首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Strong magnetic fluctuations can provide a coupling mechanism for electrons that leads to unconventional superconductivity. Magnetic order and superconductivity have been found to coexist in a number of magnetically mediated superconductors, but these order parameters generally compete. We report that close to the upper critical field, CeCoIn5 adopts a multicomponent ground state that simultaneously carries cooperating magnetic and superconducting orders. Suppressing superconductivity in a first-order transition at the upper critical field leads to the simultaneous collapse of the magnetic order, showing that superconductivity is necessary for the magnetic order. A symmetry analysis of the coupling between the magnetic order and the superconducting gap function suggests a form of superconductivity that is associated with a nonvanishing momentum.  相似文献   

2.
We present studies of the electronic structure of La(2-x)BaxCuO4, a system where the superconductivity is strongly suppressed as static spin and charge orders or "stripes" develop near the doping level of x = (1/8). Using angle-resolved photoemission and scanning tunneling microscopy, we detect an energy gap at the Fermi surface with magnitude consistent with d-wave symmetry and with linear density of states, vanishing only at four nodal points, even when superconductivity disappears at x = (1/8). Thus, the nonsuperconducting, striped state at x = (1/8) is consistent with a phase-incoherent d-wave superconductor whose Cooper pairs form spin-charge-ordered structures instead of becoming superconducting.  相似文献   

3.
In the interlayer theory of high-temperature superconductivity, the interlayer pair tunneling energy (similar to the Josephson or Lawrence-Doniach energy) is the motivation for superconductivity. This connection requires two experimentally verifiable identities: the coherent normal-state conductance must be smaller than the "Josephson" coupling energy, and the Josephson coupling energy must be equal to the condensation energy of the superconductor. The first condition is well satisfied in the only case that is relevant, (La, Sr)2CuO4, but the second condition has been questioned. It is satisfied for all dopings in (La,Sr)2CuO4 and also in optimally doped Hg(Ba)2CuO5, which was measured recently, but seems to be strongly violated in measurements on single crystals of Tl2Ba2CuO6.  相似文献   

4.
The case is made that the spin-liquid state of a Mott insulator, hypothesized to exist by Anderson and identified by him as the correct context for discussing high-temperature superconductors, occurs in these materials and exhibits the principles of fractional quantization identified in the fractional quantum Hall effect. The most important of these is that particles carrying a fraction of an elementary quantum number, in this case spin, attract one another by a powerful gauge force, which can lead to a new kind of superconductivity. The temperature scale for the superconductivity is set by an energy gap in the spin-wave spectrum, which is also the fundamental measure of how "liquid" the spins are.  相似文献   

5.
Superconductivity is related to the presence of a narrow forbidden gap in the spectrum of the possible energies for the electrons in the material. These "superconductivity gaps" have traditionally been studied with tunneling and infrared absorption experiments. A third, powerful technique has been made possible by the discovery of hightransition temperature materials: the direct observation of the gap in photoemission spectra. The data analysis requires a careful reconsideration of the standard Einstein-Fermi model of the photoelectric effect. The conclusions are surprisingly simple and offer an alternate way to measure superconductivity gaps. This approach can also be used to study the directional properties of the gap, phenomena related to the coherence length, and possible departures from Fermi-liquid behavior.  相似文献   

6.
Removing electrons from the CuO2 plane of cuprates alters the electronic correlations sufficiently to produce high-temperature superconductivity. Associated with these changes are spectral-weight transfers from the high-energy states of the insulator to low energies. In theory, these should be detectable as an imbalance between the tunneling rate for electron injection and extraction-a tunneling asymmetry. We introduce atomic-resolution tunneling-asymmetry imaging, finding virtually identical phenomena in two lightly hole-doped cuprates: Ca(1.88)Na(0.12)CuO(2)Cl2 and Bi2Sr2Dy(0.2)Ca(0.8)Cu2O(8+delta). Intense spatial variations in tunneling asymmetry occur primarily at the planar oxygen sites; their spatial arrangement forms a Cu-O-Cu bond-centered electronic pattern without long-range order but with 4a(0)-wide unidirectional electronic domains dispersed throughout (a(0): the Cu-O-Cu distance). The emerging picture is then of a partial hole localization within an intrinsic electronic glass evolving, at higher hole densities, into complete delocalization and highest-temperature superconductivity.  相似文献   

7.
The oxide superconductors, particularly those recently discovered that are based on La(2)CuO(4), have a set of peculiarities that suggest a common, unique mechanism: they tend in every case to occur near a metal-insulator transition into an odd-electron insulator with peculiar magnetic properties. This insulating phase is proposed to be the long-sought "resonating-valence-bond" state or "quantum spin liquid" hypothesized in 1973. This insulating magnetic phase is favored by low spin, low dimensionality, and magnetic frustration. The preexisting magnetic singlet pairs of the insulating state become charged superconducting pairs when the insulator is doped sufficiently strongly. The mechanism for superconductivity is hence predominantly electronic and magnetic, although weak phonon interactions may favor the state. Many unusual properties are predicted, especially of the insulating state.  相似文献   

8.
The origin of superconductivity in the iron pnictides has been attributed to antiferromagnetic spin ordering that occurs in close combination with a structural transition, but there are also proposals that link superconductivity to orbital ordering. We used bulk-sensitive laser angle-resolved photoemission spectroscopy on BaFe(2)(As(0.65)P(0.35))(2) and Ba(0.6)K(0.4)Fe(2)As(2) to elucidate the role of orbital degrees of freedom on the electron-pairing mechanism. In strong contrast to previous studies, an orbital-independent superconducting gap magnitude was found for the hole Fermi surfaces. Our result is not expected from the superconductivity associated with spin fluctuations and nesting, but it could be better explained invoking magnetism-induced interorbital pairing, orbital fluctuations, or a combination of orbital and spin fluctuations. Regardless of the interpretation, our results impose severe constraints on theories of iron pnictides.  相似文献   

9.
The magnon pairing mechanism is derived to explain the high-temperature superconductivity of both the La2-xSrxCu(1)O(4) and Y(1)Ba(2)Cu(3)O(7) systems. Critical features include (i) a one- or two-dimensional lattice of linear Cu-O-Cu bonds that contribute to large antiferromagnetic (superexchange) coupling of the Cu(II)(d(9)) orbitals; (ii) holes in the oxygen ppi bands [rather than Cu(III)(d(8))] leading to high mobility hole conduction; and (iii) strong ferromagnetic coupling between oxygen ppi holes and adjacent Cu(II)(d(9)) electrons. The ferromagnetic coupling of the conduction electrons with copper d spins induces the attractive interaction responsible for the superconductivity, leading to triplet-coupled pairs called "tripgems." The disordered Heisenberg lattice of antiferromagnetically coupled copper d spins serves a role analogous to the phonons in a conventional system. This leads to a maximum transition temperature of about 200 K. For La(1.85)Sr(0.15)Cu(1)O(4), the energy gap is in excellent agreement with experiment. For Y(1)Ba(2)Cu(3)O(7), we find that both the CuO sheets and the CuO chains can contribute to the supercurrent.  相似文献   

10.
《Science (New York, N.Y.)》1987,236(4805):1063-1065
First it was the physicists, then the chemists, and most recently the materials scientists and ceramists who have hastily included in their annual meetings symposia on the new high-temperature, ceramic superconductors. Below are briefings from the 1987 Spring Meeting of the Materials Research Society (MRS) that was held in Anaheim, California, from 21 to 24 April, 1 week before the American Ceramics Society's conclave in Pittsburgh. With the initial wave of euphoria now past, the atmosphere in Anaheim was decidedly more professional than that of the now fabled "Woodstock of Physics" that was part of the American Physical Society's March Meeting in New York City only 5 weeks before. Nonetheless, perhaps 1500 materials researchers listened to 69 scheduled papers and several late walk-ons that were crammed into a 2-day symposium. With a martial strictness, cochairs Michael Schlüter of AT&T Bell Laboratories and Donald Gubser of the Naval Research Laboratory kept the talks to the allotted 10 minutes each. Except for an impassioned presentation by Juei-Teng Chen of Wayne State University, who sought to convince listeners that a group there had seen dear signs of superconductivity at 240 K, which is ambient temperature during a cold night on the northern plains, no significant indications of room-temperature superconductivity were reported. The most skeptical view was that of Theodore Geballe of Stanford University, who suggested that some of the unreproducible signs seen in several laboratories could be due to something other than superconductivity, as similar effects disappeared in Stanford samples with repeated cycling between room and liquid-nitrogen temperature. If there was one theme at the symposium, it was that oxygen is the key to the family of rare-earth-based ceramic materials now in hand that remain superconducting up to about 100 K.  相似文献   

11.
Nonequilibrium phase transitions, which are defined by the formation of macroscopic transient domains, are optically dark and cannot be observed through conventional temperature- or pressure-change studies. We have directly determined the structural dynamics of such a nonequilibrium phase transition in a cuprate superconductor. Ultrafast electron crystallography with the use of a tilted optical geometry technique afforded the necessary atomic-scale spatial and temporal resolutions. The observed transient behavior displays a notable "structural isosbestic" point and a threshold effect for the dependence of c-axis expansion (Deltac) on fluence (F), with Deltac/F = 0.02 angstrom/(millijoule per square centimeter). This threshold for photon doping occurs at approximately 0.12 photons per copper site, which is unexpectedly close to the density (per site) of chemically doped carriers needed to induce superconductivity.  相似文献   

12.
The distribution of the bismuth atoms over the cation sites in the 2212 Bi-Sr-Ca-Cu-O superconductor has been determined by anomalous scattering synchrotron crystallography. The analysis of reflection pairs measured at wavelengths of 0.9243 and 0.9600 angstrom shows a delocalization of the bismuth atoms over the calcium and strontium sites. The "mixed" plane between the CuO(2) layers contains 6.0(1.4) percent bismuth (where the number in brackets represents the statistical standard deviation derived from the least-squares refinement of the data), and a much smaller amount of strontium than often assumed. The strontium deficiency is charge-compensated by the creation of electron holes in the CuO(2) layer. The result supports the view that neither extra oxygen nor overlap of the bismuth 6p and copper 3d bands is needed to account for the holes, which are an essential feature of the superconductivity mechanism.  相似文献   

13.
High-temperature superconductivity in doped Mott insulators such as the cuprates contradicts the conventional wisdom that electron repulsion is detrimental to superconductivity. Because doped fullerene conductors are also strongly correlated, the recent discovery of high-critical-temperature, presumably s-wave, superconductivity in C60 field effect devices is even more puzzling. We examine a dynamical mean-field solution of a model for electron-doped fullerenes that shows how strong correlations can indeed enhance superconductivity close to the Mott transition. We argue that the mechanism responsible for this enhancement could be common to a wider class of strongly correlated models, including those for cuprate superconductors.  相似文献   

14.
In several metals, including URhGe, superconductivity has recently been observed to appear and coexist with ferromagnetism at temperatures well below that at which the ferromagnetic state forms. However, the material characteristics leading to such a state of coexistence have not yet been fully elucidated. We report that in URhGe there is a magnetic transition where the direction of the spin axis changes when a magnetic field of 12 tesla is applied parallel to the crystal b axis. We also report that a second pocket of superconductivity occurs at low temperature for a range of fields enveloping this magnetic transition, well above the field of 2 tesla at which superconductivity is first destroyed. Our findings strongly suggest that excitations in which the spins rotate stimulate superconductivity in the neighborhood of a quantum phase transition under high magnetic field.  相似文献   

15.
We report here on a novel realization of a field-effect device that allows switching between insulating and superconducting states, which is the widest possible variation of electrical properties of a material. We chose C(60) as the active material because of its low surface state density and observed superconductivity in alkali metal-doped C(60). We induced three electrons per C(60) molecule in the topmost molecular layer of a crystal with the field-effect device, creating a superconducting switch operating up to 11 kelvin. An insulator was thereby transformed into a superconductor. This technique offers new opportunities for the study of superconductivity as a function of carrier concentration.  相似文献   

16.
Optical data are reported on a spectral weight transfer over a broad frequency range of Bi2Sr2CaCu2O8+delta, when this material became superconducting. Using spectroscopic ellipsometry, we observed the removal of a small amount of spectral weight in a broad frequency band from 10(4) cm(-1) to at least 2 x 10(4) cm(-1), due to the onset of superconductivity. We observed a blue shift of the ab-plane plasma frequency when the material became superconducting, indicating that the spectral weight was transferred to the infrared range. Our observations are in agreement with models in which superconductivity is accompanied by an increased charge carrier spectral weight. The measured spectral weight transfer is large enough to account for the condensation energy in these compounds.  相似文献   

17.
The recent report of electrical conductivity in the alkali metal fullerides and the discovery of superconductivity at 18 K for KxC(60) has raised fundamental questions about the electronic states on either side of the Fermi level, their occupancy with K intercalation, and the mechanism of superconductivity. Direct photoemission evidence is presented of filling of bands derived from the lowest unoccupied molecular orbital as a function of K incorporation for the metallic and insulating phases. This filling is not rigid band-like, and it reflects disorder in the K sites. Theoretical analysis indicates that KxC(60) is a strong coupling superconductor, and we suggest that the enhanced electron-phonon interaction is related to the unique hybridization of the C sp-derived states.  相似文献   

18.
Direct electrical transport measurements in a diamond anvil cell provide evidence for the metallization of cesium iodide (CsI) at a pressure of 115 gigapascals. A drop in the temperature dependence of the resistance was found at pressures above 180 gigapascals, indicating that the CsI was superconductive. The superconductivity changed under the influence of a magnetic field to a lower critical temperature and disappeared above 0.3 tesla. The highest critical temperature at which superconductivity was observed was 2 kelvin, and the critical temperature decreased with increasing pressure.  相似文献   

19.
Structural, magnetic, and electronic properties of compounds in the series La2-xSrx CuO4-y for 0.05 相似文献   

20.
Identifying the mechanism of superconductivity in the high-temperature cuprate superconductors is one of the major outstanding problems in physics. We report local measurements of the onset of superconducting pairing in the high-transition temperature (Tc) superconductor Bi2Sr2CaCu2O8+delta using a lattice-tracking spectroscopy technique with a scanning tunneling microscope. We can determine the temperature dependence of the pairing energy gaps, the electronic excitations in the absence of pairing, and the effect of the local coupling of electrons to bosonic excitations. Our measurements reveal that the strength of pairing is determined by the unusual electronic excitations of the normal state, suggesting that strong electron-electron interactions rather than low-energy (<0.1 volts) electron-boson interactions are responsible for superconductivity in the cuprates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号