首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water uptake by plant roots is an important process in the hydrological cycle, not only for plant growth but also for the role it plays in shaping microbial community and bringing in physical and biochemical changes to soils. The ability of roots to extract water is determined by combined soil and plant characteristics, and how to model it has been of interest for many years. Most macroscopic models for water uptake operate at soil profile scale under the assumption that the uptake rate depends on root density and soil moisture. Whilst proved appropriate, these models need spatio-temporal root density distributions, which is tedious to measure in situ and prone to uncertainty because of the complexity of root architecture hidden in the opaque soils. As a result, developing alternative methods that do not explicitly need the root density to estimate the root water uptake is practically useful but has not yet been addressed. This paper presents and tests such an approach. The method is based on a neural network model, estimating the water uptake using different types of data that are easy to measure in the field. Sunflower grown in a sandy loam subjected to water stress and salinity was taken as a demonstrating example. The inputs to the neural network model included soil moisture, electrical conductivity of the soil solution, height and diameter of plant shoot, potential evapotranspiration, atmospheric humidity and air temperature. The outputs were the root water uptake rate at different depths in the soil profile. To train and test the model, the root water uptake rate was directly measured based on mass balance and Darcy's law assessed from the measured soil moisture content and soil water matric potential in profiles from the soil surface to a depth of 100 cm. The ‘measured’ root water uptake agreed well with that predicted by the neural network model. The successful performance of the model provides an alternative and more practical way to estimate the root water uptake at field scale.  相似文献   

2.
In this paper, a two-dimensional (2D) dynamic model of root water uptake was proposed based on soil water dynamic and root dynamic distribution of grapevine, and a function of soil evaporation related to soil water content was defined under alternate partial root-zone drip irrigation (APDI). Then the soil water dynamic model of APDI (dynamic APRI-model) was developed on the basis of the 2D dynamic model of root water uptake and soil evaporation function over the growing season. Soil water dynamic in APDI was respectively simulated by dynamic and static APRI-models. The simulated soil water contents by two models were compared with the measured value. Results showed that values of root-mean-square-error (RMSE) for dynamic APRI-model were less than that of the static APRI-model either in the east side or the west side of grapevine. The average relative error between the simulated and measured value was less than 5% for dynamic APRI-model, indicating that the dynamic APRI-model is better than the static APRI-model in simulating the soil moisture dynamic throughout the growing season under the APDI.  相似文献   

3.
The performance of published pedotransfer functions was evaluated in terms of predicted soil water content, pressure heads, and drainage fluxes for a layered profile. The pedotransfer functions developed by Vereecken et al. (1989), Vereecken et al. (1990) were used to determine parameters of the soil hydraulic functions θ(h) and K(h) which were then used as input to SWATRER, a transient one-dimensional finite difference soil water model with root uptake capability. The SWATRER model was used to simulate the hydraulic response of a multi-layered soil profile under natural climatic boundary conditions for a period of one year. The simulations were repeated by replacing the indirectly estimated water retention characteristic by (1) local-scale, and (2) field-scale mean observed θ(h) relationships. Soil moisture contents and pressure heads simulated at different depths in the soil profile were compared to measured values using these three different sets of hydraulic functions. Drainage fluxes at one meter below ground surface have also been simulated using the same three sets of hydraulic functions. Results show that simulations based on indirectly estimated moisture retention characteristics (obtained from pedotransfer functions) overpredict the observed moisture contents throughout the whole soil profile, but predict the pressure heads at shallow depths reasonably good. The results also show that the predicted drainage fluxes based on estimated retention functions are about four times as high compared to the drainage fluxes simulated using measured retention curves.  相似文献   

4.
Field experiments were conducted in 2002-2003 and 2003-2004 to evaluate the relative performance of synthetic (black polyethylene) and organic (paddy husk and straw) mulches on soil and plant water status vis-a-vis N uptake in wheat in a semi-arid environment of India. Scope of better utilization of soil moisture was documented through all the mulches, especially during initial crop growth stages, when the moisture content was 1-3% higher in mulches. Soil temperature was more moderate under organic mulches. Paddy husk recorded significantly higher plant biomass, while the effect of mulching in enhancing root growth was clearly documented. Organic mulches produced more roots (25 and 40% higher root weight and root length densities compared to no-mulch) in sub-surface (>0.15 m) layers, probably due to greater retention of soil moisture in deeper layers and relatively narrow range of soil temperature changes under these systems. Incremental N dose significantly improved all the plant parameters in both mulch and no-mulch treatments. Grain yield was 13-21% higher under mulch and so with increasing N levels. Nitrogen uptake was higher in organic mulches and also with higher N doses, while polyethylene mulch showed mixed trend. Mulches were effective in reducing 3-11% crop water use and improved its efficiency by 25%. Grain yield and biomass were well-correlated with leaf area index (r = 0.87 and 0.91, respectively) and water use was better correlated with root length than its weight. Results indicated substantial improvement in water and N use efficiency and crop growth in wheat under surface mulching, and the organic mulches, especially rice husk performed better than synthetic mulches.  相似文献   

5.
Field experiments were conducted to validate a one-dimensional numerical Simple Soil Plant Atmospheric Transfer (SiSPAT) model that simulates heat and water transfer through the root zone of a surface irrigated, cropped sandy soil. The model accounts for the dominant processes involved in water and heat transfer in a cropped soil. Model validation used field experimental data from 2004 and suggested that the SiSPAT model could be successfully applied to predict soil water and temperature dynamics of a cropped soil in experimental conditions. Validation resulted in high values of model efficiency (ME), and low values of root mean square deviation (RMSD) and mean bias error (MBE) between the simulated and measured values. Model predictions were obtained using field experimental data from 2005 and showed that the SiSPAT model reproduced reasonably well the experimental distributions of soil moisture and temperature. Minor discrepancies between the predicted and measured data during the prediction period can probably be attributed to the uncertainties in soil water content and soil temperature probe measurements. In addition, the influence of irrigation water temperature on water and heat transfer was ignored in the model. This could have contributed to deviations between the simulated and measured values during the experiment. Prediction results indicated that the variability of the water and heat transfer fluxes following a surface irrigation in different stages of the crop (wheat) growth season resulted from the difference in net radiation reaching the cropped soil due to the varying shielding factor as controlled by leaf area index (LAI), root water uptake, meteorological conditions and soil water regime. Furthermore, an interaction between water and heat transfer through the root zone in the cropped soil could be observed during the prediction period.  相似文献   

6.
苹果树根系吸水模型研究   总被引:14,自引:1,他引:14  
根据苹果园苹果树的根系密度资料和根区土壤水分动态资料,采用二种方法建立了苹果树的根系吸水模型,其一是根据根长密度资料建立的根系吸水模型,其二是根据土壤水分动态资料采用反推的方法建立的根系吸水模型;在此基础上采用2003年5月21日至5月30日、6月2日至6月20日和7月18日至8月1日3个阶段的实测资料对所建立的根系吸水模型进行了验证。结果表明:第二种方法建立的苹果树根系吸水模型的模拟精度略高于第一种方法。  相似文献   

7.
A soil water dynamics model for establishing the wetting pattern of point source trickle emitters under a tomato crop has been developed and verified. Infiltration from the point source trickle emitters in the presence of water extraction has been investigated by assuming a hemispherical shape of the wetted soil volume and analytic expressions have been derived for determining the position of wetting front. Water extraction by the plants has been estimated by using a macroscopic model of uptake utilizing root length. Daily values of water uptake have been used to update the volumetric moisture content in the root zone layers. The values of soil moisture content predicted by the model compared well with the field-observed values. The predicted values were used to predict the radius of the hemispherical wetted soil volume which forms a basis for deciding emitter spacing for various crops and operating conditions.  相似文献   

8.
降雨灌溉蒸发条件下苹果园土壤水分运动数值模拟   总被引:6,自引:2,他引:4  
根据土壤水动力学原理和果树根区土壤水分运动特点,建立了降雨灌溉蒸发条件下含根系吸水项的二维土壤水分运动数学模型,采用有限元法求解,对降雨灌溉蒸发条件下的地表边界条件进行处理.在田间进行了灌溉蒸发条件下果园土壤水分运动验证试验,采用田间实测土壤含水率分布资料对模型进行验证,结果表明模拟值与实测值吻合较好,所建的根区土壤水分运动模型是正确的,采用有限元法求解是可行的,该模型可用于预测果园田间土壤水分运动.  相似文献   

9.
A field study was carried out in the Cukurova Region, Southern Turkey to investigate the magnitude of the components of water balance, and the water uptake by cotton roots in relation to hydraulic properties of a clay soil. A plot cropped with cotton and with bare soil only were equipped with tensiometers, gypsum blocks, and access tubes for neutron probe to monitor soil water potential and water content.The hydraulic conductivity values, evaporation and drainage rates, and water withdrawal of roots were determined from field data with numerical calculations based on water flow equations.Results showed that the evaporation from bare soil was generally high during the three month period May to July varying between 4.5 and 1.0 mm/day. However, when soil water potential at 10 cm depth had decreased to -0.065 and -0.070 MPa in the drying phase, the evaporation from the soil decreased to 0.4 mm/day. The drainage rates were influenced by rainfall.The highest values of capillary flux toward the surface layer, and drainage rate from the cropped soil, were 2.0 and 1.8 mm/day respectively. Rates of water uptake by roots from the soil profile, not including the 0–10 cm layer, were high when compared with drainage and upward fluxes, changing between 7.7 and 1.4 mm/day during the experimental period. A good agreement between root length densities and water uptake was found; up to 80% of all roots were in the top 50 cm of the soil and 78% of the total water uptake was extracted from the same layer. Evapotranspiration was found to decline as a cubic function of the available water content of the top 120 cm of the soil profile.  相似文献   

10.
滴灌紫花苜蓿根层水分稳定同位素特征分析   总被引:1,自引:0,他引:1  
为了明确滴灌紫花苜蓿根层水分运移,进一步阐明滴灌节水机理,采用液态水稳定氢氧同位素技术,分析了滴灌紫花苜蓿根层水分稳定氢氧同位素分布特征。结果表明,紫花苜蓿根层水分稳定氢氧同位素在下层富集,且随土壤剖面深度的增加同位素富集量有增加的趋势。滴灌条件下,紫花苜蓿根层发育有较多细根,可迅速而高效地利用灌溉水,灌溉后紫花苜蓿对灌溉水的利用不明确偏向于某一深度土层,根层内各土层土壤水均有利用。灌溉前土壤干旱时,滴灌紫花苜蓿以30 cm上下土层土壤水作为主要水分来源的概率较高。  相似文献   

11.
The ability of cotton roots to grow downwards through a partially-wetted soil (Calcic Haploxeralf) profile toward a water source located beneath them was investigated. Plants were grown in 60-cm-high soil columms (diameter 10 cm), the bottom 15 cm of which was kept wet by frequent drip irrigation, while the upper 45 cm was wetted three times per week up to 20, 40, 60, 80 or 100% of pot capacity. Pot capacity was defined as the water content which gave uniform distribution within the pot and was at a soil matric potential ( m ) of –0.01 MPa. Plants were harvested 42 and 70 days after emergence (DAE). Root length density was reduced by decreased soil moisture content. At 42 DAE, density was reduced in the soil profile down to 36 cm. The density in the middle segment of the cylinder (24–36 cm) increased at the second harvest, from 0.1 to 0.35 cm · cm–3 at 40% and from 0.2 to 0.5 cm · cm–1 at 60% of pot capacity, respectively. A significant rise in root length density was found at all moisture contents above 20% in the two deepest soil segments. It was most marked at 40% where the rise was from 0.2 to 0.8 cm · cm–3, due to the development of secondary roots at the wetted bottom of the column. When only 20% of pot capacity was maintained in the top 45 cm of the profile, almost no roots reached the wetted soil volume, and root length density was very low. Hydrotropism, namely root growth through dry soil layers toward a wet soil layer was thus not apparent. Root dry weight per unit length decreased with increasing depth in the column at all moisture levels. However, the only significant decrease was, found between the top and the second soil segments and was due to thicker primary roots in the top segment. There was no clear relationship between length and dry weight of roots. Total plant dry weight and transpiration were reduced significantly only at 20% of pot capacity. Dry matter production by roots was less severely inhibited than that by shoots, under decreased moisture content in the soil profile. Leaf water potential decreased when the soil moisture content of the top 45 cm of the profile was reduced below 60% of pot capacity. It was concluded that even at soil moisture content equivalent to a m of 0.1 MPa, the rate of root growth was sufficient to reach a wetted soil layer at the bottom of the soil column, where the plant roots then proliferated. This implies that as long as the soil above the subsurface dripper is not very dry there is no real need for early surface irrigation.  相似文献   

12.
膜下滴灌的土壤水分对棉花根长密度分布及产量的影响   总被引:4,自引:1,他引:3  
通过膜下滴灌田间试验,研究了水分对棉花根长密度分布及产量的影响。结果表明:各灌水处理棉花根长密度空间分布总特征一致,水平方向,宽行与窄行的根长密度基本相同,但明显大于膜间;垂直方向,随土壤深度增大,棉花根长密度减小。但不同灌水处理间存在差异,过量灌水处理棉花膜间的根长密度增大,宽行与窄行的根长密度减小,随着灌水量的增加,棉花全根层平均根长密度增大;胁迫灌水处理深层土壤中根长密度增大。花铃期、吐絮期各土层棉花根长密度与产量呈显著的二次相关关系。灌溉量与棉花产量间的关系符合报酬递减规律,其回归方程为y=-0.0026x2+18.015x-24845(R2=0.959)。  相似文献   

13.
Root system parameters determining water uptake of field crops   总被引:2,自引:0,他引:2  
Summary The distribution of a crop rooting system can be defined by root length density (RD), root length (RL) per soil layer of depth z, sum of root length (SRL) in the soil profile (total root length) or rooting depth (z r . The combined influence of these root system parameters on water uptake is not well understood. In the present study, field data are evaluated and an attempt is made to relate a daily maximum water uptake rate (WUmax) per unit soil volume as measured in different soil layers of the profile to relevant parameters of the root system. We hypothesize that local uptake rate is at its maximum when neither soil nor root characteristics limit water flow to, and uptake by, roots. Leaf area index and the potential evapotranspiration rate (ET p ) are also important in determining WUmax, since these quantities influence transpiration and hence total crop water uptake rate. Field studies in Germany and in Western Australia showed that WUmax depends on RD. In general, there was a strong correlation between the maximum water uptake rate of a soil layer (LWUmax) normalized by ET p and RL normalized by SRL. The quantity LWUmax · ET p -1 was linearly related to (RL/SRL)1/2. The data show that the single root model will not predict the influence of RD on WUmax correctly under field conditions when water-extracting neighboring roots may cause non-steady-state conditions within the time span of sequential observations. Since the rooting depth z r was linearly related to (SRL)1/2, the relation: LWUmax · ET p -1 = f (RL1/2/z r ) holds. Furthermore it was found that the maximum specific uptake rate per cm root length URmax was inversely related to RD1/2 and to SRL1/2 or z r of the profile. Observed high specific uptake rates of shallow rooted crops might be explained not only by their lower RD-values but also by the additional effect of a low z r . The relations found in this paper are helpful for realistically describing the sink term of dynamic water uptake models.Growing plants extract water from the soil to meet transpiration needs. Rates of transpiration and of water uptake are set by evaporative demand and by plant and soil factors which influence capacity to meet that demand. These factors include crop canopy size and leaf characteristics, root system characteristics and hydraulic properties of the soil and the soil-root interface. Soil and root system properties vary with depth and all factors vary in time, so that parameters related to them require constant updating over a crop season.Dynamic simulation models describe water uptake by root systems under field conditions as a function of soil depth and time. Many of these simulation approaches are based on Gardner's (1960) single root model (Feddes 1981). These simulation procedures follow the assumption that water uptake is proportional to a difference in water potential between the bulk soil and the root surface or the plant interior, to the hydraulic conductivity of the soil-plant system and to the effectiveness of competing roots in water uptake. The effectiveness factor accounts more or less empirically for the influence of various root system parameters on water uptake such as percentage of active roots absorbing water, root surface permeability, root length density determining the distance between neighbouring roots, or total root length and depth of the root system. Such models however, will not always reflect correctly the influence of root system characteristics on water uptake since these assumptions have rarely been tested under field conditions. In many instances, there is better agreement between simulated and measured total water use of plants than between predicted and observed water depletion by roots within individual layers of the soil profile (Alaerts et al. 1985).Water uptake by an expanding root system as a function of depth and time has been studied under field conditions for several crops (listed in Herkelrath et al. 1977a; Feddes 1981; Hamblin 1985). They show that the dynamics of water uptake depend on root length density and the availability of soil water. However, the combined influence of root length density, total root length and rooting depth on the water uptake pattern has not been assessed. An evaluation of root system parameters with respect to soil water extraction should aid our understanding of how roots perform under field conditions and may assist our efforts to formulate the water uptake function of roots in dynamic simulation studies more realistically.The aim of the present investigation is to develop an approach that relates measured water uptake rates to relevant parameters of the root systems. This approach will be confined to situations where water uptake in a soil layer is not restricted by unfavorable soil conditions, such as in wet soil, by insufficient aeration and, in dry soil, by reduced water flow towards roots or by increased contact resistance (Herkelrath et al. 1977b). We will define a maximum water uptake rate WUmax that is neither soil-limited nor appreciably limited by the decreasing permeability of aging roots. This WUmax will be related to relevant root system parameters as they exist when WUmax is observed. Hence, water uptake by roots in a very wet, as well as in a dry soil, has been excluded from consideration.  相似文献   

14.
Six different reduction functions for combined water and salinity stress are used in the macroscopic root water extraction term. The reduction functions are classified as linear additive, non-linear multiplicative, and that which is neither additive nor multiplicative. All these reduction functions are incorporated in the numerical simulation model HYSWASOR. The relation between the experimental relative transpiration and the joint soil water osmotic and pressure heads appears to be linear (with an exception for the salinity near the threshold value). As the mean soil solution salinity increases, the trend becomes more linear. The simulations indicated that for most treatments the newly proposed reduction term provides the closest agreement with the experimental transpiration. Soil water content, and particularly soil solution salinity simulated with this equation agree reasonably with the experimental data: in spite of the observed differences, the trend of the simulated data is good. A reason for the disagreement between the simulated and experimental water contents can be attributed to the influence of roots and the soil solution concentration on the soil hydraulic conductivity. The input soil hydraulic parameters were obtained from soil samples without roots and salinity and assumed constant during the simulations.  相似文献   

15.
The macroscopic root water uptake approach was used in the numerical simulation model HYSWASOR to test four different pressure head-dependent reduction functions. The input parameter values were obtained from the literature and derived from extensive measurements under controlled conditions in the greenhouse. The simulation results indicated that the linear reduction function cannot fit the data satisfactorily. Most of the existing non-linear reduction functions can fit only half of the data range, while the best agreement is obtained with the non-linear two-threshold reduction function. The parameter values obtained by calibration differ only slightly from those of the experiments. Soil water pressure head heterogeneity over the root zone does not play an important role in water uptake. The roots appear to take up water from the relatively wetter parts of the root zone to compensate for the water deficit in the drier parts. While the simulated transpiration agrees closely with the experimental data, the main reason for the discrepancy between the simulated and actual water contents appears to be water uptake during the night.  相似文献   

16.
Root growth, grain yield and water uptake by wheat in relation to soil water regime and depth of nitrogen (N) placement were studied in metallic cylinders filled with loamy sand soil. Root-length and -weight densities were greater under irrigated than under unirrigated conditions and they increased with deep placement as compared to surface mixing of fertilizer N. The differences were relatively larger in the deeper than in the upper soil layers and increased during later stages of plant growth. Under non-irrigated conditions, constant water table at 100 cm depth produced maximum root growth in the top 30 cm soil. Water uptake rate increased with increase in root density depending on root age and soil water status. Dry matter accumulation at different stages of plant growth and grain yield varied significantly with moisture regime and depth of N placement. Deep placement of fertilizer N under shallow water table and non-irrigated conditions caused greater root growth, better water utilization and a higher production.  相似文献   

17.
After measuring root morphological indices, such as the length, diameter, volume density, surface area and tip number of both living and dead roots on the ridge and slope under alternate furrow irrigation (AFI) and conventional furrow irrigation (CFI, control treatment) using Minirhizotrons, the responses of root morphology and distribution in maize to AFI were analyzed. Results show that root morphological indices of living or dead roots were lower on the ridge than on the slope under AFI, whereas root morphological indices of living or dead roots were higher on the ridge than on the slope under CFI. Compared to CFI, AFI significantly increased root tip number and surface area of fine roots (with the diameter of ≤2.5 × 10−1 mm) and promoted roots to deeper soil on the slope, and then simulated root water uptake. AFI only decreased the grain yield by 0.9%, but increased water use efficiency on seed yield by 8.3%. Thus AFI promoted root growth and metabolism on the slope, increased the effective absorption area of root system and improved water use efficiency without significant reduction of grain yield.  相似文献   

18.
交替隔沟灌溉下玉米根长密度分布及水分利用   总被引:1,自引:0,他引:1  
为了探明交替隔沟灌溉和常规沟灌条件下玉米根长密度的分布规律及水分利用效率(WUE),研究了2种沟灌方式下玉米根长密度的空间分布和水分利用情况。结果表明,玉米根长密度在根区水平向和垂向呈指数分布。交替隔沟灌溉促进了玉米根系的水平向伸展和下扎深度,常规沟灌在垄位的大密度根系分布集中在20~60cm。交替隔沟灌溉增大了根系下扎深度,有利于根系吸收深层土壤水分,在非充分供水条件下提高了作物的水分利用效率,交替隔沟灌溉水分利用效率较常规沟灌提高5%以上。  相似文献   

19.
Summary A simulation model of water uptake by a crop was developed to facilitate synthesis of field and laboratory observations with existing knowledge, and to analyze and predict affects of management practices, such as tillage, on water uptake from a drying soil. Radial water flow resistance in soil Rs was estimated by the single root flow model. Leaf stomata closure was represented by an observed minimal leaf water potential. Flow resistances, per unit root length Rr and in the plant Rp, were assumed to be constant and were evaluated together with an effective root length factor Frl, in the course of simulating a ten week period of observed soil water depletion by a crop of oats. Rr, Rp, and Frl were found to have similar values to those reported in the literature. Potential transpiration and evaporation and their ratio were estimated by the methods of Van Bavel (1966) and Denmead (1973). Evaporation reduction due to soil drying was estimated empirically.Cessation of soil water depletion (attainment of a permanent wilting soil water content) in the 0 – 20 cm soil layer, during the last ten-day period, was explained to be the net result of soil water extraction by the roots and backflow of water from the roots into the soil. Simulated onset of crop stress (closure of stomata) was found to be characterized by: (a) a steady decrease in average soil water potential, at a rate of about 500 cm-water per cm-soil water depletion; (b) a tenfold increase in the average soil resistance to radial flow, to about the same magnitude as average radial flow resistance in the roots; and (c) soil water diffusivities in the 0 – 50 cm layer being about 6 cm2/day. Sensitivity analyses showed that the ratio of actual to potential cumulative transpiration RCT depended primarily on potential evapotranspiration, rainfall, the unsaturated-to-saturated hydraulic conductivity exponent and plant cover. RCT was affected similarly by changes in Rr and in Rs. Under the conditions tested, zero tillage may increase RCT significantly only if it increases deep rooting beyond the 50 cm depth.Joint contribution from the Georg-August University, Göttingen, FRG, and the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel, A.R.O. No. 207-E, 1980 Series  相似文献   

20.
Summary There have been a few investigations on the effect of moisture on root development of alfalfa (Medicago sativa L.), but none have attempted to describe the relationships in a quantitative manner. Therefore, alfalfa root patterns along with yield and evapotranspiration (ET) were examined under different moisture levels, using a line-source sprinkler system. Water application ranged from 28 to 153 cm, the latter representing the potential evapotranspiration. Alfalfa root mass and yield were highest under high moisture levels, and the shoot/root ratio increased with increasing moisture level. The relationships between ET and root mass and between ET and shoot/root ratio were curvilinear. The largest percentage of root mass under all moisture treatments was found in the top 45 cm of the soil profile where the largest differences in total root mass between treatments were observed. The percentages of roots at each soil depth averaged over three ranges of moisture levels were curvilinear functions of soil depth. Although alfalfa roots were found to a depth of at least 150 cm for all moisture levels, there was a greater rooting depth with a higher moisture level. Roots were detected to a depth of 210 cm for the high moisture treatment, although root biomass was small below 170 cm where a sand layer was encountered which may have impeded root penetration. The root diameter was found to be independent of moisture level, which means that there was a greater root surface area with higher moisture levels. Root length density distribution was similar to root mass distribution.Journal article 911, Agricultural Experiment Station, New Mexico State University, Las Cruces, NM 88003, USA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号