首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Consumption of fruits and vegetables, which are rich in polyphenols, has been associated with a reduced risk of chronic diseases such as cancer. Dietary polyphenols have antioxidant and antiproliferative properties that might explain their beneficial effect on cancer prevention. The aim of this study was to investigate the effects of different pure polyphenols [quercetin, chlorogenic acid, and (-)-epicatechin] and natural fruit extracts (strawberry and plum) on viability or apoptosis of human hepatoma HepG2 cells. The treatment of cells for 18 h with quercetin and fruit extracts reduced cell viability in a dose-dependent manner; however, chlorogenic acid and (-)-epicatechin had no prominent effects on the cell death rate. Similarly, quercetin and strawberry and plum extracts, rather than chlorogenic acid and (-)-epicatechin, induced apoptosis in HepG2 cells. Moreover, quercetin and fruit extracts arrested the G1 phase in the cell cycle progression prior to apoptosis. Quercetin and strawberry and plum extracts may induce apoptosis and contribute to a reduced cell viability in HepG2 cells.  相似文献   

2.
Cocoa is a rich source of flavanols and procyanidin oligomers with antioxidative properties, providing protection against oxidation and nitration. The present study investigated the potential protective effect of a polyphenolic extract from cocoa on cell viability and antioxidant defenses of cultured human HepG2 cells submitted to oxidative stress induced by tert-butylhydroperoxide (t-BOOH). Pretreatment of cells with 0.05-50 microg/mL of cocoa polyphenolic extract (CPE) for 2 or 20 h completely prevented cell damage and enhanced activity of antioxidant enzymes induced by a treatment with t-BOOH. Moreover, lower levels of GSH caused by t-BOOH in HepG2 cells were partly recovered by a pretreatment with CPE. Increased reactive oxygen species (ROS) induced by t-BOOH was dose-dependently prevented when cells were pretreated for 2 or 20 h with CPE. These results show that treatment of HepG2 in culture with CPE (within the physiological range of concentrations) confers a significant protection against oxidation to the cells.  相似文献   

3.
Stevioside, isolated from Stevia rebaudiana, is a commercial sweetener. It was previously demonstrated that stevioside attenuates NF-kappaB-dependent TNF-alpha and IL-1beta synthesis in LPS-stimulated monocytes. The present study examined the effects of stevioside and its metabolite, steviol, on human colon carcinoma cell lines. High concentrations of stevioside (2-5 mM) and steviol (0.2-0.8 mM) decreased cell viability in T84, Caco-2, and HT29 cells. Stevioside (2 mM) potentiated TNF-alpha-mediated IL-8 release in T84 cells. However, steviol (0.01-0.2 mM) significantly suppressed TNF-alpha-induced IL-8 release in all three cell lines. In T84 cells, steviol attenuated TNF-alpha-stimulated IkappaB --> NF-kappaB signaling. Chloride transport was stimulated by steviol (0.1 mM) > stevioside (1 mM) at 30 min. Two biological effects of steviol in the colon are demonstrated for the first time: stimulation of Cl(-) secretion and attenuation of TNF-alpha-stimulated IL-8 production. The immunomodulatory effects of steviol appear to involve NF-kappaB signaling. In contrast, at nontoxic concentrations stevioside affects only Cl(-) secretion.  相似文献   

4.
The triterpenoids methylantcinate B (MAB) and antcin B (AB), isolated from the medicinal mushroom Antrodia camphorata , have been identified as strong cytotoxic agents against various type of cancer cells; however, the mechanisms of MAB- and AB-induced cytotoxicity have not been adequately explored. This study investigated the roles of caspase cascades, reactive oxygen species (ROS), DNA damage, mitochondrial disruption, and Bax and Bcl-2 proteins in MAB- and AB-induced apoptosis of hepatocellular carcinoma (HCC) HepG2 cells. Here, we showed that MAB and AB induced apoptosis in HepG2 cells, as characterized by increased DNA fragmentation, cleavage of PARP, sub-G1 population, chromatin condensation, loss of mitochondrial membrane potential, and release of cytochrome c. Increasing the levels of caspase-2, -3, -8, and -9 activities was involved in MAB- and AB-induced apoptosis, and they could be attenuated by inhibitors of specific caspases, indicating that MAB and AB triggered the caspase-dependent apoptotic pathway. Additionally, the enhanced apoptotic effect correlates with high expression of Fas, Fas ligand, as well as Bax and decreased protein levels of Bcl-(XL) and Bcl-2, suggesting that both the extrinsic and intrinsic apoptosis pathways were involved in the apoptotic processes. Incubation of HepG2 cells with antioxidant enzymes superoxide dismutase and catalase and antioxidants N-acetylcysteine and ascorbic acid attenuated the ROS generation and apoptosis induced by MAB and AB, which indicate that ROS plays a pivotal role in cell death. NADPH oxidase activation was observed in MAB- and AB-stimulated HepG2 cells; however, inhibition of such activation by diphenylamine significantly blocked MAB- and AB-induced ROS production and increased cell viability. Taken together, our results provide the first evidence that triterpenoids MAB and AB induced a NADPH oxidase-provoked oxidative stress and extrinsic and intrinsic apoptosis as a critical mechanism of cause cell death in HCC cells.  相似文献   

5.
Eriodictyol [2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-2,3-dihydrochromen-4-one] is a flavonoid with anti-inflammatory and antioxidant activities. Because inflammation and oxidative stress play critical roles in the pathogenesis of diabetes mellitus, the present study was designed to explore whether eriodictyol has therapeutic potential for the treatment of type 2 diabetes. The results show that eriodictyol increased insulin-stimulated glucose uptake in both human hepatocellular liver carcinoma cells (HepG2) and differentiated 3T3-L1 adipocytes under high-glucose conditions. Eriodictyol also up-regulated the mRNA expression of peroxisome proliferator-activated receptor γ2 (PPARγ2) and adipocyte-specific fatty acid-binding protein (aP2) as well as the protein levels of PPARγ2 in differentiated 3T3-L1 adipocytes. Furthermore, it reactivated Akt in HepG2 cells with high-glucose-induced insulin resistance. This response was strongly inhibited by pretreatment with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, indicating that eriodictyol increased Akt phosphorylation by activating the PI3K/Akt pathway. These results imply that eriodictyol can increase glucose uptake and improve insulin resistance, suggesting that it may possess antidiabetic properties.  相似文献   

6.
Dietary polyphenols have been associated with reduced risk of chronic diseases, but the precise molecular mechanisms of protection remain unclear. This work was aimed at studying the effect of (-)-epicatechin (EC) and chlorogenic acid (CGA) on the regulation of apoptotic and survival/proliferation pathways in a human hepatoma cell line (HepG2). EC or CGA treatment for 18 h had a slight effect on cell viability and decreased reactive oxygen species formation, and EC alone promoted cell proliferation, whereas CGA increased glutathione levels. Phenols neither induced the caspase cascade for apoptosis nor affected expression levels of Bcl-xL or Bax. A sustained activation of the major survival signals AKT/PI-3-kinase and ERK was shown in EC-treated cells, rather than in CGA-exposed cells. These data suggest that EC and CGA have no effect on apoptosis and enhance the intrinsic cellular tolerance against oxidative insults either by activating survival/proliferation pathways or by increasing antioxidant potential in HepG2.  相似文献   

7.
Inhibition of acyl CoA:diacylglycerol acyltransferase (DGAT), which is a key enzyme in triglyceride synthesis in eukaryotic organisms, has been proposed as one of the drug targets for treating obesity, type II diabetes mellitus, and metabolic syndrome. Bioassay-guided fractionation of EtOH extract of the flower buds of Tussilago farfara , using an in vitro DGAT enzyme assay, resulted in the isolation of four known sesquiterpenoids, tussilagonone (1), tussilagone (2), 7beta-(3-ethyl-cis-crotonoyloxy)-1alpha-(2-methylbutyryloxy)-3,14-dehydro-Z-notonipetranone (3), and 8-angeloylxy-3,4-epoxy-bisabola-7(14),10-dien-2-one (4). DGAT1 inhibitory activity was studied by in vitro DGAT assay using rat liver microsomes and HepG2 cell microsomes. They showed DGAT1 inhibition with IC(50) values of 99.2 (1), 18.8 (2), 47.0 (3), and 211.1 (4) microM (for rat liver microsomes) and >1 mM (1), 49.1 (2), 160.7 (3), and 294.4 (4) microM (for HepG2 cell microsomes), respectively. Compound 2 showed the most potent inhibition against microsomal DGAT1 derived from rat liver and human hepatocellular carcinoma HepG2 cells and also significantly inhibited triglyceride synthesis by suppressing incorporation of [(14)C]acetate or [(14)C]glycerol into triglycerides in HepG2 cells. These findings suggest that tussilagone is a potential lead compound in the treatment of obesity and type 2 diabetes.  相似文献   

8.
Alkyl hydroxytyrosyl ethers (methyl, ethyl, propyl, and butyl ethers) have been synthesized from hydroxytyrosol (HTy) in response to the increasing food industry demand of new lipophilic antioxidants. Having confirmed that these compounds reach portal blood partially unconjugated and thus are effectively absorbed, their potential antioxidant activity was evaluated in the human hepatocarcinoma cell line (HepG2). The effects of 0.5-10 μM alkyl hydroxytyrosyl ethers on HepG2 cell integrity and redox status were assessed as well as the protective effect against oxidative stress induced by tert-butylhydroperoxide (t-BOOH). Cell viability (Crystal violet) and cell proliferation (BrdU assay) were measured as markers of cell integrity, concentration of reduced glutathione (GSH), generation of reactive oxygen species (ROS), and activity of antioxidant enzymes glutathione peroxidase (GPx) and glutathione reductase (GR) as markers of redox status and determination of malondialdehyde (MDA) as a marker of lipid peroxidation. Direct treatment of HepG2 with alkyl hydroxytyrosyl ethers induced slight changes in cellular intrinsic antioxidants status, reducing ROS generation and inducing changes in GPx and GR activities. Pretreatment of HepG2 cells with alkyl hydroxytyrosyl ethers counteracted cell damage induced by t-BOOH, partially after 2 h and completely after 20 h, by increasing GSH and decreasing ROS generation, MDA levels, and antioxidant enzyme (GPx and GR) activity. According to these results the alkyl hydroxytyrosyl ethers show clear protective effects against oxidative stress, related to their lipophilic nature, that are similar to or even higher than those of their precursor, HTy.  相似文献   

9.
We have previously demonstrated that sulforaphane is a potent inducer for thioredoxin reductase in HepG2 and MCF-7 cells (Zhang et al. Carcinogenesis 2003, 24, 497-503; Wang et al. J. Agric. Food Chem. 2005, 53, 1417-1421). In this study, we have shown that sulforaphane is not only an inducer for thioredoxin reductase but also an inducer for its substrate, thioredoxin in HepG2, and undifferentiated Caco-2 cells. Sulforaphane acts at two levels in the regulation of thioredoxin reductase/thioredoxin system by the upregulation of the expression of both the enzyme and the substrate. In human hepatoma HepG2 cells, sulforaphane induced thioredoxin reductase mRNA and protein by 4- and 2-fold, respectively, whereas thioredoxin mRNA was induced 2.9-fold and thioredoxin protein was unchanged in whole cell extracts, but an increase in nuclear accumulation (1.8-fold) was observed. Moreover, the induction of thioredoxin reductase was found faster than that of thioredoxin. The effects of PI3K and MAPK kinase inhibitors, LY294002, PD98059, SP600125, and SB202190, have been investigated on the sulforaphane-induced expression of thioredoxin reductase and thioredoxin. PD98059 abrogates the sulforaphane-induced thioredoxin reductase at both mRNA and protein levels in HepG2 cells, although other inhibitors were found less effective. However, both PD98059 and LY294002 significantly decrease thioredoxin mRNA expression in HepG2 cells. None of the inhibitors tested were able to modulate the level of expression of either thioredoxin reductase mRNA or protein in Caco-2 cells suggesting that there are cell-specific responses to sulforaphane. In summary, the dietary isothiocyanate, sulforaphane, is important in the regulation of thioredoxin reductase/thioredoxin redox system in cells.  相似文献   

10.
This study describes a generic biological screening assay designed to detect anticoagulant rodenticides based on their inhibitory action on the vitamin K epoxide reductase protein complex, resulting in an accumulation of under-carboxylated prothrombin or proteins induced by vitamin K antagonism (PIVKA-II). A combined cell culture/ELISA assay was optimized to measure PIVKA-II production by the human hepatoma HepG2 cell line cultured in the presence of anticoagulant rodenticides. The specificity and sensitivity of the assay was validated using 41 grain extracts containing representative concentrations of rodenticide or appropriate nonrodenticide control compounds. In all cases, PIVKA-II produced by HepG2 cells in response to grain extracts spiked with rodenticides was detected by ELISA, while PIVKA-II was not detected in supernatants collected from cells exposed to nonrodenticide controls. This represents a novel, class-specific biological assay for the detection of anticoagulant rodenticides present in contaminated grain.  相似文献   

11.
The purpose of this study is to verify the inhibitory effect of a chemically standardized extract from Scutellariae radix in liver cancer cell lines (HepG2). The botanical extract was prepared using pressurized liquid extraction (PLE). A method using proteolytic digest with single dimensional and two-dimensional liquid chromatography with tandem mass spectrometry was used to characterize differential protein expression in mammalian cells in response to the botanical extract. The whole cell lysates were digested with trypsin, and the peptides were separated by one-dimensional (reversed phase) or by two-dimensional (cation exchange and reversed phase) solid-phase extraction (SPE) cleanup and separated by liquid chromatography with UV detection and mass spectrometry. In the presence of the botanical extracts, drug-induced apoptosis was not observed, and a number of proteins that played an important role in the metabolic pathways in HepG2 cell line had been affected. The data, as presented, suggest that the inhibitory effects of the standardized extracts from Scutellariae radix resulted from expression of heat shock protein and other proteins related to energy metabolism. The proposed platform had the potential to provide significant information about the particular proteome such as human hepatoma HepG2. At the molecular level, it was possible to study the proteins and how their levels and modifications change in response to the effects of the botanical extract.  相似文献   

12.
Parasporal inclusion proteins produced by Bacillus thuringiensis strain A1470 exhibit strong cytotoxicity against human leukemic T cells when activated by protease treatment. One of the cytotoxic proteins was separated by anion exchange chromatography and gel filtration chromatography and designated Cry45Aa. Its gene was then expressed in recombinant Escherichia coli, in which the Cry45Aa precursor was accumulated in an inclusion body. It was solubilized in sodium carbonate buffer and processed with proteinase K, and cytotoxic activities of the protein against various mammalian cell lines were evaluated using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide assay. The protein exhibited high cytotoxic activity against CACO-2, Sawano, MOLT-4, TCS, and HL60 cells and moderate activity against U-937 DE-4, PC12, and HepG2 cells. On the other hand, the EC50 values against Jurkat, K562, HeLa, A549, Vero, COS-7, NIH3T3, CHO, and four normal tissue cells (human primary hepatocyte cells, UtSMC, MRC-5, and normal T cells) were >2 microg/mL.  相似文献   

13.
Cocoa powder is rich in polyphenols, such as catechins and procyanidins, and has been shown to inhibit low-density lipoprotein (LDL) oxidation and atherogenesis in a variety of models. Human studies have also shown daily intake of cocoa increases plasma high-density lipoprotein (HDL) and decreases LDL levels. However, the mechanisms responsible for these effects of cocoa on cholesterol metabolism have yet to be fully elucidated. The present study investigated the effects of cacao polyphenols on the production of apolipoproteins A1 and B in human hepatoma HepG2 and intestinal Caco2 cell lines. The cultured HepG2 cells or Caco2 cells were incubated for 24 h in the presence of cacao polyphenols such as (-)-epicatechin, (+)-catechin, procyanidin B2, procyanidin C1, and cinnamtannin A2. The concentration of apolipoproteins in the cell culture media was quantified using an enzyme-linked immunoassay, and the mRNA expression was quantified by RT-PCR. Cacao polyphenols increased apolipoprotein A1 protein levels and mRNA expression, even though apolipoprotein B protein and the mRNA expression were slightly decreased in both HepG2 cells and Caco2 cells. In addition, cacao polyphenols increased sterol regulatory element binding proteins (SREBPs) and activated LDL receptors in HepG2 cells. These results suggest that cacao polyphenols may increase the production of mature form SREBPs and LDL receptor activity, thereby increasing ApoA1 and decreasing ApoB levels. These results elucidate a novel mechanism by which HDL cholesterol levels become elevated with daily cocoa intake.  相似文献   

14.
The 4-acetylantroquinonol B isolated from the mycelium of Antrodia cinnamomea could inhibit proliferation of hepatocellular carcinoma cells HepG2 with IC(50) 0.1 μg/mL. When the HepG2 cells were treated with 4-acetylantroquinonol B for 72 h, the proportion of cells in the G1 phase of the cell cycle increased and that in the S phase decreased significantly, and the proportion of G2/M phase cells were not obviously changed. In addition, the 4-acetylantroquinonol B treatment resulted in the decreases of CDK2 and CDK4, and an increase of p27 in a dose-dependent manner. The protein levels of p53 and p21 proteins were also increased when the cells were treated with low dosage (0.1 μg/mL) of 4-acetylantroquinonol B. Higher dosages, however, decreased the expression of p53 and p21 proteins. Assay of RT-PCR indicated that, corresponding to the increases of p53 and p21 proteins at the dosage of 0.1 μg/mL, the mRNAs of p53 and p21 showed 1.66- and 1.61-fold upregulations, respectively. Corresponding to the decreases of CDK2 and CDK4 proteins, the mRNAs of CDK2 and CDK4 showed -1.02- and -1.13-fold downregulations, respectively. However, level of p27 mRNA showed -1.2-fold downregulation in spite of the increase in p27 protein. This observation, again, confirms the fact that the p27 gene rarely undergoes homozygous inactivation in cancer cells. Our finding suggested that the 4-acetylantroquinonol B inhibits proliferation of HepG2 cells via affecting p53, p21 and p27 proteins, and can be considered as a potential cancer drug.  相似文献   

15.
Currently, liver cancer is a leading cause of cancer-related death in the world. Hepatocellular carcinoma is the most common type of liver cancer. Previously, it was reported that blazeispirol A (BA) is the most active antihepatoma compound in an ethanolic extract of Agaricus blazei fermentation product. The aim of this study was to understand the antihepatoma mechanism of BA in human liver cancer Hep 3B cells. The results showed that BA inhibited the growth of Hep 3B cells and increased the percentage of cells in sub-G1 phase in a concentration- and time-dependent manner. In addition, BA treatment resulted in DNA fragmentation, caspase-9 and caspase-3 activations, poly(ADP-ribose)polymerase (PARP) degradation, down-regulation of Bcl-2 and Bcl-xL expressions, up-regulation of Bax expression, and disruption of the mitochondrial membrane potential (MMP) in Hep 3B cells. Furthermore, z-VAD-fmk, a caspase inhibitor, did not enhance the viability of BA-treated Hep 3B cells, and BA induced the release of HtrA2/Omi and apoptosis-inducing factor (AIF) from mitochondria into the cytosol. These findings suggested that BA with novel chemopreventive and chemotherapeutic potentials causes both caspase-dependent and caspase-independent cell death in Hep 3B cells.  相似文献   

16.
The objective of this study was to investigate the antiproliferative effect and the mechanism of the methanol extracts of mycelia (MEM) form Antrodia camphorata in submerged culture toward HepG2 cells. The results showed that MEM-induced cell apoptosis involved up-regulation of Fas and down-regulation of Bcl-2, DR3, DR4, TNFRI, and TNFRII in HepG2 cells, while no changes on the levels of Bax, Bid, Bad, and Bak protein were observed. On the basis of these results, the involvement of the Fas/Fas ligand (FasL) death-receptor pathway, in MEM-induced apoptosis in HepG2 cells, was investigated. The apoptosis inducing activity was significantly enhanced by a Fas activator and inhibited by a Fas antagonist. To know about the effect of MEM on the activation of the apoptotic pathway, the adenovirus transfected with Bcl-2 was infected on HepG2 cells. The data showed that the percentage of apoptotic cells induced by MEM in Bcl-2-infected HepG2 (Bcl-2 overexpression) was not significantly different from that of uninfected HepG2. These results demonstrate that MEM induces HepG2 apoptosis through inhibition of cell growth and up-regulation of Fas/FasL to activate the pathway of caspase-3 and -8 cascades.  相似文献   

17.
为探索鱿鱼墨黑色素提取物(SIME)对体外培养的肿瘤细胞的抑制效应,通过四甲基偶氮唑盐(MTT)法和划痕试验比较SIME对人结肠癌细胞HCT-116、宫颈癌细胞Hela、肝癌细胞Hep G2、乳腺癌细胞MCF-7和前列腺癌细胞PC-3增殖及细胞迁移能力的影响。结果表明,SIME对肿瘤细胞形态有不同程度的影响,对肿瘤细胞增殖有浓度依赖性抑制作用,并具有抑制肿瘤细胞非定向迁移的作用。SIME对HCT-116和PC-3细胞增殖的抑制作用较好,72 h时两者半数抑制浓度IC50分别为0.144mg·m L~(-1)和0.485 mg·m L~(-1)。由此可见,SIME具有较强的抗肿瘤活性,该研究结果为鱿鱼墨高值化利用提供了一定的理论依据。  相似文献   

18.
Anticancer compound screening of natural products using tumor cell lines has been commonly used to identify anticancer drugs. Two highly significant anticancer drugs, paclitaxel (Taxol) and camptothecin, were discovered using tumor cell lines by the U.S. National Cancer Institute (NCI) screening program of plants. It has been recently reported that the inhibition of cancer cell proliferation by fruit extracts was indirectly caused by phenolic-induced H(2)O(2) production in the cell culture media, suggesting that many previously reported effects of flavonoids and phenolic compounds on cultured cells might be from an artifact of H(2)O(2)-induced oxidative stress. The objective of the present study was to determine if apple extracts induced H(2)O(2) formation in common cell culture media and to investigate if the antiproliferative activity of apple extracts was due to phenolic-induced H(2)O(2) formation. It is reported here that apple extracts did not induce H(2)O(2) formation in WME, DMEM, or DMEM/Ham F12 media with the cell culture conditions tested. These same extracts inhibited proliferation of HepG(2) and Caco-2 cells. Therefore, antiproliferative activity of apple extracts was not due to the phenolic-induced H(2)O(2) production in cell culture media. In addition, H(2)O(2) added to the culture medium at 100 microM did not cause inhibition of cell proliferation in either HepG(2) liver cancer cells or Caco-2 colon cancer cells in vitro.  相似文献   

19.
Studies were conducted to evaluate the cell damage caused by exposing human colon carcinoma cells, Caco-2, to hydrogen peroxide at concentrations varying from 0 to 250 microM for 30 min. Evaluation of cell viability, as measured by trypan blue dye exclusion test, showed that the loss of viability was < 5% at concentrations up to 250 microM hydrogen peroxide. Cell membrane damage and DNA damage as measured by the leakage of lactate dehydrogenase and the comet assay, respectively, were significantly high at concentrations >100 microM hydrogen peroxide compared to those of the control. Antioxidant mechanisms in Caco-2 cells were evaluated by measuring catalase, superoxide dismutase, and glutathione peroxidase activities. Catalase activities remained constant in cells treated with 50-250 microM hydrogen peroxide. Superoxide dismutase activity decreased, whereas glutathione peroxidase activity increased in cells treated with H(2)O(2) concentrations of >50 microM. This study showed that with increasing hydrogen peroxide concentration, cell membrane leakage and DNA damage increased, whereas the three antioxidant enzymes responded differently, as shown by mathematical models.  相似文献   

20.
Cordycepin, a nucleoside isolated from Cordyceps sinensis, is an inhibitor of polyadenylation and has an antitumor effect. We used CGTH W-2, a follicular thyroid carcinoma cell line, to study the mechanism of the anticancer effect of cordycepin. Cordycepin decreased cell viability and resulted in apoptosis but not necrosis. Cordycepin increased intracellular calcium levels triggering calpain activation, which led to apoptosis. BAPTA/AM and calpeptin inhibited the cordycepin-induced cleavage of caspase 7 and poly (ADP-ribose) polymerase (PARP), implying an upstream role of calcium and calpain. CGTH W-2 cells expressed four subtypes of adenosine receptors (AR), A1AR, A2AAR, A2BAR, and A3AR. Specific antagonists to AR subtypes all blocked cordycepin-induced apoptosis to different degrees. Small interfering RNA for A1AR and A3AR abrogated cordycepin-induced apoptosis. In conclusion, the cordycepin-induced apoptosis of CGTH W-2 cells is mediated by the calcium-calpain-caspase 7-PARP pathway, and ARs are involved in the apoptotic effect of cordycepin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号