首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The purpose of this study was to examine the allometric analysis of ciprofloxacin and enrofloxacin using pharmacokinetic data from the literature. The pharmacokinetic parameters used were half-life, clearance and volume of distribution. Relationships between body weight and the pharmacokinetic parameter were based on the empirical formula Y = aW(b), where Y is half-life, clearance or volume of distribution, W the body weight and a is an allometric coefficient (intercept) that is constant for a given drug. The exponential term b is a proportionality constant that describes the relationship between the pharmacokinetic parameter of interest and body weight. A total of 21 different species of animals were studied. Results of the allometric analyses indicated similarity between clearance and volume of distribution as they related to body weight for both drugs. Results of the current analyses indicate it is possible to use allometry to predict pharmacokinetic variables of enrofloxacin or ciprofloxacin based on body size of species. This could provide information on appropriate doses of ciprofloxacin and enrofloxacin for all species.  相似文献   

2.
The allometric equations relating the half-life, the volume of distribution and the total body clearance of gentamicin, amikacin, tobramycin, kanamycin and apramycin to body weight for mammalian and mammalian + avian species were defined. Literature data were used as a source of comparative pharmacokinetic data. For all antibiotics examined half-life intercepts ranged from 0.49 to 1.66, slopes from 0.05 to 0.45, volume of distribution intercepts--0.13-0.75, slope-- 0.77-1.41, total body clearance intercepts--0.88-8.8 and slope--0.62-1.04. A better relationship between pharmacokinetic parameters and body weight was shown when all values were included in the allometric analysis. Different values of intercept and slope between birds and mammals were found in gentamicin and apramycin studies. In some cases, slopes and intercepts changed when all values of pharmacokinetic parameters were included. We conclude that small difference exist between pharmacokinetics of gentamicin, amikacin, tobramycin, kanamycin and apramycin. The allometric equations shown in our study provide a basis to estimate dose intervals for mammals and birds for which specific information is lacking.  相似文献   

3.
OBJECTIVE: To compare pharmacokinetic variables of enrofloxacin (ENR) after IV administration in mice, rats, rabbits, sheep, and cows and to perform allometric analysis of ENR. ANIMALS: 47 mice, 5 rats, 5 rabbits, 5 sheep, and 5 cows. PROCEDURE: Serially obtained plasma samples were assayed for ENR concentration, using high-performance liquid chromatography. In vitro plasma protein binding was determined by ultrafiltration. Plasma ENR concentration versus time curves were fitted by use of nonlinear least-squared regression analysis. Pharmacokinetic variables were correlated further with body weight. RESULTS: In all species studied, the best fit was obtained for a two-compartment open model; ENR half-life ranged from 89 minutes in mice to 169 minutes in cows. Volume of distribution was large in all species studied, with values ranging from 10.5 L/kg in mice to 1.5 L/kg in sheep. Body clearance ranged from 68.1 ml/min/kg for mice to 4.6 ml/min/kg for sheep. Unbound ENR was found to be (mean +/- SD) 58+/-2, 50+/-6, 50+/-2, 31+/-2, and 40+/-3% in plasma of mice, rats, rabbits, sheep, and cows, respectively. The only pharmacokinetic variables that could be correlated with body weight were elimination half-life, clearance, and volume of distribution. Allometric exponents denoting proportionality of half-life, body clearance, and volume of distribution with body weight were 0.06, 0.82, and 0.90, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: An allometric approach could provide a suitable method for determining a scale for ENR pharmacokinetics among various mammalian species. This would faciliatate the administration of appropriate doses of ENR to all animals.  相似文献   

4.
The objective of this study was to analyze the relationship between pharmacokinetic parameters and body weight (W) for orbifloxacin using reported pharmacokinetic data. The parameters of interest: clearance (Cl), volume of distribution at steady state (Vss) and elimination half-life were correlated across nine mammal species, including cattle, dog, rat, rabbit, goat, camel, horse, cat and sheep as a function of W using the conventional allometric equation Y = aW(b), where Y is the pharmacokinetic parameter, W is the body weight, a is the allometric coefficient (intercept) and b is the exponent that describes the relationship between the pharmacokinetic parameter and W. Our estimates (Cl=4.40 W(1.03); Vss=1.10W(1.05)) indicated that the increase in these parameters with W approximates a linear power relationship with slopes being very close to one. Overall, the results of this study indicated that it is possible to use allometry to predict pharmacokinetic variables of orbifloxacin based on W of mammal species.  相似文献   

5.
The purpose of this study was to apply the method of allometric analysis to a study of the comparative disposition of veterinary drugs using the Food Animal Residue Avoidance Databank (FARAD) as a source of the comparative pharmacokinetic data. An initial filtration of the FARAD data was performed in order to exclude drugs for which no pharmacokinetic data were available, in at least four species the route of administration was other than intravenous, and the matrix was different from blood, plasma or serum. This process restricted the study to a total of 44 candidate drugs. The primary pharmacokinetic parameter selected for study was half-life (t1/2). As this parameter is a composite of clearance (Cl) and volume of distribution (Vd), it was considered to be the most robust for interspecies scaling. Volume of distribution at steady state (Vdss) and clearance showed weak allometric correlations with weight across species. The relationships between body weight and elimination half-life (t1/2β) were determined for this selected group of drugs by using the empirically determined function Y=a Wb. The function Y represents the parameter of concern (half-life), a is a coefficient typical of every drug (intercept), W is the species average body weight, and b is the scaling exponent. A total of 11 drugs (tetracycline, oxytetracycline, chlortetracycline, erythromycin, diazepam, prednisolone, cephapirin, ampicillin, gentamicin, apramycin and carbenicillin) showed statistically significant correlations and consequently are excellent candidates for interspecies extrapolation of pharmacokinetic parameters (half-life) in species of relevance to veterinary medicine. The remaining 33 drugs were divided into two groups which showed various degrees of lack of correlation. Many of the drugs that showed no allometric correlation were low hepatic extraction drugs. However, some other drugs demonstrated equivocal results which could either be due to a true lack of allometric correlation, or be inconclusive due to the lack of quality data or excessive variability due to the multi-laboratory origin of the FARAD data. The results of this study show that interspecies scaling is applicable to certain veterinary drugs. The experimental determination of the coefficients of the allometric equation for relevant pharmacokinetic parameters (clearance and volume of distribution) could be an important tool in estimating dose in species where the drug has never been studied. This could have important consequences in terms of avoiding the use of dose-titration studies in Phase I of drug development, for drugs that are experimentally ‘well behaved’.  相似文献   

6.
Amikacin, an aminoglycoside antimicrobial, was administered to a killer whale (Orcinus orca) and a beluga whale (Delphinapterus leucas) for the treatment of clinical signs consistent with gram-negative aerobic bacterial infections. Dosage regimens were designed to target a maximal plasma concentration 8-10 times the minimum inhibitory concentrations of the pathogen and to reduce the risk of aminoglycoside toxicity. Allometric analysis of published pharmacokinetic parameters in mature animals yielded a relationship for amikacin's volume of distribution, in milliliters, given by the equation Vd = 151.058(BW)1.043. An initial dose for amikacin was estimated by calculating the volume of distribution and targeted maximal concentration. With this information, dosage regimens for i.m. administration were designed for a killer whale and a beluga whale. Therapeutic drug monitoring was performed on each whale to assess the individual pharmacokinetic parameters. The elimination half-life (5.99 hr), volume of distribution per bioavailability (319 ml/kg). and clearance per bioavailability (0.61 ml/min/kg) were calculated for the killer whale. The elimination half-life (5.03 hr), volume of distribution per bioavailability (229 ml/kg). and clearance per bioavailability (0.53 ml/min/kg) were calculated for the beluga whale. The volume of distribution predicted from the allometric equation for both whales was similar to the calculated pharmacokinetic parameter. Both whales exhibited a prolonged elimination half-life and decreased clearance when compared with other animal species despite normal renal parameters on biochemistry panels. Allometric principles and therapeutic drug monitoring were used to accurately determine the doses in these cases and to avoid toxicity.  相似文献   

7.
The pharmacokinetics of cefepime, a new fourth generation cephalosporin with enhanced antibacterial activity, was examined in neonatal foals and adult dogs. Cefepime was administered intravenously (i.v.) at a dose of 14 mg/kg to five neonatal foals and six adult dogs. Blood samples were collected in both groups of animals and plasma cefepime concentrations measured by reverse-phase high-performance liquid chromatography (HPLC). Cefepime concentrations in both groups of animals were described by a two-compartment pharmacokinetic model with elimination half-lives of 1.65 and 1.09 h for the foal and dog, respectively. We tested whether or not pharmacokinetic parameters for cefepime could be scaled across species using principles of allometry. The parameters of elimination half-life (t(1/2)beta), apparent volume of distribution (VDarea), and systemic clearance (CL) were scaled linearly to body weight on a double logarithmic plot with allometric exponents for body weight of 0.26, 1.08 and 0.72, respectively. This study further determined doses for cefepime, a potentially useful antibiotic for neonatal foals and dogs, from the pharmacokinetic values. An i.v. dose of cefepime estimated from this study for treating sensitive bacteria was 11 mg/kg every 8 h for neonatal foals and 40 mg/kg every 6 h for dogs.  相似文献   

8.
Interspecies scaling of pharmacokinetic (PK) parameters is commonplace in drug development. However, information about proportionality of pharmacodynamic (PD) parameters in different species is scarce. We investigated the feasibility of allometric scaling of PK and PD parameters of s(+)-ketoprofen (sKTP) using the literature data from several animal species. Two different indirect response models were proposed to characterize sKTP inhibitory effects on synthesis of thromboxane B(2) (TXB(2)) and prostaglandin E(2) (PGE(2)). Using the traditional allometric approach, the obtained PK and PD parameters were plotted against body weights (BW) on a log-log scale. For all species, values of systemic clearance (Cl), distribution clearance (Cl(D)), central volume of distribution (V(c)), and volume of distribution at steady-state (V(ss)) were highly correlated (r(2) = 0.89-0.99) with BW. The PD parameters for inhibition of TXB(2) synthesis were poorly correlated with BW (r(2) = 0.25-0.54) while most of the parameters for inhibition of PGE(2) synthesis lacked any correlation (r(2) approximately 0.05). In conclusion, indirect response models adequately described the time course of sKTP inhibitory effects on synthesis of TXB(2) and PGE(2). Allometrical scaling showed PK parameters to change proportionally to BW, whereas PD parameters had limited ranges and were essentially weight independent.  相似文献   

9.
Pharmacokinetic variables of etomidate were determined after IV administration of etomidate (3.0 mg/kg of body weight). Blood samples were collected for 6 hours. Disposition of this carboxylated imidazole best conformed to a 2- (n = 2) and a 3- compartment (n = 4) open pharmacokinetic model. The pharmacokinetic values were calculated for the overall best-fitted model, characterized as a mixed 2- and 3-compartmental model. The first and most rapid distribution half-life was 0.05 hour and a second distribution half-life was 0.35 hour. Elimination half-life was 2.89 hours, apparent volume of distribution was 11.87 +/- 4.64 L/kg, apparent volume of distribution at steady state was 4.88 +/- 2.25 L/kg, apparent volume of the central compartment was 1.17 +/- 0.70 L/kg, and total clearance was 2.47 +/- 0.78 L/kg/h.  相似文献   

10.
Pharmacokinetics of doxycycline in dogs.   总被引:1,自引:0,他引:1       下载免费PDF全文
Six adult dogs were given doxycycline hyclate at a dosage of 5 mg/kg of body weight intravenously so that pharmacokinetic parameters could be evaluated. Serum doxycycline concentrations were determined over a 48 h period using a modified agar well bioassay. Compartmental pharmacokinetic evaluation of the serum concentration time data indicated that doxycycline has a half-life of 10.36 h, a body clearance of 1.68 +/- 0.44 mL/min/kg, and a volume of distribution at steady state of 1.468 +/- 0.237 L/kg. Doxycycline pharmacokinetics are favorable for therapeutic use in the dog.  相似文献   

11.
In this study, the pharmacokinetics of moxifloxacin (5 mg/kg) was determined following a single intravenous administration of moxifloxacin alone and co-administration with diclofenac (2.5 mg/kg) or flunixin meglumine (2.2 mg/kg) in sheep. Six healthy Akkaraman sheep (2 ± 0.3 years and 53.5 ± 5 kg of body weight) were used. A longitudinal design with a 15-day washout period was used in three periods. In the first period, moxifloxacin was administered by an intravenous (IV) injection. In the second and third periods, moxifloxacin was co-administered with IV administration of diclofenac and flunixin meglumine, respectively. The plasma concentration of moxifloxacin was assayed by high-performance liquid chromatography. The pharmacokinetic parameters were calculated using a two-compartment open pharmacokinetic model. Following IV administration of moxifloxacin alone, the mean elimination half-life (t1/2β), total body clearance (ClT), volume of distribution at steady state (Vdss) and area under the curve (AUC) of moxifloxacin were 2.27 hr, 0.56 L h−1 kg−1, 1.66 L/kg and 8.91 hr*µg/ml, respectively. While diclofenac and flunixin meglumine significantly increased the t1/2β and AUC of moxifloxacin, they significantly reduced the ClT and Vdss. These results suggest that anti-inflammatory drugs could increase the therapeutic efficacy of moxifloxacin by altering its pharmacokinetics.  相似文献   

12.
Some pharmacokinetic parameters of aditoprim were determined in 3- and 6-month-old pigs. After intravenous administration of 5 mg/kg body weight, the mean total body clearance of the older pigs was smaller than that of the younger pigs. This difference was not reflected in the elimination half-life. After oral administration of 5 mg/kg body weight, the mean absorption rate constant was smaller and the mean absorption half-life was longer in the older pigs. The age-related changes in the pharmacokinetics of aditoprim were not sufficiently pronounced to suggest the necessity of modifying the oral dosage regimen in pigs of this age range. The favourable pharmacokinetics of aditoprim in pigs (large apparent volume of distribution, long elimination half-life and high bioavailability) may permit introduction of this drug into swine practice, after safety and residue depletion studies.  相似文献   

13.
Pharmacokinetics of thiamylal were determined after 13.2 mg of thiamylal/kg of body weight was administered IV to 6 healthy cats. Blood samples were obtained for 12 hours. Disposition of thiamylal best conformed to 2 multicompartmental models, a 2-compartment (n = 1) and a 3-compartment (n = 5) open pharmacokinetic model. The pharmacokinetic values were calculated for the overall best-fitted model, a mixed 2- and 3-compartmental model. The first or rapid distribution half-life was 1.91 minutes and a second, or slower, distribution half-life was 26.51 minutes. The elimination half-life was 14.34 hours. The apparent volume of distribution was 3.61 +/- 1.8463 L/kg, whereas the apparent volume of the central compartment was 0.46 +/- 0.2034 L/kg, and the total clearance was 0.135 +/- 0.0616 L/kg/h.  相似文献   

14.
The pharmacokinetics of thiamphenicol (TAP), a broad-spectrum antibiotic, was determined in male mice, rats, rabbits, dogs, pigs, sheep and calves. The relationship between the main pharmacokinetic parameters of TAP and body weight (W) was studied across these seven mammalian species, using double-logarithmic plots. The experimental values of volume of distribution (Vss), clearance (Cl) and elimination half-life (t(1/2)beta) were plotted, and extrapolated values were determined from corresponding allometric equations. These parameters were fitted to the following equations: Vss=0.98W0.92, Cl=15.80W0.76 and t(1/2)beta=0.94W0.20, and present good correlation (Vss: r2=0.997, P < 0.001; Cl: r2=0.976, P < 0.001, t(1/2)beta: r2=0.852, P < 0.005), that is expected of a drug eliminated primarily by renal glomerular filtration, with insignificant hepatic metabolism. For the t(1/2)beta, the extrapolated and observed values were similar. The extrapolated values of Cl were close to the experimental values, except for the mouse and pig mean percent error [(M.E.) equal to 62 and 119%, respectively], while the extrapolated and observed values for the Vss were very similar. The comparison between experimental and extrapolated values suggests that it could be possible to extrapolate, with good prediction, the kinetic parameters of this drug for mammalian species, using allometric scaling, except for the species that eliminate the drug by a combination of renal excretion and hepatic metabolism.  相似文献   

15.
When body size varies greatly, drug disposition can best be described as an allometric function of body weight. Therefore, the allometry of standard metabolic rate (SMR; 3/4 power) and body surface area (BSA; 2/3 power) have been advocated as surrogate markers for the prediction of key pharmacokinetic parameters. The goal of the present study was to examine the allometric basis of pharmacokinetic scaling within a species, green iguanas. Enrofloxacin was administered intravenously to 20 green iguanas (322-3824 g), and noncompartmental analysis was used to calculate standard pharmacokinetic parameters, which were log(10) transformed and regressed against log(10) body weight. The slopes of significant regressions were compared with the values of unity, 3/4, and 2/3. The slope of enrofloxacin total body clearance (Cl) was also compared with the slopes relating SMR and renal Cl of (99m)Tc-diethylenetriamine penta-acetic acid ((99m)DTPA) to body weight in iguanas. Enrofloxacin Cl depended allometrically on body weight with the power of 0.32. The slope of enrofloxacin Cl was significantly less than those of SMR, Cl of (99m)DTPA, and the 2/3 value. Therefore, the relationship between enrofloxacin Cl and body weight does not directly depend on the allometry of BSA, SMR, or renal Cl of (99m)DTPA in iguanas.  相似文献   

16.
An interspecies pharmacokinetic model for gentamicin was developed using the mixed effects modeling approach and serum disposition data obtained from the Food Animal Residue Avoidance Databank (FARAD). Data that met a priori quality criteria was obtained from the database and analysed using the traditional double logarithmic analysis and the mixed effects modeling approach. Body weight, brain weight and fever were the covariates of interest in our study. Population pharmacokinetic models across species were developed and validated with swine data. The parameter volume of distribution was modeled as a function of body weight. The total clearance was initially modeled as a function of body weight. The predictability performance of the model improved dramatically when the parameter brain weight was included in the covariate model for clearance. This was a surprising finding worthy of further study. The covariate fever seemed to influence the magnitude of the volume of distribution, although the scarcity of data pertaining to diseased animals makes this finding uncertain. We conclude that the pharmacokinetic characteristics of drugs such as gentamicin, can be predicted across species using a population pharmacokinetics modeling approach, and that clinical features that affect species in a similar manner can be also explored in this fashion.  相似文献   

17.
Interspecies scaling is a useful tool for the prediction of pharmacokinetic parameters from animals to humans, and it is often used for estimating a first-time in human dose. However, it is important to appreciate the mathematical underpinnings of this scaling procedure when using it to predict pharmacokinetic parameter values across animal species. When cautiously applied, allometry can be a tool for estimating clearance in veterinary species for the purpose of dosage selection. It is particularly valuable during the selection of dosages in large zoo animal species, such as elephants, large cats and camels, for which pharmacokinetic data are scant. In Part I, allometric predictions of clearance in large animal species were found to pose substantially greater risks of inaccuracies when compared with that observed for humans. In this report, we examine the factors influencing the accuracy of our clearance estimates from the perspective of the relationship between prediction error and such variables as the distribution of body weight values used in the regression analysis, the influence of a particular observation on the clearance estimate, and the 'goodness of fit' (R(2)) of the regression line. Ultimately, these considerations are used to generate recommendations regarding the data to be included in the allometric prediction of clearance in large animal species.  相似文献   

18.
Allometric scaling is widely used for the determination of first dosage regimen and the interpolation or extrapolation of pharmacokinetic parameters across many animal species during drug development. In this article, 85 drugs used in veterinary medicine obtained from the Food Animal Residue Avoidance Databank database were selected for allometric scaling analysis. Outlier species were identified by statistical methods. The results showed that 77% and 88% of drugs displayed significant correlations between total systemic clearance (CL) and volume of distribution at steady status (Vss) vs. body weight (< 0.05) on a log‐log scale, respectively. The distribution of the allometric exponent b for CL and Vss displays approximate normal distribution, with means (0.87 and 0.99) and standard deviations (0.143 and 0.157) for CL and Vss, respectively. Twelve drugs were identified to have at least one outlier species for CL and ten drugs for Vss. The human CL and Vss were predicted for selected drugs by the obtained allometric equations. The predicted CL and Vss were within a threefold error compared to observed values, except the predicted CL values for antipyrine, warfarin and diazepam. The results can be used to estimate cross‐species pharmacokinetic profiles for predicting drug dosages in veterinary species, and to identify those species for which interpolation or extrapolation of pharmacokinetics properties may be problematic.  相似文献   

19.
The disposition of theophylline in healthy ruminating calves was best described by a first-order 2-compartment open pharmacokinetic model. The drug had a mean elimination half-life of 6.4 hours and a mean distribution half-life of 22 minutes. Total body clearance averaged 91 ml/kg/h. The mean values for the pharmacokinetic volume of the central compartment, pharmacokinetic volume of distribution during the terminal phase, and volume of distribution at steady state were 0.502, 0.870, and 0.815 L/kg, respectively. Theophylline was readily absorbed after oral administration to the ruminating calf, with a mean fraction of 0.93 absorbed. The plasma concentrations after oral dosing peaked in approximately 5 to 6 hours, with a mean absorption half-life of 3.7 hours. A flip-flop model (rate constant of input is much smaller than the rate constant of output) of drug absorption was not found because the elimination process roughly paralleled that of the study concerning IV administration. In a multiple-dose trial that used a dosage regimen based on single-dose pharmacokinetic values, clinically normal calves responded as predicted. However, diseased calves had higher than expected plasma concentrations after being given multiple oral doses of theophylline at 28 mg/kg once daily. Overt signs of toxicosis were not seen, but this aspect of the drug was not formally investigated. Theophylline can be used as an ancillary therapeutic agent to treat bovine respiratory disease, but not without risk. The suggested oral dose of theophylline at 28 mg/kg of body weight once daily should be tailored to each case.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The pharmacokinetics and pharmacodynamics of dexamethasone were evaluated in healthy camels after single intravenous bolus doses of 0.05, 0.1 and 0.2 mg/kg body weight. Dexamethasone showed dose-independent pharmacokinetics. The pharmacokinetic parameters of the two-compartment pharmacokinetic model for the lowest intravenous dose (mean+/-SD) were as follows: terminal elimination half-life 8.17 +/- 1.79 h; total body clearance 100.7 +/- 52.1 (ml/h)/kg; volume of distribution at steady state 0.95 +/- 0.23 L/kg; and volume of the central compartment 0.22 +/- 0.07 L/kg. The extent of plasma protein binding was linear over the concentration range 5-100 ng/ml and averaged 75% +/- 2%. Pharmacodynamic effects were evaluated by measuring endogenous plasma cortisol concentrations, numbers of circulating lymphocytes and neutrophils and plasma glucose concentrations and were analysed using indirect pharmacokinetic/pharmacodynamic models. The cumulative systemic effect increased with dose for markers of pharmacodynamic activity. The estimated IC50 of dexamethasone for cortisol and lymphocytes for the lowest dose were 3.74 +/- 2.44 and 5.58 +/- 8.37 ng/ml, respectively and the EC50 values for neutrophils and glucose were 45.8 +/- 36.9 and 1.17 +/- 0.71 ng/ml, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号