首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
OBJECTIVE: The aims of this study were to test whether longer third metacarpal (MC3) bones had thicker dorsal cortices in a group of racehorses that were exercising at similar maximum speeds, and to establish if horses with larger differences in length between their right and left MC3 bones showed larger differences in the dorsal cortical thickness between the two limbs. DESIGN: An observational study. PROCEDURE: Forty Thoroughbred racehorses aged between 2 and 6 years and in training at racing speed at two racing stables were used. Two sets of radiographs of each left and right metacarpus of each horse were measured for bone length and dorsal cortical width according to standardised methods. RESULTS: The dorsal cortex thickness showed a linear relationship with bone length for the range of lengths between 25 and 30 cm for both the right MC3 (R2 = 0.30, P = 0.0003) and the left (R2 = 0.23, P = 0.002). The longer bones had thicker dorsal cortices. When results from the two limbs were combined to test if the difference in length between the right and left MC3 in an individual horse was associated with a thicker dorsal cortex in the longer MC3 there was no consistent relationship (R2 = 0.008, P = 0.58). CONCLUSION: In this sample of racehorses longer MC3 bones were likely to have been exposed to a greater dorsopalmar bending moment at the mid shaft that was reflected in a thicker dorsal cortex. The lack of a relationship between midshaft thickness and bone length within individual horses suggests that direct mechanical effects of conformation and environment were less important than the individual's level of skill (or the degree of laterality in their movements) developed before their exposure to fast exercise. It is likely that racehorses with longer right MC3 bones were more able to control the loading of the right MC3 than the left during fast exercise.  相似文献   

2.
Transmission ultrasound speed was determined in the third metacarpal bone of 347 Thoroughbred racehorses in training. In addition to direct measurement of apparent ultrasound speed and lateral bone diameter, several derived parameters were estimated (cortical ultrasound speed, corticomedullary ratio and cortical cross-sectional area). Multiple regression equations were developed for each ultrasound measurement using the explanatory variables: sex, age, duration and intensity of training, preparation number and previous shin soreness. The horses (114 females, 82 entire males and 151 geldings ranging in age from 20 to 116 months) had been in continuous training for an average of 10.0 weeks when measurements were made. All measurements except corticomedullary ratio were influenced by the sex of the horse. Geldings had significantly lower ultrasound transmission speed than entire males and females, reflecting a lower bone density. However, the geldings had larger cross-sectional areas (ie bone size). We suggest that the relationship between low ultrasound speed (ie low bone density) and large cross-sectional area maintains the overall mechanical integrity of the metacarpus. This relationship (high ultrasound speed and low cross-sectional area) was also found in each sex group. Ultrasound speed and corticomedullary ratio, but not cross-sectional area, were affected by age. Both duration and intensity of training influenced the ultrasound speed measurements. This study indicated that sex, age and state of training affect ultrasound results, but this explained only about 30% of the variance in the data. Other factors, ie genetic variation in bone density and size, differences in soft tissue thickness and distal limb temperature, presumably account for most of the variance.  相似文献   

3.
Locking plate technologies are being developed in order to provide the surgeon with advantages over previous bone plate systems (both locking and non-locking). Locking plate systems possess inherent biological advantages in fracture fixation by preserving the periosteal blood supply, serving as internal fixators. It is important to consider the strength of each orthopaedic implant as an important selection criterion while utilizing the reported advantages of locking plate systems to prevent catastrophic fracture failure. Mechanical testing of orthopaedic implants is a common method used to provide a surgeon with insight on mechanical capabilities, as well as to form a standardized method of plate comparison. The purpose of this study was to demonstrate and to quantify observed differences in the bending strength between the LCP (Limited Contact Plate), LC-DCP, 3.5 mm Broad LC-DCP (Limited Contact Dynamic Compression Plate), and SOP (String of Pearls) orthopaedic bone plates. The study design followed the ASTM standard test method for static bending properties of metallic bone plates, which is designed to measure mechanical properties of bone plates subjected to bending, the most common loading encountered in vivo. Single cycle four point bending was performed on each orthopaedic implant. The area moment of inertia, bending stiffness, bending strength, and bending structural stiffness were calculated for each implant. The results of this study demonstrated significant differences (p<0.001) in bending strength and stiffness between the four orthopaedic implants (3.5 Broad LC-DCP>SOP>LCP=LC-DCP). The 3.5 mm LCP should be expected to provide in vivo strength and stiffness similar to a comparable LC-DCP. The SOP should provide strength and stiffness that is greater than a comparable LC-DCP but less than a 3.5 mm Broad LC-DCP.  相似文献   

4.
The objective of this study was to examine the differences in sow metacarpal properties through various parities and to compare the incidence of locomotory problems between stalled and loose-housed sows. Metacarpals (n = 110) of sows from six farms were collected at slaughter and stored at -20°C. Bones from one forelimb of sows in stalls (n = 36) and loose-housed (n = 20) were collected and their articular surfaces examined for Osteochondrosis Dissecans (OCD), these sows were also scored for lameness pre-slaughter. Metacarpals were CT scanned for cross sectional area and moment of inertia. Cylindrical sections from the diaphysis were used for mechanical testing and calculating bone strength indices. The results show there was little change in bone mineral status throughout the range of parities examined and overall metacarpal integrity was not compromised by multiple production cycles. There were no differences detected in the incidence of lameness or joint pathology between housing systems.  相似文献   

5.
Five configurations of pins or screws interconnected with polymethylmethacrylate (PMMA) were applied to isolated canine lumbar spines (L2 to L5) in which a complete fracture-luxation had been produced at L3 to L4. Twenty-five repaired spines and five intact control spines were subjected to four-point bending and tested once to failure in ventral flexion. The purpose of this study was to determine the effects of pin number, pin angle, and use of 3.5-mm cortical bone screws instead of smooth 3.2-mm diameter pins on rigidity and ultimate strength of spinal fractures repaired by the implant-PMMA fixation technique. Bending moment versus the angular deformation curves were recorded. Rigidity, bending moment at 10° angular deformation, moment at failure, and deformation at failure of each type of fixation were compared using analysis of variance. Spinal segments stabilized with eight pin-PMMA fixation had significantly greater rigidity and strength at failure than four pin-PMMA fixations ( P < .05). Furthermore, spinal segments stabilized with eight pins angled away from the fracture failed at significantly greater bending moment than those with eight pins angled toward the fracture ( P < .05). However, for four-pin fixation, greater strength was achieved by angling pins in the bone toward the fracture site ( P < .05). Screw-PMMA fixations failed by screw bending and were less rigid and weaker at failure than the corresponding configuration of pin-PMMA fixation ( P < .05).  相似文献   

6.
The hypothesis that short-duration exercise may ameliorate the decrease in bone mass observed with confinement was investigated with 18 quarter horses (nine colts and nine fillies) weaned at 4 mo of age and placed into box stalls. After a 5-wk adjustment period, individuals were grouped by age and weight, and then divided randomly into three treatment groups: 1) group housed; 2) confined with no exercise; and 3) confined with exercise. The confined and exercised groups were housed in 3.7 m x 3.7 m box stalls for the 56-d duration of the trial. The exercised group was sprinted 82 m/d, 5 d/wk, in a fenced grass alleyway. The weanlings were led down an alleyway, turned loose in a small pen, and then released and allowed to run back down the alley. The group horses were housed together in a 992-m2 drylot with free access to exercise. On d 0, 28, and 56, dorsopalmar and lateromedial radiographs of the left third metacarpal bone were taken to estimate changes in bone mineral content and cortical widths. Mean values of medial, lateral, and total radiographic bone aluminum equivalence increased over time (P < 0.05), whereas dorsal and palmar radiographic bone aluminum equivalence did not change significantly. Dorsal, medial, and total radiographic bone aluminum equivalence tended (P = 0.09) to differ by a treatment x day interaction, with values increasing over time only in the exercised group. Normalized medial and total radiographic bone aluminum equivalence tended (P < 0.1) to differ (P < 0.01) with treatment, with exercised horses having greater bone aluminum equivalence than confined horses. Dorsopalmar cortical width in exercised horses was greater than on d 56 (treatment x day; P = 0.07). The dorsopalmar medullary cavity decreased in exercised vs. group-housed horses (P = 0.027), whereas dorsal and medial cortical width tended to increase only in the exercised horses (treatment x day; P < 0.01). This study indicated that a short-duration exercise protocol might be effective in improving bone mass and therefore skeletal strength in horses.  相似文献   

7.
This study recorded the response to training of the diaphysis of the proximal phalangeal bone and the third metacarpal bone (Mc3) and the Mc3 proximal metaphysis. Nineteen 2- and 3-year old horses in training were exposed either to spontaneous exercise at pasture (PASTEX group) or additional imposed exercise (CONDEX group) from a very young age. Quantitative computed tomography scans were analysed for bone mineral content, size, bone mineral density, periosteal and endosteal circumference, cortical thickness and an estimate of bone strength. The bones of the CONDEX horses were bigger and stronger than those of the PASTEX horses at the start of the observation period, and these differences were maintained after adjusting for training workload. Increase in the bone strength index was through size and not density increase. Density increased during training and decreased during paddock rest between the two training campaigns, during which time bone strength continued to increase because of the slow growth that was still occurring. The greatest variance in the response to the training exercise of diaphyseal bone mineral content, bone strength index or cortical thickness was associated with the cumulative workload index at the gallop, although statistically significant unexplained variances remained. There were no differences in bone response to training, with the exception of the endosteal circumference at 55% of the Mc3 length from the carpometacarpal joint space between CONDEX and PASTEX, which indicated that young horses may be able to be exercised slightly more vigorously than currently accepted.  相似文献   

8.
OBJECTIVES: To compare biomechanical properties of a prototype 5.5 mm tapered shaft cortical screw (TSS) and 5.5 mm AO cortical screw for an equine third metacarpal dynamic compression plate (EM-DCP) fixation to repair osteotomized equine third metacarpal (MC3) bones. STUDY DESIGN: Paired in vitro biomechanical testing of cadaveric equine MC3 with a mid-diaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. ANIMAL POPULATION: Adult equine cadaveric MC3 bones (n=12 pairs). METHODS: Twelve pairs of equine MC3 were divided into 3 groups (4 pairs each) for (1) 4-point bending single cycle to failure testing, (2) 4-point bending cyclic fatigue testing, and (3) torsional single cycle to failure testing. An EM-DCP (10-hole, 4.5 mm) was applied to the dorsal surface of each, mid-diaphyseal osteotomized, MC3 pair. For each MC3 bone pair, 1 was randomly chosen to have the EM-DCP secured with four 5.5 mm TSS (2 screws proximal and distal to the osteotomy; TSS construct), two 5.5 mm AO cortical screws (most proximal and distal holes in the plate) and four 4.5 mm AO cortical screws in the remaining holes. The control construct (AO construct) had four 5.5 mm AO cortical screws to secure the EM-DCP in the 2 holes proximal and distal to the osteotomy in the contralateral bone from each pair. The remaining holes of the EM-DCP were filled with two 5.5 mm AO cortical screws (most proximal and distal holes in the plate) and four 4.5 mm AO cortical screws. All plates and screws were applied using standard AO/ASIF techniques. Mean test variable values for each method were compared using a paired t-test within each group. Significance was set at P<.05. RESULTS: Mean 4-point bending yield load, yield bending moment, bending composite rigidity, failure load and failure bending moment of the TSS construct were significantly greater (P<.00004 for yield and P<.00001 for failure loads) than those of the AO construct. Mean cycles to failure in 4-point bending of the TSS construct was significantly greater (P<.0002) than that of the AO construct. The mean yield load and composite rigidity in torsion of the TSS construct were significantly greater (P<.0039 and P<.00003, respectively) than that of the AO construct. CONCLUSION: The TSS construct provides increased stability in both static overload testing and cyclic fatigue testing. CLINICAL RELEVANCE: The results of this in vitro study support the conclusion that the EM-DCP fixation using the prototype 5.5 mm TSS is biomechanically superior to the EM-DCP fixation using 5.5 mm AO cortical screws for the stabilization of osteotomized equine MC3.  相似文献   

9.
Eleven horses with acute or chronic incomplete cortical fractures of the left or right third metacarpal bone (McIII) were treated with surgical puncture (osteostixis). The fractures were diagnosed by physical examination and radiography. Four to eight holes, 2.7 or 3.5 mm in diameter, were drilled in the fractured bone. Radiographically, the fractures were healed by month 3, and the drill holes were inapparent by month 7. Nine horses (82%) returned to race competition, and two horses were retired, one the result of a surgical complication. The mean time between surgery and the first race was 9.4 months. None of the bones refractured within 24 months of surgery. Osteostixis was not technically difficult and a second operation for implant removal was not necessary.  相似文献   

10.
Objective— To compare failure mode and bending moment of a canine pancarpal arthrodesis construct using either a 2.7 mm/3.5 mm hybrid dynamic compression plate (HDCP) or a 3.5 mm dynamic compression plate (DCP).
Study Design— Paired in vitro biomechanical testing of canine pancarpal arthrodesis constructs stabilized with either a 2.7/3.5 HDCP or 3.5 DCP.
Sample Population— Paired cadaveric canine antebrachii (n=5).
Methods— Pancarpal arthrodesis constructs were loaded to failure (point of maximum load) in 4-point bending using a materials-testing machine. Using this point of failure, bending moments were calculated from system variables for each construct and the 2 plating systems compared using a paired t-test. To examine the relationship between metacarpal diameter and screw diameter failure loads, linear regression was used and Pearson' correlation coefficient was calculated. Significance was set at P <.05.
Results— HDCP failed at higher loads than DCP for 9 of 10 constructs. The absolute difference in failure rates between the 2 plates was 0.552±0.182 N m, P =.0144 (95% confidence interval: −0.58 to 1.68). This is an 8.1% mean difference in bending strength. There was a significant linear correlation r=0.74 ( P -slope=.014) and 0.8 ( P -slope=.006) between metacarpal diameter and failure loads for the HDCP and 3.5 DCP, respectively.
Conclusion— There was a small but significant difference between bending moment at failure between 2.7/3.5 HDCP and 3.5 DCP constructs; however, the difference may not be clinically evident in all patients.
Clinical Relevance— The 2.7/3.5 HDCP has physical and mechanical properties making it a more desirable plate for pancarpal arthrodesis.  相似文献   

11.
OBJECTIVE: To describe a technique for carpal panarthrodesis using a medially applied dynamic compression plate (DCP) and to evaluate outcome. STUDY DESIGN: Retrospective study. ANIMALS: Nine dogs with 10 carpal joint injuries. METHODS: Medical records of dogs that had carpal panarthrodesis by medial application of a DCP were reviewed. Signalment, cause and type of injury, preoperative treatment, operative technique, and postoperative clinical and radiographic outcome were retrieved. RESULTS: Screw loosening in the metacarpal bones required surgical revision in 3 dogs. The plate was removed because of lick dermatitis in another dog. No complications were observed in 6 arthrodeses. All dogs were subsequently sound. CONCLUSIONS: Medial application of a DCP is a reliable, reproducible method for carpal panarthrodesis. The load on the edge of the plate provides an increased area moment of inertia of the plate, enhancing it resistance to bending forces. Because of the valgus standing position of the canine carpus, dynamic compression is achieved. The DCP is secured to 1-3 metacarpal bones and loosening of the implant and bone fractures are expected to occur less frequently. CLINICAL RELEVANCE: Medial plating for carpal panarthrodesis is a valid alternative method that can be used in dogs with injuries to the carpus for which panarthrodesis of the carpal joint is indicated.  相似文献   

12.
Objectives: To compare the monotonic biomechanical properties and fatigue life of a 5.5‐mm‐broad locking compression plate (5.5 LCP) fixation with a 4.5‐mm‐broad locking compression plate (4.5 LCP) fixation to repair osteotomized equine 3rd metacarpal (MC3) bones. Study Design: In vitro biomechanical testing of paired cadaveric equine MC3 with a middiaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. Animal Population: Fifteen pairs of adult equine cadaveric MC3 bones. Methods: Fifteen pairs of equine MC3 were divided into 3 test groups (5 pairs each) for (1) 4‐point bending single cycle to failure testing, (2) 4‐point bending cyclic fatigue testing, and (3) torsional single cycle to failure testing. An 8‐hole, 5.5 LCP was applied to the dorsal surface of 1 randomly selected bone from each pair and an 8‐hole, 4.5 LCP was applied dorsally to the contralateral bone from each pair using a combination of cortical and locking screws. All plates and screws were applied using standard ASIF techniques. All MC3 bones had middiaphyseal osteotomies. Mean test variable values for each method were compared using a paired t‐test within each group with significance set at P<.05. Results: Mean yield load, yield bending moment, composite rigidity, failure load, and failure bending moment, under 4‐point bending, single cycle to failure, of the 5.5 LCP fixation were significantly greater than those of the 4.5 LCP fixation. Mean cycles to failure in 4‐point bending of the 5.5 LCP fixation (170,535±19,166) was significantly greater than that of the 4.5 LCP fixation (129,629±14,054). Mean yield load, mean composite rigidity, and mean failure load under torsional testing, single cycle to failure was significantly greater for the broad 5.5 LCP fixation compared with the 4.5 LCP fixation. In single cycle to failure under torsion, the mean±SD values for the 5.5 LCP and the 4.5 LCP fixation techniques, respectively, were: yield load, 151.4±19.6 and 97.6±12.1 N m; composite rigidity, 790.3±58.1 and 412.3±28.1 N m/rad; and failure load: 162.1±20.2 and 117.9±14.6 N m. Conclusion: The 5.5 LCP was superior to the 4.5 LCP in resisting static overload forces (palmarodorsal 4‐point bending and torsional) and in resisting cyclic fatigue under palmarodorsal 4‐point bending. Clinical Relevance: These in vitro study results may provide information to aid in selection of an LCP for repair of equine long bone fractures.  相似文献   

13.
1. Sex-related differences of long pelvic limb bones and serum bone metabolism indices were evaluated in 14-month-old female (N = 7) and male (N = 7) ostriches of similar body weights.

2. Densitometric parameters of femur, tibia and tarsometatarsus were determined using quantitative computed tomography (volumetric bone mineral density, calcium hydroxyapatite density and mean volumetric bone mineral density) and dual energy X-ray absorptiometry (bone mineral density and bone mineral content) methods. Geometrical parameters such as cortical bone area, cross-sectional area, second moment of inertia, mean relative wall thickness and cortical index were determined in the midshaft of bones. Mechanical properties of bones (maximum elastic strength and ultimate strength) were evaluated using three-point bending test. Serum concentrations of free amino acids, osteocalcin, N-terminal propeptide of type I procollagen, C-terminal telopeptides of type II collagen and total antioxidative capacity were also determined.

3. Bone weight and relative bone weight of all bones were significantly higher in males than in females. Significantly lower values of trabecular bone mineral density and calcium hydroxyapatite density were found in the trabecular bone of tibia in males. The highest number of the sex-related differences was observed in the tarsometatarsus where bone length, bone mineral content, cortical bone area, cross-sectional area and ultimate strength were higher in males. Serum concentrations of taurine, hydroxyproline, valine and isoleucine were significantly higher in males.

4. Higher loading of the tarsometatarsus in comparison to femur and tibia may be an important factor interacting with sex hormones in regulation of bone formation and mineralisation processes. Sex-related differences of bone properties were associated with increased serum concentration of selected amino acids in males.  相似文献   


14.
In 4 adult horses, simple, nondisplaced, incomplete fracture of the proximal extremity of the third metacarpal bone (MC3) was identified radiographically only on the dorsopalmar projection. Lameness was slight to moderate. Although nerve blocks of the foot and fetlock did not alter the lameness, high palmar regional nerve block improved the gait in 1 of the 2 horses on which it was performed. Pain on palpation or swollen distal accessory (inferior check) ligament, flexor tendons, and suspensory ligament were not found in any horse. The fracture was localized to the palmar surface of the proximal extremity of the MC3 on the basis of the intense uptake of radiopharmaceutical (99MTc-labeled sodium medronate) observed in that area during the soft tissue and delayed bone phases of a nuclear scintigraphic examination (nuclear scan) performed concurrently with radiography. Of 4 horses evaluated 6 months after the initial diagnosis, 3 had medullary sclerosis without radiographic evidence of fracture; results of follow-up nuclear scintigraphy performed in one of these horses at the same time were normal. Incomplete fracture also was suspected in another 6 adult horses with clinical lameness referable to the proximal extremity of the MC3. Although a fracture line could not be seen radiographically, trabecular hypertrophy and/or medullary sclerosis of the proximal extremity of the MC3 were detected on the dorsopalmar projection. Further, during nuclear scintigraphy, an intense uptake of the radiopharmaceutical was observed on the palmar aspect of the proximal extremity of the MC3 in all 6 horses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
OBJECTIVE: To compare monotonic mechanical properties of gap-ostectomized third metacarpal bones (MC3) stabilized with an MP35N interlocking nail system with contralateral intact bones. ANIMALS OR SAMPLE POPULATION: Twenty-four pairs of cadaveric equine MC3s. METHODS: Third metacarpal bones were divided into 4 mechanical testing groups (6 pairs per group): compression, palmarodorsal (PD) and mediolateral (ML) 4-point bending, and torsion. One MC3 from each pair was randomly selected as an intact specimen, and the contralateral gap ostectomized bone was stabilized with a 4-hole, 14-mm-diameter, 250-mm-long, MP35N intramedullary nail, and four, 7-mm-diameter, 60-mm-long MP35N interlocking screws (constructs). Mechanical testing properties were compared between intact specimens and constructs with a paired t test (significance set at P <.05). RESULTS: Intact specimens were significantly stronger and stiffer than constructs in all testing modes except PD bending. Constructs achieved mean yield strengths that were 57% (compression), 81% (PD bending), 68% (ML bending), and 78% (torque) of intact specimens. Constructs achieved mean stiffnesses that were 53% (compression), 58% (PD bending), 41% (ML bending), and 47% (torque) of intact specimens. CONCLUSION: Monotonic yield mechanical properties of MP35N intramedullary interlocking nail-stabilized, gap-ostectomized MC3 were lower than those of paired intact bones but exceeded reported in vivo loads for dorsopalmar bending and compression and estimated in vivo torsional loads. CLINICAL RELEVANCE: Considering the benefits associated with intramedullary interlocking nail fixation of fractures, this system should be considered for use for repair of MC3 fractures with applicable fracture configurations.  相似文献   

16.
Using xeroradiographic techniques, both metacarpophalangeal regions of six quarter horse foals were radiographed at 1 day of age and at 2-week intervals until they were 6 weeks old, and then at 4-week intervals until they were 12 months old. Lateromedial and dorsopalmar xeroradiographs of each metacarpophalangeal region were made per examination; dorsomedial-palmarolateral projections of the left metacarpophalangeal joint of foal 6 were also made. The foals were weighed and measured at the withers immediately prior to each examination. Representative xeroradiographs were selected to demonstrate progression of the osteochondrosis (OCH) lesions in two of these foals. Radiographic evidence of osteochondrosis in the metacarpophalangeal region was first detected at 10 weeks and followed through 12 months of age. In one foal the lesions were bilaterally symmetric and involved the dorsoproximal aspect of the sagittal ridge of metacarpal 3; in the other, the left medial proximal sesamoid bone was affected. One of the sagittal ridge lesions progressed to osteochondritis dissecans by 26 weeks; the other sagittal ridge lesion and that of the sesamoid bone healed spontaneously, but residual radiographic evidence of the disease persisted throughout the study in both foals.  相似文献   

17.
OBJECTIVE: To determine whether the bending modulus and yield strength of the outer stratum medium (SM) differed from those of the SM zona alba (SMZA) and to what degree they differed. In addition, a comparison was made among our values and values reported elsewhere. SAMPLE POPULATION: 10 normal equine feet. PROCEDURE: A 3-point bending technique was used to determine the bending modulus and yield strength of the outer SM and SMZA. Efforts were made to minimize biological and technical factors that could influence the bending modulus. RESULTS: Bending modulus of the outer SM was (mean +/- SD) 187.6 +/- 41.3 MPa, whereas mean value for the SMZA was 98.2 +/- 36.8 MPa. Mean yield strength was 19.4 +/- 2.6 MPa for the outer SM and 5.6 +/- 1.7 MPa for the SMZA. Values for bending modulus and yield strength differed significantly between the outer SM and SMZA. Significant differences were not detected when the outer SM was loaded in bending from the outer or inner surface. CONCLUSIONS AND CLINICAL RELEVANCE: Potentially, the SMZA could serve as a mechanical buffer zone between the rigid hoof wall and bone and laminar tissues. This buffer zone potentially assists the feet of horses in transmitting a load through the tissues and prevents the most susceptible tissues from becoming damaged. More consistency among tissue selection, preparation, and testing protocols must be attained before an accurate 3-dimensional finite-element model of an equine foot can be constructed.  相似文献   

18.
Objective: To (1) compare the effect of a collateral ligament sparing surgical approach with an open surgical approach on mechanical properties of proximal interphalangeal joint (PIPJ) arthrodesis, and (2) to determine the percentage of articular cartilage surface removed by transarticular (TA) drilling with different diameter drill bits. Study Design: Randomized paired limb design. Sample Population: Cadaveric equine limbs (n=76). Methods: Cadaveric PIPJ were drilled using a 3.5, 4.5, or 5.5 mm drill bit at 80–84° to the dorsal plane to remove articular cartilage and subchondral bone from the distal articular surface of the proximal phalanx (P1) and the proximal articular surface of the middle phalanx (P2). Bone ends were photographed and the percentage of the projected surface area that was denuded of cartilage was measured. PIPJ arthrodesis constructs (3‐hole dynamic compression plate [DCP], two 5.5 mm TA screws inserted in lag fashion, medial and lateral to the DCP; DCP‐TA) were created using 2 surgical approaches in paired limbs. A conventional open approach was used in 1 limb and a collateral ligament sparing approach used in the other limb. Constructs were tested to failure in single‐cycle 3‐point dorsopalmar/plantar or lateromedial bending. Maximum load, yield load, and composite stiffness were compared between techniques. Results: The 3.5, 4.5, and 5.5 mm drill bits removed 24±4%, 35±5%, and 45±7% of total PIPJ articular cartilage surface, respectively. Constructs with the collateral ligament sparing approach had significantly greater mean yield load (11.3±2.8 versus 7.68±1.1 kN, P=.008) and mean maximum load (13.5±3.1 versus 10.1±1.94 kN, P=.02) under lateromedial bending. Under dorsopalmar/plantar bending there was no significant difference between surgical approaches. The collateral ligament sparing arthrodesis technique had a shorter surgical time (19±3 minutes) compared with the open technique (31±3 minutes). Conclusion: A collateral ligament sparing surgical approach to the PIPJ with removal of articular cartilage by TA drilling and arthrodesis by DCP‐TA was faster and stronger in mediolateral bending than arthrodesis constructs created with an open surgical approach. Clinical Relevance: Preservation of the collateral ligaments and TA drilling for cartilage removal during PIPJ arthrodesis may be a superior approach to the conventional open approach and warrants clinical evaluation.  相似文献   

19.
Objective— To compare monotonic biomechanical properties and fatigue life of a broad locking compression plate (LCP) fixation with a broad limited contact dynamic compression plate (LC‐DCP) fixation to repair osteotomized equine third metacarpal (MC3) bones. Study Design— In vitro biomechanical testing of paired cadaveric equine MC3 with a mid‐diaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. Animal Population— Cadaveric adult equine MC3 bones (n=12 pairs). Methods— MC3 were divided into 3 groups (4 pairs each) for: (1) 4‐point bending single cycle to failure testing; (2) 4‐point bending cyclic fatigue testing; and (3) torsional single cycle to failure testing. The 8‐hole, 4.5 mm LCP was applied to the dorsal surface of 1 randomly selected bone from each pair. One 8‐hole, 4.5 mm LC‐DCP) was applied dorsally to the contralateral bone from each pair. All plates and screws were applied using standard ASIF techniques. All MC3 bones had mid‐diaphyseal osteotomies. Mean test variable values for each method were compared using a paired t‐test within each group. Significance was set at P<.05. Results— Mean yield load, yield bending moment, composite rigidity, failure load and failure bending moment, under 4‐point bending, single cycle to failure, of the LCP fixation were significantly greater than those of the LC‐DCP fixation. Mean cycles to failure for 4‐point bending was significantly greater for the LCP fixation compared with LC‐DCP fixation. Mean yield load, mean composite rigidity, and mean failure load under torsional testing, single cycle to failure was significantly greater for the broad LCP fixation compared with the LC‐DCP fixation. Conclusion— The 4.5 mm LCP was superior to the 4.5 mm LC‐DCP in resisting the static overload forces (palmarodorsal 4‐point bending and torsional) and in resisting cyclic fatigue under palmarodorsal 4‐point bending. Clinical Relevance— The results of this in vitro study may provide information to aid in the selection of a biological plate for the repair of equine long bone fractures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号