首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Soil erodibilty during concentrated flow (Kc) and critical flow shear stress (τcr), both reflecting the soil's resistance to erosion by concentrated runoff, are important input parameters in many physically-based soil erosion models. Field data on the spatial and temporal variability of these parameters is limited but crucial for accurate prediction of soil loss by rill or gully erosion. In this study, the temporal variations in Kc and τcr for a winter wheat field on a silt loam soil under three different tillage practices (conventional ploughing, CP; shallow non-inversion tillage, ST; deep non-inversion tillage, DT) in the Belgian Loess Belt were monitored during one growing season. Undisturbed topsoil samples (0.003 m3) were taken every three weeks and subjected to five different flow shear stresses (τ = 4–45 Pa) in a laboratory flume to simulate soil detachment by concentrated flow. To explain the observed variation, relevant soil and environmental parameters were measured at the time of sampling. Results indicated that after two years of conservation tillage, Kc(CP) > Kc(DT) > Kc(ST). Kc values can be up to 10 times smaller for ST compared to CP but differences strongly vary over time, with an increasing difference with decreasing soil moisture content. The beneficial effects of no-tillage are not reflected in τcr. Kc values vary from 0.006 to 0.05 sm−1 for CP and from 0.0008 to 0.01 sm−1 for ST over time. Temporal variations in Kc can be mainly explained by variations in soil moisture content but consolidation effects, root growth, residue decomposition and the presence of microbiotic soil crusts as well play a role. τcr values increase with increasing soil shear strength but Kc seems more appropriate to represent the temporal variability in soil erosion resistance during concentrated flow. The large intra-seasonal variations in Kc, which are shown to be at least equally important as differences between different soil types reported in literature, demonstrate the importance of incorporating temporal variability in soil erosion resistance when modelling soil erosion by concentrated flow.  相似文献   

2.
Tillage management and manure application are among the important factors affecting soil physical properties and crop yield. A 2-year field experiment was conducted on a silty clay loam soil (fine-loamy, mixed, thermic Typic Haplargids). Effects of two tillage systems (moldboard plowing as conventional tillage (T1) and disk harrowing as reduced tillage (T2)) at three farmyard manure rates (zero (M1), 30 (M2), 60 (M3) Mg ha−1) were studied on the soil physical properties and corn (Zea mays L.) yield. The experiment was carried out in split block design with three replications. Organic matter (OM) content, bulk density (BD), saturated hydraulic conductivity (KS), aggregate mean weight diameter (MWD) and dry biomass yield (DBY) were measured after harvesting in the second year. Manure application increased OM on both the row and inter-row tracks significantly. Manure application rate of 60 Mg ha−1 increased MWD (0.33, 0.40 and 0.75 mm for M1, M2 and M3, respectively) at the 0–5 cm soil layer, but the effect was not significant below 5 cm depth. Adding manure significantly decreased soil BD on the row tracks (1.39, 1.22 and 1.17 Mg m−3 for M1, M2 and M3 treatments, respectively), but did not have any significant effect on the inter-row tracks. Hydraulic conductivity was improved by manure applications both on the row and inter-row positions. Manure treatments M2 and M3 increased DBY compared to the M1 treatment. Although moldboard plowing increased the depth of root penetration significantly (43 cm for T1 and 30 cm for T2), the effect of tillage systems on yield and soil physical properties was not significant.  相似文献   

3.
Most of the tillage erosion studies have focused on the effect of tractor-plough tillage on soil translocation and soil loss. Only recently, have a few studies contributed to the understanding of tillage erosion by manual tillage. Furthermore, little is known about the impact of tillage erosion in hilly areas of the humid sub-tropics. This study on tillage erosion by hoeing was conducted on a purple soil (Regosols) of the steep land, in Jianyang County, Sichuan Province, southwestern China (30°24′N and 104°35′E) using the physical tracer method.

The effects of hoeing tillage on soil translocation on hillslopes are quite evident. The tillage transport coefficients were 26–38 kg m−1 per tillage pass and 121–175 kg m−1 per tillage pass respectively for k3- and k4-values. Given that there was a typical downslope parcel length of 15 m and two times of tillage per year in this area, the tillage erosion rates on the 4–43% hillslopes reached 48–151 Mg ha−1 per year. The downslope soil translocation is closely related to slope gradient. Lateral soil translocation by such tillage is also obvious though it is lower than downslope soil translocation. Strong downslope translocation accounts for thin soil layers and the exposure of parent materials/rocks at the ridge tops and on convexities in the hilly areas. Deterioration in soil quality and therefore reduction in plant productivity due to tillage-induced erosion would be evident at the ridge tops and convex shoulders.  相似文献   


4.
Soil porosity and organic matter content influence the hydrology, thermal status and productivity of agricultural soils. Shape, size and continuity of soil pores are determined by tillage practices. Thus appropriate tillage and mulch management can conserve residual soil moisture during the post rainy season. This can play a key role in enhancing productivity under the rainfed ecosystem of subhumid region in eastern India. A field study was carried out on a fine loamy soil from 1993–1994 to 1995–1996. Two tillage treatments were conventional ploughing (150 mm depth) and shallow ploughing (90 mm) depth. Each tillage practice was tested with three mulch management viz., no mulch, soil dust mulch and rice (Oryza sativa L.) straw mulch. Soil organic carbon, bulk density, moisture retentivity, soil temperature with productivity and water use pattern of barley (Hordium vulgare L.) were measured.Reduction in ploughing depth resulted in nominal increase in profile (0.0–1.2 m) moisture status, yield, and soil thermal status at 14:00 and water use efficiency (WUE). However, it decreased the magnitude of soil temperature in the morning (07:00). Straw mulch conserved 19–21 mm of moisture in the profile (1.2 m) over the unmulched condition. Both soil dust and rice straw mulching elevated soil thermal status at 07:00 as compared to unmulched condition, but this trend was reversed at 14:00. Straw mulching significantly increased grain yield and WUE over soil dust mulch and unmulched condition. Impact of straw mulch was more pronounced under shallow ploughing depth. Shallow tillage with rice straw mulching is recommended to the farmers to obtain higher level of yield and water use efficiency.  相似文献   

5.
In Canada, the negative impacts of tillage erosion is a growing concern, especially in regions where highly erosive cropping and tillage systems are practiced on highly erodible, topographically complex landscapes. To date, tillage erosion studies have focused primarily on the movement of soil by primary and secondary tillage operations. However, in potato (Solanum tuberosum L.) production there is often considerable soil disturbance that occurs during “tertiary” field operations conducted during the growing season. Therefore, the objective of this project was to generate tillage translocation and erosivity values for implements common to planting, hilling and harvesting operations within intensive potato production systems in Atlantic Canada. Our results show that tertiary tillage operations result in significant soil displacement and can be equally as erosive as primary and secondary tillage operations. Both the planting, cultivating and hilling (PCH) sequence and the harvester moved soil extremely large distances (up to 23.6 and 6.0 m, respectively). In fact, the mean translocated distance of the tilled layer (TL) and the mass of translocated soil (TM) of the PCH sequence (0.42 m and 115.9 kg m−1, respectively) and the harvester (0.55 m and 71.7 kg m−1, respectively) are larger than those reported previously for primary and secondary tillage operations in New Brunswick. In addition, the net downslope movement of soil for the PCH sequence and the harvester was approximately 36 and 26 kg m−1, respectively, suggesting that both tertiary tillage operations have the potential to be erosive. A direct relationship was observed between both TL and TM and slope gradient for the PCH sequence, but similar relationships were not found for the harvester, even though the harvester moved approximately 30 % more soil downslope than upslope. Linear regression functions were generally improved after including slope curvature in the model, but these results were not always significant. Soil movement by the PCH sequence and harvester were also largely influenced by tillage speed and tillage depth, and future research is needed under controlled conditions to determine whether it is changing topography or the variability in tillage speed and depth across the landscape in response to changing topography that is driving tillage erosion within mechanized agricultural systems. It is clear that tertiary tillage operations must be considered when developing best management practices to improve soil conservation strategies for potato production systems in Canada and worldwide.  相似文献   

6.
Studying on spatial and temporal variation in soil organic carbon (SOC) is of great importance because of global environmental concerns. Tillage-induced soil erosion is one of the major processes affecting the redistribution of SOC in fields. However, few direct measurements have been made to investigate the dynamic process of SOC under intensive tillage in the field. Our objective was to test the potential of 137Cs and 210Pbex for directly assessing SOC redistribution on sloping land as affected by tillage. Fifty plowing operations were conducted over a 5-day period using a donkey-drawn moldboard plow on a steep backslope of the Chinese Loess Plateau. Profile variations of SOC, 137Cs and 210Pbex concentrations were measured in the upper, middle and lower positions of the control plot and the plot plowed 50 times. 137Cs concentration did not show variations in the upper 0–30 cm of soil whereas 210Pbex showed a linear decrease (P < 0.05) with soil depth in the upper and middle positions, and an exponential decrease (P < 0.01) at the lower position of the control plot. The amounts of SOC, 137Cs and 210Pbex of sampling soil profiles increased in the following order: lower > middle > upper positions on the control plot. Intensive tillage resulted in a decrease of SOC amounts by 35% in the upper and by 44% in the middle positions for the soil layers of 0–45 cm, and an increase by 21% in the complete soil profile (0–100 cm) at the lower position as compared with control plot. Coefficients of variation (CVs) of SOC in soil profile decreased by 18.2% in the upper, 12.8% in the middle, and 30.9% in the lower slope positions whereas CVs of 137Cs and 210Pbex decreased more than 31% for all slope positions after 50 tillage events. 137Cs and 210Pbex in soil profile were significantly linearly correlated with SOC with R2 of 0.81 and 0.86 (P < 0.01) on the control plot, and with R2 of 0.90 and 0.86 (P < 0.01) on the treatment plot. Our results evidenced that 37Cs and 210Pbex, and SOC moved on the sloping land by the same physical mechanism during tillage operations, indicating that fallout 137Cs and 210Pbex could be used directly for quantifying dynamic SOC redistribution as affected by tillage erosion.  相似文献   

7.
覆膜耕作方式对河套灌区土壤水热效应及玉米产量的影响   总被引:6,自引:1,他引:5  
通过设置垄作全膜、垄作半膜、平作全膜以及平作半膜4个覆膜耕作处理,探究不同覆膜耕作方式对河套灌区土壤水热及春玉米产量的影响。结果表明:1)2个生长季内垄作全膜处理各阶段土壤含水率和温度均最高,保水保温效果明显。2)耕层土壤温度的变化规律和含水率的变化规律相反,随着土壤温度升高,土壤含水率逐渐降低。3)玉米生育期内随着温度升高和作物耗水量增大,全膜覆盖和垄作耕作方式的蓄水保墒效果愈加明显;干旱条件下,耕作措施较覆膜方式对地温的影响更为明显;而在水量充沛条件下,覆膜方式则表现出对地温更显著的影响。田间起垄耕作结合全膜覆盖的种植方式,可以获得较高的穗行数和穗粒数,有利于干物质的积累,促进滴灌条件下玉米产量的形成,同时提高水分利用效率,为河套灌区农业节水和玉米高产提供了技术依据。  相似文献   

8.
In the arid and semi-arid regions, ridge tillage was often used as an alternative practice for wind erosion control on the croplands without sufficient crop residues left during the fallow period. Through wind tunnel experiments, wind erosion rate and vertical mass flux profile of blown sand under the simulated conditions of ridge tillage and flat tillage were studied in 15, 10, 10, 5, 3 min exposures at the wind velocities of 8, 10, 15, 20, 24 m s−1, respectively. The results for the soil tested indicate that the mean rate of wind erosion under flat tillage was 129.89 g m−2 min−1, while that under ridge tillage were 20–60% less. Under ridge tillage with different structures, average wind erosion rate had a positive correlation with the spacing between adjacent ridges. For the same ridge height, average wind erosion rate decreased with increasing ratio between the height of ridge and the width of furrow. For the same ratio between the height of ridge and the width of furrow, average wind erosion rate increased with increasing height of ridge. Power function relationships were found between wind erosion rate and wind velocity on all the simulated tillage conditions. A wind velocity of 15 m s−1 was the critical velocity, above which wind erosion rate increased rapidly for the soil and simulated tillage conditions tested. Compared with flat tillage, ridge tillage remarkably decreased wind erosion rates when wind velocities were beyond 15 m s−1. Under ridge tillage, the total mass of sand transported at a height of 0–20 cm above soil surface (Q0–20), and the fraction of that travelling at a height of 0–4 cm (Q0–4/Q0–20), were less man mat under flat tillage. For the same ridge height, Q0–4/Q0–20 increased with increasing ratio between the height of ridge and the width of furrow. For the same ratio between the height of ridge and the width of furrow, Q0–4/Q0–20 decreased with increasing height of the ridge. Sand transport rate under flat tillage decreased with increasing height by a negative exponential function, while negative linear functions were found under ridge tillage. Thus ridge tillage decreased the rate of wind erosion and sand transportation near soil surface, reduced the loss of soil nutrient caused by wind erosion and plant damage caused by blown sand abrasion, which make it an effective agricultural technology for wind erosion control in the arid and semi-arid regions.  相似文献   

9.
In the hills of north–west India, maize (Zea mays L.)-wheat (Triticum aestivum L.) is the dominant cropping system. However, rainfed wheat suffers from lack of optimum moisture at sowing. Field experiments were conducted for 3 years on a silty clay loam (Typic Hapludalf) to evaluate the effectiveness of mulches and conservation tillage for rainfed wheat in mitigating this problem. The treatments were ten factorial combinations of five mulch-tillage practices and two nitrogen levels (N60 and N120 kg ha−1). Mulch treatments consisted of application of 10 Mg ha−1 (dry weight basis), to previous standing maize, of either wild sage (Lantana camara L.) or eupatorium (Eupatorium adenophorum Sprengel) in combination with either conventional or conservation (minium) tillage prior to wheat sowing. These alternative practices were compared to the conventional farmer practice of soil tillage after harvest of maize with no mulch. The application of these weed mulches to standing maize maintained friable soil structure owing to a five fold higher mean population of earthworms underneath mulch. Mulches resulted in 0.06–0.10 m3 m−3 higher moisture in the seed-zone when wheat was sown compared with the conventional farmer practice of soil tillage after maize harvest. Mulch-conservation tillage treatments favourably moderated the hydro-thermal regime for growing a wheat crop. The mean root mass density under these treatments at wheat flowering was higher by 1.27–1.40 times over the conventional farmer practice during the 3 year study. Conservation tillage holds promise because it does not require elaborate tillage and may ultimately reduce animal draught in the hilly regions. Recycling available organic materials having no fodder value coupled with conservation tillage may help enrich the soil environment in the long-term. The practice also offers gainful use of these obnoxious weeds that cause great menace in grass and forest lands in the region.  相似文献   

10.
Abstract. A two year field study was conducted to evaluate the effects of straw management and tillage on the soil profile (1.5m) water storage, nature of the moisture profile, infiltration and sorptivity as influenced by rainfall, evaporativity (E0) and soil texture. The straw mulch treatment stored more moisture under low E0 rainy conditions in three coarse to medium textured soils. Straw incorporation treatment was better under low E0 rain free conditions, as well as under high E0 rainy conditions in the two coarser textured soils. In the coarsest textured soil, tillage and straw mulching were not effective in maintaining greater soil water storage under high E0 because of the very open nature of the soil. The soil moisture profiles showed a sharper increase in water content below the tilled layer in the tillage and straw- incorporation treatments than the untreated and straw mulch treatments. Tillage and straw incorporation treatments increased the sorptivity of the soil compared with untreated and straw mulch treatments respectively. The results of this study suggest that when selecting a suitable soil water conservation practice to increase water storage in the soil profile, information on soil texture and weather (rain and evaporativity) must be considered.  相似文献   

11.
The effects of deep tillage, straw mulching, and irrigation on corn (Zea mays L.) yield on a loamy sand (mixed, hyperthermic, Typic Ustipsamment) were studied for early (high evaporativity) and normally sown (relatively low evaporativity) crop for 3 years in a semi-arid sub-tropical monsoon region at Punjab Agricultural University, Ludhiana, India. Treatments included all combinations of two tillage systems (conventional tillage — harrowing the soil to a 10-cm depth; deep tillage — chiselling 40 cm deep, 35–40 cm apart), two irrigation regimes (75 mm irrigation when net open pan evaporation accumulated to 75 mm or 50 mm), and two straw mulch rates (0 and 6 Mg ha−1).

Deep tillage significantly reduced soil strength (cone index) and caused deeper and denser rooting than conventional tillage, more so in the dry season and with the infrequent irrigation regime than in the wet season and frequent irrigation regime. Mulch also improved rooting by influencing the hydrothermal regime of the soil. Better rooting with deep tillage and/or mulch helped the crop to extract stored soil water more efficiently, which was reflected in a favourable plant water status (indicated by canopy temperature). Averaged across years, irrigation, and mulch, deep tillage increased grain yield by 1.6 Mg ha−1 for the early season and 0.5 Mg ha−1 for the normal season crop over the yield of 2.0 Mg ha−1 achieved with conventional tillage regardless of season. Yield increase with mulching was also greater for the early season crop. Crop response to deep tillage and mulching was generally linked to the interplay between water supply (rain + irrigation) and demand (seasonal evaporativity) during the growing season. Increasing irrigation frequency increased crop yield when evaporativity exceeded rainfall early in the growing season. The results show that higher corn yields on coarse-textured soils in these regions may be achieved by advancing the seeding time and by using a proper combination of deep tillage, mulch, and irrigation.  相似文献   


12.
Research information on the effect of tillage systems on cocoyam (Xanthosoma sagittifolium (L.) Schott) growth, nutrient status and yield is lacking in Africa. The effects of zero tillage with mulch, zero tillage without mulch, manual mounding, manual ridging and conventional tillage on cocoyam yield, growth and nutrient availability were compared during 2 years on an Alfisol (Oxic Tropuldaf) at Owo in the rainforest zone of Nigeria. The surface soil (0–20 cm) was chemically analyzed before and after crop harvest and selected soil physical properties were determined. Concentration of soil organic C, N, P, K and Mg and the leaf N, P and K were significantly influenced (p = 0.05) by tillage, with zero tillage with mulch being the most effective treatment in conserving the fertility of the surface soil (0–20 cm). Soil fertility, as indicated by organic C, N, P, K, Ca and Mg, declined significantly (p = 0.05) over time in all tillage systems, but this decline was more pronounced in the conventional tillage. Zero tillage with mulch, zero tillage without mulch, manual mounding, manual ridging and conventional tillage reduced the soil organic C concentration by 20, 23, 23, 24 and 33%, respectively over the 2-year period. The decreases in soil N concentration were 25, 31, 31, 38 and 56%, soil P concentration were 13, 15, 17, 16 and 26%, and soil K concentration were 16, 26, 31, 37 and 53%, respectively. Tillage did not affect corm and cormel yields in the first year. In the second year, due to the elimination of ploughing, significant differences were obtained in the cormel yield but not of corm yield. In 2005, zero tillage with mulch produced the highest cormel yield (13.5 mg ha−1) of cocoyam followed by zero tillage without mulch (13.2 mg ha−1), manual mounding (12.7 mg ha−1) and manual ridging (12.5 mg ha−1). The lowest cormel yield (9.5 mg ha−1) of cocoyam was produced by conventional tillage. Soil water contents in zero tillage with mulch and zero tillage without mulch were significantly higher (p = 0.05) than in the other tillage systems. Soil bulk density ranging from 1.21 to 1.40 mg m−3 correlated positively with leaf nutrient concentration and yield. Cocoyam can be grown successfully on zero tillage, with mulch and without mulch or minimum tillage systems on an Alfisol of the humid tropics.  相似文献   

13.
不同覆盖方式对土壤水热分布的影响   总被引:1,自引:0,他引:1  
[目的]覆盖会影响土壤水、热分布,研究不同覆盖方式对土壤水热分布的影响,可为不同作物选择合适的覆盖方式控制土壤水热状态提供参考.[方法]用田间试验测定不同覆盖方式下玉米农田土壤的温度、含水率与蒸发量,比较测定数据探究不同覆盖方式对土壤水、热分布影响的特征.共设5个试验处理,无覆盖、地膜覆盖、1.5 cm落叶覆盖、3.0...  相似文献   

14.
保护性耕作对土壤风蚀的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
保护性耕作能够有效减少农田土壤风蚀.通过室内风洞模拟试验,研究秸秆覆盖、留茬和垄作3种保护性耕作措施对黄土高原北部农田土壤风蚀的影响.结果表明:1)秸秆覆盖和留茬能有效降低土壤风蚀速率,秸秆覆盖量为4 210 kg/hm2时土壤风蚀速率最小,与对照相比减少62.8%;垄作在低风速下能够降低土壤风蚀率,垄向与风向垂直时降...  相似文献   

15.
河套灌区不同覆膜方式膜下滴灌土壤盐分运移研究   总被引:7,自引:3,他引:4  
随着灌溉面积的增加和引黄水量的减少,河套灌区土壤盐渍化和水资源紧缺的问题日益突出,为保持农田水土环境的良性发展,以内蒙古河套灌区曙光试验站为研究对象,开展不同覆膜方式膜下滴灌土壤水盐运移规律研究。试验设置全膜覆盖(PQ)和半膜覆盖(PB)2个处理,采用5TE土壤水盐监测探头测定剖面土壤含水率和电导率。结果表明:膜下滴灌过程中剖面土壤盐分发生再分布,滴头下方30cm附近形成主要脱盐区,盐分逐渐向湿润区外缘积聚。半膜覆盖处理土壤盐分在膜间表层聚集,全膜覆盖处理保水抑蒸效果明显,起到了较好的压盐效果。表层土壤电导率值具有距滴头水平位移50cm20cm0cm的特点,膜间电导率值波动较大。不同水平位置处土壤电导率曲线变化规律相同,随土层深度增加振幅变小。全生育期内0—70cm深度土层不同覆盖方式均起到了一定的脱盐效果,半膜覆盖2个生长季内盐分变化(SA)分别为4.71mg/hm~2和9.24mg/hm~2,全膜覆盖处理SA分别为12.22mg/hm~2和21.55mg/hm~2。全膜覆盖处理可以有效抑制土壤水分蒸发,减弱盐分随水向上运动趋势,创造适宜作物生长的淡盐环境。可为河套灌区膜下滴灌种植模式下田间水盐管理提供理论依据。  相似文献   

16.
Tillage stimulates soil carbon (C) losses by increasing aeration, changing temperature and moisture conditions, and thus favoring microbial decomposition. In addition, soil aggregate disruption by tillage exposes once protected organic matter to decomposition. We propose a model to explain carbon dioxide (CO2) emission after tillage as a function of the no-till emission plus a correction due to the tillage disturbance. The model assumes that C in the readily decomposable organic matter follows a first-order reaction kinetics equation as: dCsail(t)/dt = −kCsoil(t) and that soil C-CO2 emission is proportional to the C decay rate in soil, where Csoil(t) is the available labile soil C (g m−2) at any time (t). Emissions are modeled in terms soil C available to decomposition in the tilled and non-tilled plots, and a relationship is derived between no-till (FNT) and tilled (FT) fluxes, which is: FT=a1FNT ea2t, where t is time after tillage. Predicted and observed fluxes showed good agreement based on determination coefficient (R2), index of agreement and model efficiency, with R2 as high as 0.97. The two parameters included in the model are related to the difference between the decay constant (k factor) of tilled and no-till plots (a2) and also to the amount of labile carbon added to the readily decomposable soil organic matter due to tillage (a1). These two parameters were estimated in the model ranging from 1.27 and 2.60 (a1) and −1.52 × 10−2 and 2.2 × 10−2 day−1 (a2). The advantage is that temporal variability of tillage-induced emissions can be described by only one analytical function that includes the no-till emission plus an exponential term modulated by tillage and environmentally dependent parameters.  相似文献   

17.
Effects of four tillage systems on the albedo of a tropical loamy sand were studied under dry and moist surface conditions. The aim was to determine whether tillage-induced roughness and soil wetness significantly affected soil albedo. Changes in smooth reference surface albedo with respect to four roughness conditions were used to assess tillage effects. Surface albedo (), soil moisture content (θm) and soil surface roughness (δ) were measured. Two types of pyranometers used for albedometers are CM 3 and SP LITE. Mean albedo of a reference smooth surface (<2 mm sieved soil) was 0.16 and 0.20 for CM 3 and SP LITE under moist condition, and 0.29 and 0.28 under dry condition, respectively. Bare-soil shortwave albedo generally increased with an increase in solar zenith angle, whereas albedo decreased with an increase in surface roughness and soil wetness. Linear relationships of albedo with surface roughness and soil moisture content indicated that albedo was more sensitive to surface roughness under dry condition. The goodness-of-fit of a multiple linear regression model combining the effects of roughness and wetness on surface albedo was 0.96 with a standard error of 0.01. This simple model could be used to estimate albedo of bare soil similar to the tropical loamy sand reported in this study. This study provides useful information for modelling tillage effects on the energy budget at the soil surface.  相似文献   

18.
A better understanding of tillage effects on soil organic matter is vital for development of effective soil conservation practices. The objective of this research is to determine the effect of tillage and crop sequence on soil organic carbon (OC) and total nitrogen (TN) content in an irrigated southern Alberta soil. A field experiment was conducted using a split–split plot design from 1994 to 1998 in Alberta, Canada. There were two crop sequences (Sequence 1: spring wheat (Triticum aestivum L.)–sugar beet (Beta vulgaris L.)–spring wheat–annual legume; and Sequence 2: spring wheat–spring wheat–annual legume–sugar beet) and two tillage practices (CT: conventional tillage and MT: minimum tillage). Surface soil under MT had significantly higher OC (30.1 Mg ha−1) content than under CT (28.3 Mg ha−1) after 4 years of treatment. The MT treatment retains crop residue at the soil surface, reduces soil erosion and slows organic matter decomposition, which are key factors in enhancing the soil fertility status of southern Alberta irrigated soils.  相似文献   

19.
为探明不同耕作保墒措施下冬小麦生育期间光合生理特征及其增产机理,采用田间试验,以常规耕作为对照,采用深松、秸秆覆盖、免耕、施用有机肥及保水剂等措施,研究了不同耕作和保墒措施对冬小麦生育期间光合作用、产量及水分利用效率的影响。结果表明:冬小麦光合速率和叶片水分利用效率均以孕穗期最高,而灌浆期最低。蒸腾速率和气孔导度均以扬花期最高。对不同处理而言,在各生育时期均以深松处理的光合速率和叶片水分利用效率最高,其次为秸秆覆盖处理。在拔节期、孕穗期和扬花期以有机肥处理的蒸腾速率最高,而灌浆期以秸秆覆盖的蒸腾速率较高,在全生育期对照的蒸腾速率均较低。气孔导度与蒸腾速率表现规律基本一致。不同耕作、保墒措施均提高了小麦的穗数、穗粒数及千粒重,以及小麦籽粒产量和水分生产效率,降低了小麦总耗水量;各处理中以深松处理的效果最佳,其产量和水分生产效率分别较对照提高19.6%和38.3%。相关分析表明:各时期的小麦光合速率及叶片水分利用效率均与小麦产量和水分生产效率呈正相关,且随生育期的推进,其相关性增强,特别在扬花期,光合速率对于小麦产量和水分生产效率的影响更显著。  相似文献   

20.
Wheel traffic and tillage effects on runoff and crop yield   总被引:1,自引:0,他引:1  
Traffic and tillage effects on runoff, soil water and crop production under rainfall were investigated over a period of 6 years on a heavy clay vertosols (vertisols) in Queensland, Australia. A split plot design was used to isolate traffic effects, while the cropping program and treatments were broadly representative of extensive grain production practice in the northern grain region of Australia. Treatments subject to zero tillage and stubble mulch tillage each comprised pairs of 90 m2 plots, from which runoff was recorded. A 3 m wide controlled traffic system allowed one of each pair to be maintained as a non-wheeled plot, while the complete surface area of the other received a single annual wheeling treatment from a working 100 kW tractor.

Mean annual runoff from controlled traffic plots was 81 mm (36.3%) smaller than that from wheeled plots, while runoff from zero tillage was reduced by 31 mm (15.7%). Traffic and tillage effects appeared to be cumulative, so the mean annual runoff from controlled traffic and zero tillage plots, representing best practice, was 112 mm (47.2%) less than that from wheeled stubble mulch plots, representing conventional cropping practice. Rainfall infiltration into controlled traffic zero tillage soil was thus 12.0% greater than into wheeled stubble mulched soil. Rainfall/runoff hydrographs show that wheeling produced a large and consistent increase in runoff, whereas tillage produced a smaller increase. Treatment effects were greater on dry soil, but were still present in large and intense rainfall events on wet soil.

Plant available water capacity (PAWC) in the 0–500 mm zone increased by 10 mm (11.5%) and mean grain yields increased by 337 kg/ha (9.4%) in controlled traffic plots, compared with wheeled plots. Mean grain yield of zero tillage was 2–8% greater than that of stubble mulch plots for all crops except for winter wheat in 1994 and 1998. Increased infiltration and plant available water were probably responsible for increased mean grain yields of 497 kg/ha (14.5%) in controlled traffic zero tillage, compared with wheeled stubble mulch treatments. Dissipation of tractive and tillage energy in the soil is the apparent mechanism of deleterious effects on the soils ability to support productive cropping in this environment. Controlled traffic and conservation tillage farming systems appear to be a practicable solution.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号