首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the interactive effects of elevated CO2 concentration ([CO2]) and water stress on growth and physiology of 1-year-old peach (Prunus persica L.) seedlings grown in 10-dm3 pots in open-top chambers with ambient (350 micromol mol-1) or elevated (700 micromol mol-1) [CO2]. Seedlings were supplied weekly with a non-limiting nutrient solution. Water was withheld from half of the plants in each treatment for a 4-week drying cycle, to simulate a sudden and severe water stress during the phase of rapid plant growth. Throughout the growing season, seedlings in elevated [CO2] had higher assimilation rates, measured at the growth [CO2], than seedlings in ambient [CO2], and this caused an increase in total dry mass of about 33%. Stomatal conductance, total water uptake, leaf area and leaf number were unaffected by elevated [CO2]. Because seedlings in the two CO2 treatments had similar transpiration despite large differences in total dry mass, water-use efficiency (WUE) of well-watered and water-stressed seedlings grown in elevated [CO2] was an average of 51 and 63% higher, respectively, than WUE of comparable seedlings grown in ambient [CO2]. Elevated [CO2] enhanced total biomass of water-stressed seedlings by 31%, and thus ameliorated the effects of water limitation. However, the percentage increases in total dry mass between well-watered and water-stressed seedlings were similar in ambient (53%) and elevated (58%) [CO2], demonstrating that there was no interaction between elevated [CO2] and water stress. This finding should be considered when predicting responses of trees to global climate change in hot and dry environments, where predicted temperature increases will raise evaporative demands and exacerbate the effects of drought on tree growth.  相似文献   

2.
Two-year-old, container-grown red spruce (Picea rubens Sarg.) seedlings from a New Hampshire seed source were exposed to 10 or 11 drying cycles in which the seedlings were not watered until their midday (1400 h) xylem water potentials averaged -1.57 MPa. Control seedlings were kept well watered to maintain midday water potentials of about -0.73 MPa. After the final drying cycle, the water-stressed seedlings were rehydrated and osmotic potentials were determined by pressure-volume analysis. Gas exchange at ambient CO(2) concentration (338 ppm) and at an elevated CO(2) concentration (838 ppm) was measured on both groups of plants as they slowly dried down. No osmotic adjustment or photosynthetic acclimation occurred as a result of the water-stress treatment and both groups of seedlings maintained photosynthesis to water potentials as low as -3.0 MPa. Twenty-four hours after rehydration, the water-stressed seedlings had photosynthetic rates as high as the control seedlings. Estimated stomatal limitation to photosynthesis was approximately 30% down to water potentials of -1.4 MPa, but increased steadily as water potentials decreased further. At ambient CO(2) concentrations (338 ppm) and water potentials averaging -2.45 MPa, photosynthetic rates of water-stressed seedlings were 15% those of well-watered seedlings, whereas when the same water-stressed seedlings were measured in the presence of an elevated concentration of CO(2) (838 ppm) their photosynthetic rates were 73% those of well-watered seedlings measured at an ambient CO(2) concentration (338 ppm).  相似文献   

3.
Responses of net photosynthesis (A), leaf conductance to water vapor (g(wv)) and instantaneous water use efficiency (WUE) to decreasing leaf and soil water potentials (Psi(l), Psi(s)) were studied in three-month-old white oak (Quercus alba L.), post oak (Q. stellata Wangenh.), sugar maple (Acer saccharum Marsh.), and black walnut (Juglans nigra L.) seedlings. Quercus seedlings had the highest A and g(wv) when plants were well watered. As the soil was allowed to dry, both A and g(wv) decreased; however, trace amounts of A were observed at a Psi(l) as low as -2.9 MPa in Q. stellata and -2.6 MPa in Q. alba and A. saccharum. Photosynthesis was not measurable at Psi(l) lower than -2.2 MPa in J. nigra and water stress-induced leaflet senescence was observed in this species. Within each species, g(wv) showed a similar relationship to soil and leaf Psi, but the response to Psi(l) was shifted to more negative values by 1.2 to 1.6 MPa. As Psi(s) declined below -1 MPa, the difference between soil and leaf Psi diminished because of the suppression of transpiration. There was no indication that Psi(s) had a more direct influence on g(wv) than did Psi(l). Water use efficiency showed an initial increase as the soil dried, followed by a decline under severe water stress. Water use efficiency was highest in J. nigra, intermediate in Quercus species and lowest in A. saccharum. There was an evident relationship between gas exchange characteristics and natural distribution in these species, with the more xeric species showing higher A and g(wv) under both well-watered and water-stressed conditions. There was no trend toward increased efficiency of water use in the more xeric species.  相似文献   

4.
Ten-year-old 'Tai So' lychee (Litchi chinensis Sonn.) trees growing on a sandy loam soil in subtropical South Africa (latitude 25 degrees S) were watered weekly (well-watered treatment) or droughted from late July until January (drought treatment). After 16 weeks, at which time the trees obtained most of their water from below 150 cm, average soil water content at 0 to 150 cm depth was 14.5 +/- 0.1% in the well-watered treatment and reached a minimum of 7.6% in the drought treatment. At Week 7, minimum leaf water potential (Psi(L)) in the morning and early afternoon declined to -2.6 and -2.8 MPa, respectively, in droughted trees compared with -1.5 and -2.2 MPa, respectively, in well-watered trees. From Week 9, stomatal conductance and net CO(2) assimilation rate ranged from 70 to 300 mmol m(-2) s(-1) and 3 to 13 micro mol CO(2) m(-2) s(-1), respectively, in well-watered trees. The corresponding values for droughted trees were 50 to 180 mmol m(-2) s(-1) and 2 to 6 micro mol CO(2) m(-2) s(-1). Five weeks after rewatering the droughted trees, gas exchange had not recovered to the rate in well-watered trees, although tree water status recovered within a week of rewatering. In the well-watered trees, water use (E(t)) was 26 +/- 1 mm week(-1) with evaporation (E(p)) of 20 to 70 mm week(-1) indicating a crop factor (k(c) = E(t)/E(p)) of 0.4 to 1.2. Before anthesis, tree water status did not affect extension growth of floral panicles or leafy shoots. In contrast, no vegetative shoots were initiated after fruit set in the droughted trees when Psi(L) in the morning declined to -2.5 MPa. Water deficits reduced initial fruit set by 30% and final fruit set by 70% as a result of fruit splitting (41.2 +/- 4.0% versus 10.0 +/- 1.3%). Water deficits did not alter the sigmoidal pattern of fruit growth, but reduced yield from 51.4 +/- 5.5 kg tree(-1) in well-watered trees to 7.4 +/- 3.3 kg tree(-1) in droughted trees.  相似文献   

5.
We studied diurnal changes in water conduction during soil dehydration in 37-month-old seedlings of one Virginia pine (Pinus virginiana Mill.) and two loblolly pine (P. taeda L.) sources, one from North Carolina (NC) and the other from the "Lost Pines" areas of Texas (TX), in an environmentally controlled growth chamber. For seedlings of similar biomass, the TX source had higher values of transpiration, needle conductance, and plant hydraulic conductivity under well-watered conditions than the NC source. Under dry soil conditions, the TX source had lower values of water conduction than the NC source. The Virginia pine source responded similarly to the TX source under both well-watered and dry soil conditions. For all three pine sources, gradients between soil and needle water potentials were greatest when the seedlings were moderately stressed. The TX and Virginia pine sources had higher gradients and lower daytime needle water potentials under moderate stress conditions than the NC source. Predawn needle water potentials did not differ among the pine sources. We conclude that the TX and Virginia pine sources have decreased daytime needle water potentials and increased water potential gradients during the daytime under moderate stress conditions, but with no disruption of recovery at predawn. The greater rates of transpiration and water conduction by the TX source compared with the NC source under well-watered conditions suggest a means by which growth can be maximized prior to the onset of drought, thereby enhancing survival of loblolly pines in drought-prone environments.  相似文献   

6.
A glasshouse experiment was performed with Acacia auriculiformis seedlings to investigate the effects of decreased soil water potential on phyllode extension, abscission and solar conversion efficiency, e. Six-month-old seedlings were subjected for 39 days to one of four treatments: well watered (soil water potential maintained above -0.5 MPa), moderately drought stressed (soil water potential maintained above -1.5 MPa), severely drought stressed (soil water potential maintained above -2.5 MPa) and well watered but pruned to maintain a leaf area approximating that of the severely drought-stressed treatment. Aboveground biomass accumulation decreased by 21% below that of the well-watered controls in the moderately drought-stressed seedlings and by 47% in the severely drought-stressed seedlings as a result of both decreased interception of solar radiation and lower e. Differences in phyllode extension rate, rather than in phyllode abscission, were primarily responsible for the differences in interception of solar radiation among treatments. Decreases in phyllode extension rate and water use occurred simultaneously in response to decreasing soil water potential. Specific leaf area decreased and water use efficiency increased in response to drought stress.  相似文献   

7.
水分胁迫对栓皮栎幼苗生理特性及生长的影响   总被引:11,自引:0,他引:11  
通过盆栽实验,研究了在不同的水分条件下栓皮栎幼苗生理特性的变化和苗木生长量的变化。研究表明,在水分胁迫初期,随土壤含水量的降低,栓皮栎叶片的净光合速率、蒸腾速率下降,而水分利用效率提高。在水分胁迫末期,由于长期的干旱胁迫,水分条件最差的一组苗木已干枯死亡,土壤含水量从38.123%下降到20.323%时,净光合速率和蒸腾速率均下降,水分利用效率也下降。随着土壤含水量的降低,苗高、地径和生物量均有下降的趋势,其中生物量下降的幅度最大。  相似文献   

8.
梭梭(HaloxylonAmmodendronBge,一种C4灌木)苗种植在15升的容器中,给予不同的水分胁迫处理,研究了其水分关系和气体交换特征。结果表明:当土壤水分含量大于11%时,梭梭苗有高的蒸腾量;土壤水分含量低于6%时,苗木就不能从土壤中吸取水分;很好供水的苗木的蒸腾量与潜在蒸发量成线型相关。气体交换测定发现,随着土壤水分含量的下降,造成了不同程度的气孔导度、叶蒸腾强度和光合作用的下降。对同一苗木而言,由于这个地区有高的水气压亏缺(VPD),很好和中度供水的苗木在气孔反应方面有较宽的范围,气孔在决定光合作用方面起着较小的作用,二者没有明显的线型相关关系。虽然水分胁迫使蒸腾速率比光合速率下降的更快,提高了水分利用效率,而较高的蒸发需求增加了蒸腾量,限制了光合作用,但是总的趋势是光合作用和蒸腾强度成线型相关。图6表2参15。  相似文献   

9.
Leaf conductance, water relations, growth, and abscisic acid (ABA) concentrations in xylem sap, root apices and leaves were assessed in oak seedlings (Quercus robur L.) grown with a root system divided between two compartments and subjected to one of four treatments: (a) well watered, WW; (b) half of root system exposed to soil drying and half kept well watered, WD; (c) whole root system exposed to drought, DD; and (d) half of root system severed, RE. Sharp decreases in plant stomatal conductance, leaf water potential, hydraulic conductance and leaf growth were observed during DD treatment. No significant differences in plant leaf water potential and stomatal conductance were detected between the WW and WD treatments. Nevertheless, the WD treatment resulted in inhibition of leaf expansion and stimulation of root elongation only in the well-watered compartment. Abscisic acid concentrations did not change in leaves, root tips, or xylem sap of WD- compared to WW-treated plants. Increased concentrations of ABA were observed in xylem sap from DD-treated plant roots, but the total flux of ABA to shoots was reduced compared to that in WW-treated plants, because of decreases in transpiration flux. Similar plant responses to the WD and RE treatments indicate that the responses observed in the WD-treated plants were probably not triggered by a positive signal originating from drying roots.  相似文献   

10.
Container-grown walnut seedlings (Juglans regia L.) were subjected to competition with rye grass (Lolium perenne L.) and to a 2-week soil drying cycle. One and 2 weeks after the beginning of the drought treatment, H2 18O (delta approximately equals +100%) was added to the bottom layer of soil in the plant containers to create a vertical H2 18O gradient. Rye grass competition reduced aboveground and belowground biomass of the walnut seedlings by 60%, whereas drought had no effect. The presence of rye grass reduced the dry weight of walnut roots in the upper soil layer and caused a 50% reduction in lateral root length. Rye grass competition combined with the drought treatment reduced walnut leaf CO2 assimilation rate (A) and leaf conductance (gw) by 20 and 39%, respectively. Transpiration rates in rye grass, both at the leaf level and at the plant or tiller level, were higher than in walnut seedlings. Leaf intrinsic water-use efficiency (A/gw) of walnut seedlings increased in response to drought and no differences were observed between the single-species and mixed-species treatments, as confirmed by leaf carbon isotope discrimination measurements. Measurement of delta18O in soil and in plant xylem sap indicated that the presence of rye grass did not affect the vertical profile of soil water uptake by walnut seedlings. Walnut seedlings and rye grass withdrew water from the top and middle soil layers in well-watered conditions, whereas during the drought treatment, walnut seedlings obtained water from all soil layers, but rye grass took up water from the bottom soil layer only.  相似文献   

11.
Stomatal conductance, transpiration and xylem pressure potential of African locust bean (Parkia biglobosa (Jacq.) Benth.) seedlings subjected from the sixth week after emergence to four weeks of continuous soil drought did not differ from those of well-watered, control plants until two-thirds of the available soil water had been used. In both well-watered and drought-treated plants, stomatal conductance was highest early in the day when vapor pressure deficits were low, but decreased sharply by midday when evaporative demand reached its highest value. There was no increase in stomatal conductance later in the day as vapor pressure deficit declined. The relationship between transpiration rate and xylem pressure potential showed non-linearity and hysteresis in both control and drought-treated plants, which seems to indicate that the plants had a substantial capacity to store water. The rate of leaf extension in African locust bean seedlings subjected to six consecutive 2-week cycles of soil drought declined relative to that of well-watered, control plants, whereas relative root extension increased. It appears that African locust bean seedlings minimized the impact of drought by: (1) restricting transpiration to the early part of the day when a high ratio of carbon gain to water loss can be achieved; (2) utilizing internally stored water during periods of rapid transpiration; (3) reducing the rate of leaf expansion and final leaf size in response to soil drought without reducing the rate of root extension, thereby reducing the ratio of transpiring leaf surface area to absorbing root surface area.  相似文献   

12.
We examined the extent of osmotic adjustment and the changes in relative water content (RWC) and transpiration rate (i.e., relative stomatal function) that occur in water-deficit-conditioned 6-year-old Thuja occidentalis L. (eastern white cedar) trees in response to a severe drought. Trees conditioned by successive cycles of mild or moderate nonlethal water stress (conditioning) and nonconditioned trees were exposed to drought (i.e., -2.0 MPa predawn water potential) to determine if water deficit conditioning enhanced tolerance to further drought stress. Following drought, all trees were well watered for 11 days to evaluate how quickly osmotic potential, RWC and transpiration rate returned to preconditioning values. Both nonconditioned trees and mildly conditioned trees exhibited similar responses to drought, whereas moderately conditioned trees maintained higher water potentials and transpiration rates were 38% lower. Both conditioned and nonconditioned trees exhibited a similar degree of osmotic adjustment (-0.39 MPa) in response to drought relative to the well-watered control trees. The well-watered control trees, nonconditioned trees and mildly conditioned trees had similar leaf RWCs that were about 3% lower than those of the moderately conditioned trees. Following the 11-day stress relief, there were no significant differences in osmotic potential between the well-watered control trees and any of the drought-treated trees. Daily transpiration rates and water potential integrals (WPI) of all drought-treated trees approached those of the well-watered control trees during the stress relief period. However, the relationship between cumulative transpiration and WPI showed that previous exposure to drought stress reduced transpiration rates. Leaf RWC of the moderately conditioned trees remained slightly higher than that of the nonconditioned and mildly conditioned trees.  相似文献   

13.
Leaf growth, rate of leaf photosynthesis and tissue water relations of shoots of Eucalyptus marginata Donn ex Sm. (jarrah) seedlings were studied during a soil drying and rewatering cycle in a greenhouse experiment. Rates of leaf growth and photosynthesis were sensitive to water deficits. The rate of leaf growth decreased linearly with predawn leaf water potential to reach zero at -1.5 MPa. Rate of leaf growth did not recover completely within the first three days after rewatering. Midday photosynthetic rates declined to 40% of those of well-watered seedlings at a predawn leaf water potential of -1.0 MPa and reached zero at -2.2 MPa. Photosynthetic rate recovered rapidly following rewatering and almost fully recovered by the second day after rewatering. All tissue water relations parameters, except the bulk modulus of elasticity, changed significantly as the soil dried and recovered completely by the third day after rewatering. Changes in osmotic pressure at full turgor of 0.4 MPa indicated considerable capacity for osmotic adjustment. However, because there was little osmotic adjustment until predawn leaf water potential fell below -1.5 MPa, this capacity would not have enhanced seedling growth, although it may have increased seedling survival. The sensitivity of photosynthesis and relative water content to water deficits suggests that greenhouse-grown E. marginata seedlings behave like mesophytic plants, even though E. marginata seedlings naturally grow in a drought-prone environment.  相似文献   

14.
Barnes AD 《Tree physiology》2002,22(10):733-740
One-year-old loblolly pine (Pinus taeda L.) seedlings from four seed sources (Arkansas, Georgia, Texas and Virginia) grown in 1-m-deep sand-filled pits in two water regimes (well-watered and drought) were studied, to gain insight into the process of seedling establishment. Whole-plant transpiration was measured biweekly from July to December. Whole-plant harvests were conducted at 6-week intervals from April to December. Whole-plant transpiration and transpiration per unit leaf and root area were affected by treatment, seedlot and phenology. Seedlings of the Arkansas seedlot maintained significantly higher transpiration rates per unit leaf and root area during drought than seedlings of the Virginia, Georgia or Texas seedlots, but did not accumulate greater biomass. The high transpiration rates of the Arkansas seedlings were attributed to their deep root systems. Allometric relationships indicated that, relative to the whole plant, biomass allocation to needles of drought-treated seedlings was enhanced during the summer (allometric ratio 1.09), whereas allocation to roots was enhanced in the spring and fall (allometric ratios of 1.13 and 1.09, respectively). Relative to the whole plant, biomass allocation to needles of well-watered seedlings was enhanced throughout the experiment (allometric ratio of 1.16 declining to 1.05), whereas the allometric ratio of root to total biomass was 0.89 or less throughout. Allometric relationships also indicated variation in biomass partitioning to roots in three soil layers (0-30, 30-60 and 60-100 cm), which differed among harvests in each soil layer. Root growth in both well-watered and drought-treated seedlings was concentrated in the top soil layer in the spring, shifted to the middle and bottom soil layers in the summer, and then increased in the top soil layer in the fall. Compared with well-watered seedlings, drought-treated seedlings had higher rates of root growth in the bottom soil layer in the fall, a characteristic that would confer tolerance to future periods of limited soil water availability.  相似文献   

15.
Osmotic adjustment of loblolly pine (Pinus taeda L.) seedlings to fluctuating water supply in elevated CO(2) was investigated. Seedlings were grown in controlled-environment chambers in either 350 or 700 micro l l(-1) CO(2) with weekly watering for four months, after which they were either watered weekly (well-watered treatment) or every two weeks (water-stress treatment) for 59 days. Osmotic adjustment was assessed by pressure-volume analysis of shoots and by analysis of soluble carbohydrates and free amino acids in roots during the last drying cycle. In well-watered seedlings, elevated CO(2) increased the concentration of soluble sugars in roots by 68%. Water stress reduced the soluble sugar concentration in roots of seedling growing in ambient CO(2) to 26% of that in roots of well-watered seedlings. Elevated CO(2) mitigated the water stress-induced decrease in the concentration of soluble sugars in roots. However, this was probably due, in part, to carbohydrate loading during the first four months when all seedlings were grown in the presence of a high water supply, rather than to osmotic adjustment to water stress. Water stress caused a doubling in the concentration of free primary amino acids in roots, whereas elevated CO(2) reduced primary amino acid and nitrogen concentrations to 32 and 74%, respectively, of those in roots of seedlings grown in ambient CO(2). There was no indication of large-scale osmotic adjustment to water stress or that elevated CO(2) enhanced osmotic adjustment in loblolly pine.  相似文献   

16.
One-year-old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and lodgepole pine (Pinus contorta Dougl.) seedlings were grown for 17 weeks in 100-cm deep, 7.8-liter containers. Two Douglas-fir provenances, one from a wet and one from a dry site in coastal British Columbia, and two lodgepole pine provenances, one from a wet and one from a dry site in interior British Columbia, were grown in wet (522% water content) or dry (318% water content) peat/vermiculite soil in a factorial design. Each container was sealed so that water loss occurred only through the seedling. Five harvests were made at three to five week intervals and water use, dry matter increment, root length and root weight were determined at each harvest. Stomatal conductance and shoot water potentials were measured during the last 12 weeks of the experiment. Lodgepole pine seedlings had greater dry matter production, water use, stomatal conductance and new root length than Douglas-fir seedlings. New root weight of lodgepole pine seedlings exceeded that of Douglas-fir seedlings during the last five weeks of the experiment, and specific root length (root length per unit root weight) of new roots was higher for lodgepole pine seedlings throughout the experiment. Douglas-fir seedlings showed higher water use efficiency (WUE) than lodgepole pine seedlings, and both species showed higher WUE in the dry soil treatment. Douglas-fir seedlings had lower water potentials and higher water uptake rates per unit of new root length than lodgepole pine seedlings, although water uptake rates per unit of root dry weight showed little difference between species. Soil water treatment influenced specific root length of new roots, water uptake per unit of new root length, and WUE in Douglas-fir seedlings more than in lodgepole pine seedlings.  相似文献   

17.
One of the main constraints of reforestation in the Mediterranean region is low summer water availability during the first years after out planting. Plant water availability depends on the precipitation regime, but also on the physical properties of the soil. Higher survival rates result when seedlings are soil acclimated. Our main goal was to describe the morpho-physiological responses of 6-, 10- and 18-month-old Quercus coccifera seedlings growing in a natural soil (terra rossa) or a standard nursery growing medium, and to assess in the nursery if seedlings growing in natural soil were more resistant to deficit irrigation. The high growth rate achieved after 10?C18 months by terra rossa-grown seedlings in contrast with those grown in the nursery substrate suggests that the former were acclimated to the soil. Higher photosynthetic rate (A), transpiration (E) and stomatal conductance (gs) were observed in terra rossa seedlings, mainly during the first months. The higher carbon availability may account for the higher root nitrogen concentration in terra rossa-grown seedlings, which could favor their later field growth. Low-watered seedlings showed a certain degree of hardening, since after 18 months, they showed higher A, E, gs and lower photoinhibition than well-watered seedlings, likely attributable to the sharp leaf-to-root biomass ratio reduction. Carbon isotope discrimination (??) values were similar to those of well-watered plants and indicated a non-stomatal component as the main factor controlling photosynthesis in these leaves. Eighteen-month-old low irrigated seedlings had the highest mortality. Overall, results suggest that nursery terra rossa-acclimated Q. coccifera seedlings with improved physiological status and hydraulic soil-root continuity would have a higher survival rate in the field.  相似文献   

18.
Photosynthetic utilization of water and nitrogen in Ulmus americana L. seedlings was tightly linked with the relative availability of each resource. During periodic drying cycles, water use efficiency increased as predawn water potential fell from -0.5 to -2.0 MPa. During the later stages of such drying cycles, the relative contribution of stomatal limitations to the total net photosynthetic limitation appeared to be at its greatest, whereas biochemical limitations were predominant in well-watered plants grown under low nitrogen (N) availability. For any level of leaf water status, water use efficiency of photosynthesis (WUE) was always greater in plants with high leaf N content than in plants with low leaf N content. Photosynthetic nitrogen use efficiency (PNUE) was always greater in plants with low leaf N content than in plants with high leaf N content, for any level of water status. In combined N treatments and predawn water status classes, there was a significant inverse relationship between PNUE and WUE.  相似文献   

19.
Daily transpiration rates of woody species on drying soil   总被引:2,自引:0,他引:2  
Among annual plants, daily transpiration rates, expressed as a fraction of volumetric soil water content available for transpiration, show a common pattern in response to soil drying. Initially, as soil dries, there is little decrease in transpiration rate until water availability has fallen to about one third that at field capacity. With further soil drying, relative transpiration rate decreases in a more-or-less linear fashion until all available water has been used. Data previously obtained for perennial woody species have often been confounded by different methods for determining available soil water. In this study, we investigated the daily transpiration response to soil drying in five woody perennial species: Thuja plicata Donn ex D. Don, Acer rubrum L., Robinia pseudoacacia L., Hibiscus sp. and Ibex aquifolium L. Transpiration was unaffected by soil drying until the initial estimated transpirable soil water fraction had decreased to between 0.23 and 0.32 of that at field capacity. Beyond this point, transpiration rate declined linearly with available soil water fraction until reaching one fifth the rate observed in well-watered plants. With further soil drying, the relative transpiration rates remained between 10 and 20% of that observed in well-watered plants. Maintenance of transpiration at these rates with further soil drying was hypothesized to result from contributions to transpiration of water stored in plant tissues. After taking tissue water storage into account, it was estimated that transpiration was curtailed as the available soil water fraction fell to between 0.26 and 0.37 of that at field capacity, which is comparable to values reported for annual crop plants.  相似文献   

20.
The competition effects of the perennial bunch-grass (Elymus glaucus B.B.) on the growth and survival of the oak seedlings (Quercus douglasii H. & A.) were investigated. There were four levels of Elymus competition, replicated three times. The three densities ofElymus employed were zero (control), 50 (Low — ‘L’ -), 116 (Medium — ‘M’ -) and 199 (High — ‘H’ -) plants m?2. Rates of soil water depletion, stomatal conductance, transpiration, shoot elongation and leaf expansion rates were measured between 23 March and 26 May 1988. Rates of soil water depletion, stomatal conductance and transpiration differed amongst the treatments and were higher in the control for the duration of the experiment. Shoot elongation rate (SER) and leaf expansion rate (LER) of blue oak seedling were directly related to soil water potentials. Zero values of LER rates for all treatments were observed at soil water potentials lower than?1.91 MPa, and concurrent reductions of stomatal conductance indicated stomatal closure due to the soil water deficit. In the control treatment, transpiration alone was not high enough to deplete soil moisture and to reduce LER of the oak seedlings. Leaf dessication occurred first in the H and M treatments (53% of seedlings dessicated) and two weeks later in the L treatment (37% dessicated) when the soil water potential was approximately ?4.0 MPa. The number of reproductive tillers and seed dry weight indicated thatElymus plants were under water stress from April 25 and concluded on May 25 with an early summer dormancy in all treatments. Data indicated that light intensity of 50% of ambient did not limit the development of oak seedlings. The results suggested that density of the perennial bunch-grassElymus glaucus lower than 50 plants m?2 could allow survival and successful establishment of blue oak in understories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号