular route. Following intramuscular administration, the mean peak lung concentration of danofloxacin was 4.1 times greater than that of plasma. Similarly, the AUC for lung tissue was 3.7 times greater than that for plasma. These data indicate that danofloxacin should be particularly appropriate for the therapy of bacterial respiratory disease in cattle.  相似文献   

8.
The single-dose disposition kinetics of difloxacin were determined in clinically normal lactating goats (n = 6) after intravenous (i.v.), subcutaneous (s.c.) and intramuscular (i.m.) administration of 5 mg/kg. Difloxacin concentrations were determined by high performance liquid chromatography with fluorescence detection. The concentration-time data were analysed by compartmental and noncompartmental kinetic methods. Steady-state volume of distribution (V(ss)) and total body clearance (Cl) of difloxacin after i.v. administration were estimated to be 1.16 +/- 0.26 L/kg and 0.32 +/- 0.05 L/h x kg respectively. Following s.c. and i.m. administration difloxacin achieved maximum plasma concentrations of 1.33 +/- 0.25 and 1.97 +/- 0.40 mg/L at 3.37 +/- 0.36 and 1.79 +/- 1.14 h respectively. The absolute bioavailabilities after s.c. and i.m. routes were 90.16 +/- 11.99% and 106.79 +/- 13.95% respectively. Difloxacin penetration from the blood into the milk was extensive and rapid, and the drug was detected for 36 h after i.v. and s.c. dosing, and for 72 h after i.m. administration.  相似文献   

9.
The pharmacokinetics of moxifloxacin was studied following intravenous (IV) and subcutaneous (SC) administration of 5 mg/kg to healthy lactating goats (n = 6). Moxifloxacin concentrations were determined by high performance liquid chromatography assay with fluorescence detection. The moxifloxacin plasma concentration versus time data after IV administration could best be described by a two compartment open model. The disposition of SC administered moxifloxacin was best described by a one-compartment model. The plasma moxifloxacin clearance (Cl) for the IV route was 0.43 +/- 0.02 L/kg (mean +/- SE). The steady-state volume of distribution (Vss) was 0.79 +/- 0.08 L/kg. The terminal half-life (t1/2lambdaz) was 1.94 +/- 0.41 and 2.98 +/- 0.48 h after IV and SC administration, respectively. The absolute bioavailability was 96.87 +/- 10.27% after SC administration. Moxifloxacin penetration from blood to milk was quick for both routes of administration and the high AUCmilk/AUCplasma and Cmax-milk/Cmax-plasma ratios reached indicated a wide penetration of moxifloxacin into the milk. From these data, it appears that a 5 mg/kg SC dose of moxifloxacin would be effective in lactating goats against bacterial isolates with MIC < or = 0.20 microg/mL in plasma and MIC < or = 0.40 microg/mL in milk.  相似文献   

10.
OBJECTIVE: To determine the pharmacokinetics and pharmacodynamics of danofloxacin in goats and the concentrations required to induce bacteriostasis, bactericidal activity, and bacterial elimination. ANIMALS: 6 healthy British Saanen goats. PROCEDURE: Danofloxacin (1.25 mg/kg of body weight) was administered i.v. and i.m. in a cross-over design with 14 days between treatments. A tissue cage was used for evaluation of drug distribution into transudate and exudate. The ex vivo antibacterial activity of danofloxacin in serum, exudate, and transudate against a caprine isolate of Mannheimia haemolytica was determined. Pharmacokinetic and pharmacodynamic data were integrated to determine the ratio of the area under the concentration versus time curve to the minimum inhibitory concentration of danofloxacin (AUIC). RESULTS: Elimination half-lives of danofloxacin in serum were 4.67 and 4.41 hours after i.v. and i.m. administration, respectively. Volume of distribution was high after administration via either route, and bioavailability was 100% after i.m. administration. Rate of penetration into exudate and transudate was slow, but elimination half-lives from both fluids were approximately twice that from serum. Drug concentrations in serum, exudate, and transudate for 9 to 12 hours after administration induced marked ex vivo antibacterial activity. For serum, AUIC24h values required for bacteriostasis, bactericidal effect, and bacterial elimination were 22.6, 29.6, and 52.4, respectively. Similar values were obtained for exudate and transudate. CONCLUSIONS AND CLINICAL RELEVANCE: Integration of danofloxacin pharmacokinetic and pharmacodynamic data obtained in goats may provide a new approach on which to base recommendations for therapeutic dosages.  相似文献   

11.
OBJECTIVE: To compare concentrations of danofloxacin, enrofloxacin, and ciprofloxacin in plasma and respiratory tissues of calves treated after challenge with Mannheimia haemolytica. ANIMALS: 75 calves. PROCEDURE: 24 hours after challenge with M. haemolytica, 72 calves with clinical signs of respiratory tract disease were randomly assigned to 1 of 12 equal treatment groups.Three nonchallenged, nontreated calves formed a control group. Challenged calves were treated with danofloxacin (6 and 8 mg/kg, SC) and enrofloxacin (8 mg/kg, SC) once. At 1, 2, 6, and 12 hours after treatment, 6 calves from each treatment group were euthanatized. Antimicrobial drug concentrations were assayed in various specimens. Peak plasma concentration (Cmax)-to-minimum inhibitory concentration (MIC; Cmax-to-MIC) ratios and the area under the concentration versus time curve over a 12-hour period-to-MIC ratios (AUC(12h)-to-MIC) were calculat-ed. RESULTS: Danofloxacin and enrofloxacin had MICs of 0.03 microg/mL for the M. haemolytica challenge isolate. Danofloxacin administered at doses of 6 and 8 mg/kg resulted in numerically higher geometric mean concentrations of danofloxacin in plasma and all respiratory tissues than geometric mean concentrations of enrofloxacin after treatment with enrofloxacin. Geometric mean concentrations of enrofloxacin were numerically higher than geometric mean concentrations of ciprofloxacin metabolite in plasma and almost all respiratory tissues. Danofloxacin and enrofloxacin achieved Cmax-to-MIC ratios >10 and AUC(12h)-to-MIC ratios >125 hours. CONCLUSIONS AND CLINICAL RELEVANCE: When used to treat pneumonic pasteurellosis in calves, danofloxacin and enrofloxacin can be expected to deliver concentration-dependent bactericidal activity against M. haemolytica, the bacteria most commonly associated with bovine respiratory tract disease.  相似文献   

12.
OBJECTIVE: To evaluate disposition of fentanyl in goats after IV and transdermal administration. ANIMALS: 8 healthy 2-year-old goats weighing 31.8 to 53.6 kg (mean+/-SD, 40.4+/-7.5 kg). PROCEDURE: Each goat was given 2 treatments consisting of fentanyl administered IV (2.5 microg/kg of body weight) and via a transdermal patch (50 microg/h). There was a 2-month interval between treatments. Blood samples were collected at specified times and analyzed in duplicate to determine plasma fentanyl concentrations. Pharmacokinetic values were calculated, using a computerized modeling program. RESULTS: Administration of fentanyl was tolerated by all goats. Intravenous administration of fentanyl resulted in a transitory increase in rectal temperature that was not clinically important. Terminal elimination half-life after IV administration was 1.20+/-0.78 h, volume of distribution at steady state was 1.51+/-0.39 L/kg, and systemic clearance was 2.09+/-0.62 L/kg/h. Transdermal administration of fentanyl resulted in variable plasma concentrations, with peak plasma concentrations ranging from 1.12 to 16.69 ng/ml (mean+/-SD, 6.99+/-6.03 ng/ml) and time to peak concentration ranging from 8 to 18 hours (mean+/-SD, 13+/-4.5 hours). After removal of the transdermal patch, mean+/-SD terminal elimination half-life was 5.34+/-5.34 hours. CONCLUSIONS AND CLINICAL RELEVANCE: Intravenous administration of fentanyl (2.5 microg/kg) in goats results in a relatively short half-life that will limit its use for management of pain. Transdermal administration of fentanyl (50 microg/h) in goats results in variable plasma concentrations that may exceed those anticipated on the basis of a theoretical delivery rate, but stable plasma concentrations of fentanyl may not be achieved.  相似文献   

13.
The pharmacokinetics of a 2:1 ampicillin-sulbactam combination were studied in 6 sheep, after intravenous and intramuscular injection at a single dose rate of 20 mg/kg body weight (13.33 mg/kg of sodium ampicillin and 6.67 mg/kg of sodium sulbactam). The drugs were distributed according to an open 2-compartment model after intravenous administration and a one-compartment model with first order absorption after intramuscular administration. The apparent volumes of distribution calculated by the area method of ampicillin and sulbactam were 0.32+/-0.06 L/kg and 0.42+/-0.04 L/kg, respectively and the total body clearances were 0.69+/-0.07 and 0.38+/-0.03 L/kg x h, respectively. The elimination half-lives of ampicillin after intravenous and intramuscular administration were 0.32+/-0.05 h and 0.75+/-0.27 h, respectively, whereas for sulbactam the half-lives were 0.74+/-0.10 h and 0.89+/-0.16 h, respectively. The bioavailability after intramuscular injection was high and similar in both drugs (72.76+/-9.65% for ampicillin and 85.50+/-8.35% for sulbactam). The mean peak plasma concentrations of ampicillin and sulbactam were reached at similar times (0.25+/-0.10 h and 0.24+/-0.08 h, respectively) and peak concentrations were also similar but nonproportional to the dose of both products administered (13.01+/-7.36 mg/L of ampicillin and 10.39+/-3.95 mg/L of sulbactam). Both drugs had a similar pharmacokinetic behavior after intramuscular administration in sheep. Since the plasma concentrations of sulbactam where consistently higher during the elimination phase of their disposition, consideration could be given to formulating the ampicillin-sulbactam combination in a higher than 2:1 ratio.  相似文献   

14.
The objectives of this work were to compare the pharmacokinetics of erythromycin administered by the intramuscular (i.m.) and intravenous (i.v.) routes between nonlactating and lactating goats and to determine the passage of the drug from blood into milk. Six nonpregnant, nonlactating and six lactating goats received erythromycin by the i.m. (15 mg/kg) and the i.v. (10 mg/kg) routes of administration. Milk and blood samples were collected at predetermined times. Erythromycin concentrations were determined by microbiological assay. Results are reported as mean +/- SD. Comparison of the pharmacokinetic profiles between nonlactating and lactating animals after i.v. administration indicated that significant differences were found in the mean body clearance (8.38 +/- 1.45 vs. 3.77 +/- 0.83 mL/kg x h respectively), mean residence time (0.96 +/- 0.20 vs. 3.18 +/- 1.32 h respectively), area under curve from 0 to 12 h (AUC(0-12)) (1.22 +/- 0.22 vs. 2.76 +/- 0.58 microg x h/mL respectively) and elimination half-life (1.41 +/- 1.20 vs. 3.32 +/- 1.34 h); however, only AUC(0-12) showed significant differences after the i.m. administration. Passage of erythromycin in milk was high (peak milk concentration/peak serum concentration, 2.06 +/- 0.36 and AUC(0-12milk)/AUC(0-12serum),6.9 +/- 1.05 and 2.37 +/- 0.61 after i.v. and i.m. administrations respectively). We, therefore, conclude that lactation affects erythromycin pharmacokinetics in goats.  相似文献   

15.
The aim of this investigation was to examine the pharmacokinetics and mammary excretion of erythromycin administered to lactating ewes (n = 6) by the intravenous (i.v.), intramuscular (i.m.) and subcutaneous (s.c.) routes at a dosage of 10 mg/kg. Blood and milk samples were collected at pre-determined times, and a microbiological assay method was used to measure erythromycin concentrations in serum and milk. The concentration-time data were analysed by compartmental and non-compartmental kinetic methods. The serum concentration-time data of erythromycin were fit to a two-compartment model after i.v. administration and a one-compartment model with first-order absorption after i.m. and s.c. administration. The elimination half-life (t(1/2beta)) was 4.502 +/- 1.487 h after i.v. administration, 4.874 +/- 0.296 h after i.m. administration and 6.536 +/- 0.151 h after s.c. administration. The clearance value (Cl tot) after i.v. dosing was 1.292 +/- 0.121 l/h/kg. After i.m. and s.c. administration, observed peak erthyromycin concentrations (Cmax) of 0.918 +/- 0.092 microg/ml and 0.787 +/- 0.010 microg/ml were achieved at 0.75 and 1.0 h (Tmax) respectively. The bioavailability obtained after i.m. and s.c. administration was 91.178 +/- 10.232% and 104.573 +/- 9.028% respectively. Erythromycin penetration from blood to milk was quick for all the routes of administration, and the high AUC milk/AUC serum (1.186, 1.057 and 1.108) and Cmax-milk/Cmax-serum ratios reached following i.v., i.m. and s.c. administration, respectively, indicated an extensive penetration of erythromycin into the milk.  相似文献   

16.
The bioavailability of rafoxanide was compared after intraruminal and intra-abomasal administration in healthy adult sheep (n = 6) in a single dose, 2 parallel group study at 7.5 mg/kg. Rafoxanide concentrations in plasma were measured by means of HPLC analysis. Primary pharmacokinetic parameters for bioavailability and disposition of rafoxanide in plasma for both routes of administration were determined by non-compartmental and non-linear, 1-compartmental pharmacokinetic analysis, respectively. Significantly (P < or = 0.05) higher peak plasma concentrations (c(max)) of rafoxanide and a more rapid rate of absorption (c. 3.5 times) was observed in sheep after intra-abomasal (i-a) administration compared to intraruminal (i.r.) administration. A significantly (P < or = 0.05) longer lag period (t(lag)) before absorption (6.8 +/- 2.9 h) occurred after i.r. than after i-a treatment (1.9 +/- 0.6 h). There was no significant difference (P > 0.05) in AUC, MRT and in the rates of elimination (k10-HL and t(1/2beta)) between the i.r. and i-a routes of administration. The results of the study demonstrated the important influence of the rumino-reticulum on absorption of rafoxanide in sheep.  相似文献   

17.
OBJECTIVE: To determine for two commercial preparations of oxytetracycline (OTC) the pharmacokinetic behaviour, the presence of detectable milk residues and the penetration in milk of OTC administered by intravenous (IV) (conventional formulation [CF]) and intramuscular (IM) routes (CF and long-acting [LA] formulations) in goats producing milk. The effects of these formulations on plasma activity values of creatine kinase (CK) and lactate dehydrogenase (LDH) were also determined as indicators of tissue damage. PROCEDURE: Five healthy lactating goats producing 1.5+/-0.5 L/d milk and weighing 56.0+/-4.8 kg were used. Single doses of OTC chlorhydrate (CF) were administered (20 mg OTC/kg) by IV (Trial 1 IV) and IM (Trial 1 IM) routes and OTC dehydrate (LA) by the IM route. The same goats were first given IV CF, then IM CF followed by IM LA with 3 weeks between each treatment. Blood and milk samples were taken. The quantification of OTC was performed by HPLC and the plasma activities of CK and LDH enzymes were determined by spectrophotometry. The presence of OTC residues in milk was determined by a commercial reagent. The plasma pharmacokinetic parameters were calculated using a two-compartment model. RESULTS: Estimates of kinetic variables following IV administration were: Vss= 400.0+/-120.0 mL/kg and CL= 110.0+/-14.0 (mL/h)/kg. The t(fi) for IV= 3.0+/-0.3 h; IM, CF = 10.5+/-2.1 h and IM, LA = 15.1+/-3.1 h. The concentration of OTC in milk at 48 h was: IV= 0.6+/-0.4; IM CF= 1.1+/-0.2 and at 72 h (IM LA)= 0.6+/-0.1 microg/mL and the penetration in milk of OTC was: IV= 70.0+/-18.0; IM CF= 79.0+/-14.0 and IM LA= 66.0+/-6.0%. The areas under the curve of CK and LDH activities in plasma were calculated by the trapezoidal method. Values of CK and LDH IM, LA were greater (P < 0.05) than those observed for IM, CF at 2 and 3 days after administration of the antibiotic. Finally, the bioavailability of OTC CF = 92.0+/-22.0 and LA= 78.0+/-23.0% was suitable for its usage by the IM route in lactating goats. CONCLUSION: Plasma concentration-time values of OTC administered parenterally in production dairy goats showed similar bioavailability for the two pharmaceutical preaprations. The presence of detectable residues in milk indicates that milk should not be used for human consumption for 2 and 3 days after administration of conventional and long-acting formulations, respectively. The increments in CK and LDH activities after the IM administration of LA are consistent with the presence of tissue damage provoked by the pharmaceutical preparations at the injection site.  相似文献   

18.
Disposition kinetics of danofloxacin and ciprofloxacin in broiler chickens.   总被引:3,自引:0,他引:3  
Disposition kinetics of danofloxacin and ciprofloxacin were studied in broiler chickens following intravenous, intramuscular and oral administration in a single dose of 5 and 10 mg/kg-1 body weight respectively. In addition, tissue distribution and residual pattern of both drugs were determined. The maximum serum concentration (Cmax) after intramuscular and oral administration were 1.03 and 0.55 mu/ml for danofloxacin and 2.92 and 1.24 mu/ml for ciprofloxacin attained at 0.8 and 2.43 and 0.55 and 1.27 hours for danofloxacin and ciprofloxacin respectively. The volume of distribution and systemic bioavailability were higher for danofloxacin (Vdss 2.21 L/kg and F% 96.56 and 81.4%) as compared with ciprofloxacin (Vdss 1.41 L/kg and F% 75.5 and 29.4%). Data relating to intravenous injection for both drugs were analyzed using a two compartment open model curve fit. Danofloxacin and ciprofloxacin were not detected in the serum of broilers at the 5th and 3rd day respectively following the drugs withdrawal while were detected in liver, kidneys, spleen and lungs. Danofloxacin completely disappeared from all tissues at the 13th day after stopping of the drug medication but ciprofloxacin disappeared after 5 days only.  相似文献   

19.
Pharmacokinetic study of danofloxacin in cattle and swine.   总被引:5,自引:0,他引:5  
Pharmacokinetic values of a new quinolone antimicrobial, danofloxacin, were studied in cattle and swine. Plasma concentration was detected within 15 minutes after IM administration, peaked by 1 hour, and subsequently decreased, with half-life of 2.9 and 6.8 hours for cattle and swine, respectively. In swine, danofloxacin was absorbed, whether orally administered by gavage, in feed, or in drinking water. Danofloxacin concentrated in lung tissue at 4 to 7 times the plasma concentration. Lung tissue concentration exceeded the minimal inhibitory concentrations for im90portant respiratory tract pathogens for extended periods after administration of the drug by any of the routes studied. The major routes of excretion were in urine and bile.  相似文献   

20.
The pharmacokinetics of a 2:1 ampicillin-sulbactam combination after intravenous (i.v.) and intramuscular (i.m.) injection at a single dose rate of 20 mg/kg bodyweight (13.33 mg/kg of sodium ampicillin and 6.67 mg/kg of sodium sulbactam) were studied in 10-day-old neonatal calves (n = 10). The plasma concentration-time data of both antibiotics were best fitted to an open two-compartment model after i.v. administration. After i.m. administration, an open two-compartment model demonstrated first order absorption. The apparent volumes of distribution of ampicillin and sulbactam, calculated by the area method, were 0.20+/-0.01 and 0.18+/-0.01 L/kg, respectively, and the total body clearances were 0.51+/-0.03 and 0.21+/-0.01 L/kg h. The elimination half-lives of ampicillin after i.v. and i.m. administration were 0.99+/-0.03 and 1.01+/-0.02 h, respectively, whereas for sulbactam the half-lives were 2.24+/-0.02 and 3.44+/-0.94 h. The bioavailability after i.m. injection was high and similar for both drugs (70.31+/-0.2% for ampicillin and 68.62+/-4.44% for sulbactam). The mean peak plasma concentrations of ampicillin and sulbactam were reached at similar times (0.47+/-0.02 and 0.72+/-0.01 h, respectively) and peak concentrations were also similar but not proportional to the dose administered (17.88+/-0.91 mg/L of ampicillin and 12.92+/-0.79 mg/L of sulbactam). Both drugs had similar pharmacokinetic behaviour after i.m. administration. Since the plasma concentrations of sulbactam were consistently higher during the elimination phase of their disposition, consideration could be given to formulating the ampicillin-sulbactam combination in a ratio higher than 2:1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号