首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
为研究中温固化环氧树脂固化体系改善常见高温固化环氧树脂的应用受限及不足,笔者以双氰胺(DCD)为环氧树脂固化剂,2-甲基咪唑(2-MI)为促进剂,通过溶剂交换和熔融共混相结合的方法制备了环氧树脂/2-甲基咪唑/双氰胺的改性环氧树脂复合材料。试验通过添加不同质量分数的2-MI分析环氧树脂性能的变化。采用冲击、拉伸性能测试、热重分析(TGA)和扫描电镜(SEM)方法研究了复合材料的力学性能、热稳定性及断面形貌。结果表明,2-MI的加入可有效改善体系的拉伸和冲击强度,且加入质量分数为0.4%~0.5%时最佳,断裂伸长率显著提升,起到明显增强和增韧作用。扫描电镜显微镜分析结果表明,加入固化剂的环氧树脂复合材料界面黏合性更好,但2-MI的加入量对体系热稳定性无明显影响。  相似文献   

2.
以天然腰果酚为原料制备了一种腰果酚基环氧磷酸酯(CGEP)稀释剂,并利用CGEP改性双酚A型环氧树脂(E-51)及异佛尔酮二胺(IPDA)固化体系。研究了CGEP用量对环氧树脂E-51的稀释效果及其固化物性能的影响,并采用扫描电镜(SEM)分析了固化物的断面微观形貌。结果表明:CGEP对环氧树脂E-51具有显著的稀释作用;CGEP参与固化交联反应后,环氧树脂固化物的机械性能明显提高,当CGEP添加量为E-51质量的15%时,固化物的冲击强度达到最大值22.06 kJ/m~2;当CGEP添加量为E-51质量的20%时,固化物的拉伸强度与弯曲强度分别达到最大值96.19和99.70 MPa。随着CGEP用量从0%增加到25%,固化物的玻璃化转变温度由144.82℃降至119.10℃,而氧指数(LOI)由19.0提高到23.0。SEM分析表明CGEP对环氧固化物具有显著的增韧效果。  相似文献   

3.
以天然腰果酚为原料制备了一种高活性腰果酚基环氧稀释剂(CDE),利用所制备的CDE与双酚A型环氧树脂(E-51)共混,再与甲基四氢苯酐进行交联固化反应,通过力学性能测试,研究了稀释剂含量对固化物性能的影响。实验结果表明:CDE对E-51有显著的稀释增韧作用;随着CDE含量的增加,固化树脂的玻璃化转变温度逐渐降低;当CDE的加入量为20%时,固化物的冲击强度及拉伸强度达到最大值,分别为19.17 k J/m2和56.81 MPa,弯曲强度为108.8 MPa。  相似文献   

4.
环氧树脂作为海港码头钢管柱常用防腐涂层材料,可防止钢管柱遭受外界环境的腐蚀,保证钢管柱的耐久性。本研究以不同配比的2-乙基-4-甲基咪唑(EMI-2,4)/2-甲基咪唑(2-MI)固化体系与竹木质素基环氧树脂通过溶剂交换与熔融共混的方法制备复合竹木质素基环氧胶,与碳纤维复合进行表面覆盖固化,进而在钢管柱桩外表面形成防腐涂层,使钢管外表面与外部腐蚀环境隔离开,以达到钢管外表面免遭环境介质引起的腐蚀破坏。对防腐涂层进行拉伸、冲击、弯曲等力学性能测试,选出最佳的固化体系配比组分。研究结果表明,随着固化剂添加量的增加,防腐涂层的力学性能呈现先上升后下降的变化趋势,当EMI-2,4/2-MI添加量为6%时,冲击强度和拉伸强度均达到最大值,分别为293.42 MPa和1176 MPa,弯曲性能较1%添加量时提高了14.90%。钢管防腐处理可延长钢管柱在海水浸泡下的使用寿命,降低成本、减少资源损耗,对实现碳达峰、碳中和目标起到积极促进作用。  相似文献   

5.
以大豆胶竹刨花板的静曲强度、弹性模量、内结合强度、2 h吸水厚度膨胀率作为考察指标,探究了刨花板密度、热压温度、热压时间、表层施胶量、防水剂用量等工艺参数对板材性能的影响。结果表明:大豆胶竹刨花板的力学强度随着刨花板密度的增大而增大,最佳密度为740 kg/m3;随着表层施胶量的增大,刨花板的力学强度也随之增大,表层施胶量应12%;随着热压温度的升高和热压时间的延长,刨花板的力学性能也得到了加强,最佳热压温度和时间为210℃和5 min。防水剂的加入能够显著降低刨花板的2 h吸水厚度膨胀率,加入量以0.4%为最佳。  相似文献   

6.
以脱脂大豆粉为原料制备大豆蛋白基胶黏剂(豆胶,S),以普通甲醛制备的酚醛树脂(PF_1)和高浓度甲醛制备的酚醛树脂(PF_2)为交联剂,使用前将两者直接混合得酚醛树脂改性豆胶(PF_1/S、PF_2/S)。利用差示扫描量热(DSC)、红外光谱(FT-IR)、动态热机械性能(DMA)和核磁共振碳谱(~(13) C NMR)分析对产品性能进行了测试与表征。结果表明:等物质的量之比条件下,高浓度甲醛较之普通甲醛制备的酚醛树脂改性豆胶胶合板干、湿剪切强度分别提高4.3%和11.6%,并且强度稳定性好;动态DSC分析表明,PF_2可以降低豆胶体系的固化温度和活化能,与豆胶的交联反应较容易;~(13) C NMR分析表明,PF_2体系羟甲基达88.73%,明显高于PF_1的80.91%;FT-IR分析证实酚醛树脂与豆胶中的氨基发生反应,并且PF_2反应效率更高;DMA分析表明,PF_2/S能够改善胶合产品的力学性能和热稳定性,降低豆胶的固化反应起始温度,提高固化反应速率。  相似文献   

7.
采用偏光显微镜、差示扫描量热仪、热重分析仪、扫描电镜以及力学性能测试仪研究了液晶环氧树脂对生物基腰果酚-糠醛树脂热性能及力学性能的影响,结果表明:联苯二酚二缩水甘油醚(BP)与对氨基苯氨基砜(SAA)经高温固化后可形成液晶(LC)相结构,将BP、SAA与腰果酚-糠醛树脂共混固化,BP与SAA生成的LC相可分散在生物基腰果酚-糠醛树脂基体中,改性树脂的热稳定性及力学性能显著提高。BP-SAA添加量为50%时,玻璃化转变温度由60.4℃提高到70.2℃,热分解温度由300.3℃提高至377.4℃;BP-SAA添加量为30%时,冲击强度达到最大值15 kJ/m2,为未改性的生物基腰果酚-糠醛树脂(4.5 kJ/m2)的3倍。  相似文献   

8.
采用月桂烯马来酸酐(AMMA),二聚酸(DA)与三乙烯四胺(TETA)共聚缩合合成反应型共聚酰胺固化剂(CPA),并通过红外光谱和核磁共振氢谱进行表征。对其与市售品双酚A缩水甘油醚型环氧树脂(E-51)按等当量配比在不同温度下的凝胶时间、力学性能和耐热性能进行了测定。结果表明:综合考虑该新型共聚酰胺的黏度和性能,m(DA)∶m(AMMA)=7∶3较为合适。与C36二聚酸型聚酰胺固化物的性能相比,采用Arrenhinus方程求出的E-51/共聚酰胺固化反应表观活化能(Ea)略低,固化反应活性略高;在二聚酸中加入月桂烯马来酸酐能提高环氧固化物的网络交联密度及刚性,拉伸强度、拉伸模量、弯曲强度和压缩强度均有所提高,断裂伸长率虽下降23.2%,但仍能达到3.47%;此外玻璃化转变温度(Tg)提高了38.8%,且在较高温度范围内(60~90℃)钢-钢剪切强度由13.92 MPa增加到21.68 MPa。该共聚酰胺固化物的综合性能更好,具有较好的市场应用前景。  相似文献   

9.
可逆热致变色木塑复合材料的制备及性能表征   总被引:1,自引:0,他引:1  
为探究木塑复合材料(WPC)的可逆热致变色功能,以原位聚合法合成了表面带有硅烷偶联剂KH550的可逆热致变色结晶紫内酯微胶囊,并将该微胶囊以一定比例添加到WPC中,制备了可逆热致变色WPC,通过力学性能和加热前后表观颜色测定确定微胶囊的最佳添加量。同时,通过动态热机械分析对比了可逆热致变色WPC和普通WPC的动态力学性能。随着微胶囊添加量的增加,可逆热致变色WPC的拉伸强度和弯曲强度先增大后减小,加热前后颜色变化逐渐明显,最后趋于稳定;在动态热机械分析方面,随着温度升高,可逆热致变色WPC和普通WPC的储能模量逐渐降低。和普通WPC相比,加入最佳添加量的微胶囊制备的可逆热致变色WPC在同一温度时的储能模量高于普通WPC,2种WPC的损耗因子峰对应的温度相差很小。结果表明,当微胶囊的添加量为总质量的15%时,可逆热致变色WPC兼具良好的力学性能和可逆热致变色功能,和普通WPC相比,可逆热致变色WPC的界面相容性较好,力学性能优良,且具有与普通WPC相近的玻璃化转变温度,是一种良好性能的功能型WPC。  相似文献   

10.
为实现三聚氰胺-尿素-甲醛树脂(MUF-C)的常温冷固化,在不同固化剂作用下,研究了聚乙烯醇为改性剂的三聚氰胺-尿素-甲醛树脂(MUF-1)的性能特点,并借助核磁共振(13C-NMR)和动态热机械性能(DMA)分析,对树脂结构、热机械性能和固化性能进行表征。结果表明,聚乙烯醇改性树脂在初粘性及物理力学性能方面都能满足集成材用胶粘剂相关标准要求,有望作为一种集成材生产用胶粘剂;不同固化剂对树脂固化效果不同,以过硫酸铵为主剂的自制混合固化剂B作用下树脂固化性能最佳;相比于MUF-C,改性后的MUF-1体系中醚键、桥键总含量大,缩聚程度高,表现出更好的力学性能;在混合固化剂B作用下,MUF-C树脂固化起始温度明显降低,且其弹性模量大幅度增加;加入聚乙烯醇改性后的MUF-1树脂固化起始温度进一步降低。  相似文献   

11.
采用不同的合成工艺,在低摩尔比的前提下设计出三聚氰胺改性脲醛树脂配方,并对三聚氰胺加入量、固化剂的种类及剂量进行探讨,优化出一种最佳工艺。研究表明:二次投料可以有效地降低游离甲醛的含量,提高固含量,但力学性能降低。随着三聚氰胺、固化剂加入量的增加,甲醛释放量明显降低。不同固化体系下胶合板的力学性能不同,甲醛释放量均达到了E_0级,胶接强度也达到了国家标准Ⅱ类板的要求。同时,通过对板的胶接强度和甲醛释放量等指标的测定得出:摩尔比为1.0:1的NQ-J0-1脲醛树脂,同时加入5%的固化体系A,此时的性能最佳。  相似文献   

12.
杨华  谭艺  赵斌  韩丰登  张伟 《林产工业》2016,(12):16-20
针对酚醛树脂固化速度慢、热压温度高等问题,采用Na_2CO_3、(CH_3COO)_2Zn、Ba(OH)_2、LiOH等金属离子作催化剂,合成快速固化改性酚醛树脂。通过理化性能对比分析发现,Ba(OH)_2作为一种低成本催化剂,不仅可以有效提高酚醛树脂固化速度,而且改性酚醛树脂胶制备胶合板的胶合强度明显提高,甲醛释放量有所降低。同时,对Ba(OH)_2催化剂的加入量进行了进一步优化实验,对比了Ba(OH)_2不同加入量对酚醛树脂分子结构和固化行为的影响。研究发现,当改性酚醛树脂中Ba(OH)_2催化剂用量为1.5wt%时,其胶合强度达到1.66 MPa,甲醛释放量相比于纯酚醛树脂明显降低。  相似文献   

13.
以多聚磷酸铵、季戊四醇、三氧化钼(Mo O3)组成无卤协同阻燃体系,研究了Mo O3不同添加量对阻燃体系复合酚醛泡沫的热释放性能、发烟性能及力学性能等的影响。研究结果表明:与纯酚醛泡沫相比,阻燃体系复合酚醛泡沫的极限氧指数(ILO)均值升高了约73%;900℃时的残炭量在Mo O3添加量≤1.5%时略有增加,而后有所降低;热释放速率(HRR)、总热释放量(THR)、氧气消耗量(O2C)、一氧化碳(COP)和二氧化碳产量(CO2P)的均值分别降低了约75%、68%、68%、28%和41%,总烟释放(TSR)均值上升了约72%;从比消光面积(SEA)显著升高和有效燃烧热(EHC)显著降低可知,阻燃体系符合气相阻燃的机理;复合酚醛泡沫的弯曲和压缩强度均值分别降低了约29%和19%。综合分析可知,Mo O3添加量为1.5%时,阻燃体系复合酚醛泡沫的综合性能最优。  相似文献   

14.
本文利用非等温差式扫描量热分析对改性大豆蛋白基胶粘剂体系的固化反应过程进行研究。利用Kissinger方程及Crane方程对固化反应过程进行了动力学分析。结果显示,改性大豆蛋白基胶粘剂的固化反应活化能为0. 926 kJ/mol,反应级数为0. 756,最佳固化温度为133℃。  相似文献   

15.
腰果酚(CD)和1,3-二溴丙烷经Williamson醚化反应得到一种腰果酚二醚化合物(CDE),然后以CDE、多聚甲醛和二乙烯三胺为原料,经Mannich反应制备得到一种浅色的腰果酚二醚曼尼希碱固化剂(MBCDE)。通过傅里叶红外光谱(FT-IR)和核磁共振氢谱(~1H NMR)表征了产物的化学结构,并与氨乙基哌嗪(AEP)进行对比研究其相关性能。通过热重分析(TGA)、扫描电镜(SEM)和力学性能测试研究了两种固化剂与双酚A环氧树脂(DGEBA)固化材料的相关性能。结果表明:MBCDE/DGEBA的最大分解温度为351.6℃,具有良好的热稳定性。AEP/DGEBA环氧固化物的冲击强度为3.641 J/m,而添加80%的MBCDE后固化物的冲击强度则为5.155 J/m,提高了41.6%。SEM分析结果表明MBCDE固化材料中存在相分离。  相似文献   

16.
以马来海松酸(MPA)为原料合成了马来海松酸环氧树脂(MPAER),并将MPAER替代E-51环氧树脂制备了纸基覆铜板,对MPAER和其固化物分别进行了FT-IR表征和TGA测试,研究了MPAER固化物的热性能和MPAER对覆铜板浸胶料凝胶化时间的影响,讨论了MPAER的替代量对覆铜板耐焊性、剥离强度、弯曲强度和燃烧性的影响。研究结果表明:MPAER固化物具有较好的热性能;当MPAER替代量小于60%时,凝胶化时间缩短;MPAER替代量为20%时,所制备覆铜板的综合性能最好,其剥离强度达到1.7 N/mm、耐焊性达到55 s、经/纬向弯曲强度分别达到362.9 N/mm^2和317.7 N/mm^2,均优于E-51环氧树脂覆铜板,且当MPAER替代量小于40%时,覆铜板的阻燃效果达到UL94V-0的最高阻燃级别。  相似文献   

17.
以甲基丙烯酸甲酯(MMA)、丙烯酸正丁酯(BA)和α-甲基丙烯酸(α-MAA)为单体,通过种子乳液聚合制备了聚丙烯酸酯乳液共聚物(PMBM),研究了PMBM玻璃化温度(Tg)分别为80、60和40℃的S1、S2和S3及添加量对纤维素基脲醛树脂模塑料的收缩率、力学性能及热稳定性能等影响,并采用动态力学机械分析(DMA)和电镜扫描(SEM)研究了改性前后脲醛树脂模塑料动态力学性能和冲击断面的微观结构。结果表明,玻璃化温度为40℃的PMBM(S3)对脲醛树脂模塑料的增韧效果最好;当S3添加量为20%时,脲醛树脂模塑料韧性最好,其模塑料收缩率为0.23%,冲击强度为2.47 k J/m2,弯曲强度为75.16 MPa,其中冲击强度和弯曲强度分别比未改性的脲醛树脂模塑料提高了44.4%和39.0%;添加PMBM会降低脲醛树脂模塑料体系的热失重速率,模塑料耐低温性能得到提高。由DMA测试结果可知,S3对模塑料的增韧效果显著,且与脲醛树脂的相容性较好;此外,由SEM分析可知添加20%S3增韧的模塑料断面粗糙,断口光滑,趋于韧性断裂。  相似文献   

18.
采用酚醛(PF)树脂浸渍黄麻纤维毡热压制备复合材料,探讨了预浸料在不同温度(20,30,40,50和60℃)下陈放对黄麻纤维/PF复合材料力学性能的影响,并利用差示扫描量热法(DSC)、傅里叶红外光谱法(FTIR)和扫描电子显微镜(SEM)等手段分析了性能变化的原因。结果显示,陈放温度从20℃升高到40℃时,陈放时间大幅缩短,但陈放温度在40℃以上时陈放时间缩短较少。预浸料在30~50℃之间陈放时,可使复合材料的弯曲性能高于60℃陈放;在30~40℃陈放时,复合材料的冲击强度最高。DSC和FT-IR分析结果表明,陈放温度过高或时间过长会减少PF树脂内的羟甲基含量,降低固化反应程度,最终导致复合材料的力学性能下降。从微观结构观察可知,在40℃陈放时的纤维与树脂结合状况良好。综合考量力学性能和陈放时间,预浸料在40℃陈放能够制备出力学性能较好的黄麻纤维/PF复合材料。  相似文献   

19.
与热塑性聚合物相比,热致液晶聚合物(TLCP)具有更低的黏度和更高的结晶度,以及更好的力学性能,有望用于增强竹塑复合材料(BPC)。利用不同质量分数的热致液晶聚合物(对羟基苯甲酸/2-羟基-6-萘甲酸共聚酯,HBA/HNA)作为增强相,马来酸酐接枝聚丙烯作为界面相容剂,通过熔融共混增强等规聚丙烯(PP),并以增强PP作为基体制备了竹粉质量分数为55%的BPC。通过力学测试、动态力学分析、差热分析、X射线衍射、蠕变分析、热重分析和热机械分析等方法,研究了HBA/HNA对BPC力学性能、结晶行为、蠕变行为和热稳定性的影响。结果显示,当HBA/HNA质量分数为PP质量的3%时,BPC的冲击强度和弯曲强度分别提高了35%和10%,而过高的HBA/HNA质量分数会降低增强效果。HBA/HNA未改变PP基体的晶型,但显著提高了PP的结晶温度、结晶速率和结晶度。刚性HBA/HNA限制了PP基体分子链的运动、滑移和取向,从而提高了30℃时BPC的抗蠕变能力。HBA/HNA的加入降低了BPC在30~60℃时厚度方向上的线性热膨胀系数和热膨胀率,提高了BPC的热稳定性。因此,通过HBA/HNA改性PP是提升BPC性能的有效方法。  相似文献   

20.
用多亚甲基多苯基多异氰酸酶PAPI)、二羟甲基丙酸(DMPA)为原料,丁酮肟作封闭剂,三乙胺作中和剂,制备了水性封闭异氰酸酯(WBI),考察了DMPA对WBI稳定性及解封闭温度的影响。并用WBI作固化剂与改性聚乙烯醇乳液制备无醛胶合板,研究固化剂量、施胶量、热压温度等对无醛胶合板剪切强度的影响。结果表明:当DMPA质量分数为12%时,WBI的外观和稳定性最佳;当固化剂为10%,施胶量290g/m~2,热压温度为180℃时,制备的无醛胶合板剪切强度可达1.36MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号