首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The objective of this study was to evaluate protein composition and its effects on flour quality and physical dough test parameters using waxy wheat near‐isogenic lines. Partial waxy (single and double nulls) and waxy (null at all three waxy loci, Wx‐A1, Wx‐B1, and Wx‐D1) lines of N11 set (bread wheat) and Svevo (durum) were investigated. For protein composition, waxy wheats in this study had relatively lower albumins‐globulins than the hard winter wheat control. In the bread wheats (N11), dough strength as measured by mixograph peak dough development time (MDDT) (r = 0.75) and maximum resistance (Rmax) (r = 0.70) was significantly correlated with unextractable polymeric protein (UPP), whereas in durum wheats, moderate correlation was observed (r = 0.73 and 0.59, respectively). This may be due to the presence of high molecular weight glutenin subunits (HMW‐GS) Dx2+Dy12 at the Glu‐D1 locus instead of Dx5+Dy10, which are associated with dough strength. Significant correlation of initial loaf volume (ILV) to flour polymeric protein (FPP) (r = 0.75) and flour protein (FP) (r = 0.63) was found in bread wheats, whereas in durum wheats, a weak correlation of ILV was observed with FP (r = 0.09) and FPP (r =0.51). Significant correlation of ILV with FPP in bread wheats and with % polymeric protein (PPP) (r = 0.75) in durum lines indicates that this aspect of end‐use functionality is influenced by FPP and PPP, respectively, in these waxy wheat lines. High ILV was observed with 100% waxy wheat flour alone and was not affected by 50% blending with bread wheat flour. However, dark color and poor crumb structure was observed with 100% waxy flour, which was unacceptable to consumers. As the amylopectin content of the starch increases, loaf expansion increases but the crumb structure becomes increasingly unstable and collapses.  相似文献   

2.
Flours from advanced lines or cultivars of six triticales and two prime hard wheats, along with triticale‐wheat blends, were investigated for mixing, extension (excluding blends), and baking properties using microscale testing. Percentage total polymeric protein (PPP) and percentage unextractable polymeric protein (UPP) of flours and doughs, including blends, mixed to optimal dough development were estimated using size‐exclusion HPLC to determine the changes in protein solubility and association with blend composition (BC), mixing properties, and loaf height. Each triticale was blended with flours of each of the two wheat cultivars (Hartog and Sunco) at 0, 30, 40, 50, 60, 70, and 100% of wheat flour. Nonlinear relationships between BC and mixograph parameters (mixing time [MT], bandwidth at peak resistance [BWPR], and resistance breakdown [RBD]) were observed. A linear relationship between BC and peak resistance (PR) was predominant. PPP of triticale flours was mostly higher than PPP of wheat cultivars. UPP of all triticales was significantly lower than wheat cultivars. PPP of freeze‐dried doughs was mostly nonsignificant across the blends and showed a curvilinear relationship with BC. The deviations from linearity of MT and PPP were higher in triticale‐Sunco blends than in triticale‐Hartog blends. UPP of blends was closer to or lower than the lower component in the blend. The deviations from linearity for MT and UPP were greater in triticale‐Hartog blends than triticale‐Sunco blends. A highly significant correlation (P < 0.001) was observed between BWPR and loaf height. This suggested that BWPR in triticale‐wheat flour blends could be successfully used for the prediction of loaf height. Triticale flour could be substituted for wheat flour up to 50% in the blend without drastically affecting bread quality. Dough properties of triticale‐wheat flour blends were highly cultivar specific and dependent on blend composition. This strongly suggested that any flour blend must be tested at the desired blend composition.  相似文献   

3.
《Cereal Chemistry》2017,94(5):827-833
Glutens isolated from 15 soft red winter (SRW) wheat flours were added into a SRW wheat flour to obtain protein levels of 9.6 and 11.3% for determination of the qualitative effect of added gluten on the dough properties and quality of northern‐style Chinese steamed bread (CSB). Sodium dodecyl sulfate sedimentation (SDSS) volume of the gluten source flour exhibited positive relationships with mixograph absorption, midline peak time (MPT), and midline peak value (MPV) of the gluten‐added flours and with surface smoothness, crumb structure, and total score of CSB prepared from the gluten‐added flours regardless of protein content. Positive correlations were also observed between SDSS volume of the gluten source flour and specific volume and stress relaxation score of CSB prepared from the gluten‐added flours of 11.3% protein. The increase in protein content from 9.6 to 11.3% by gluten addition raised mixograph absorption, MPT, and MPV but had no apparent effect on resistance breakdown, dough maximum force for extension, and extensibility, and it increased CSB specific volume and crumb structure score without affecting surface smoothness, stress relaxation, and total score. Mixograph parameters exhibited significant relationships with CSB total score, indicating that they could be effective predictors of the CSB‐making quality of flours.  相似文献   

4.
Flours of 19 soft red winter (SRW) wheat varieties having protein contents of 6.6–9.9% were used to determine the suitability of SRW wheat for making northern‐style Chinese steamed bread (CSB) and the influences of flour characteristics on the quality attributes of CSB. Fourteen varieties produced CSB of acceptable to good quality with a total score greater than 70. Both protein content and dough strength‐related parameters, including sodium dodecyl sulfate sedimentation (SDSS) volume, wet and dry gluten contents, and midline peak time (MPT), were significantly associated with the quality attributes of CSB. The rapid viscosity analyzer setback value exhibited significant negative correlations with specific volume, smoothness, crumb structure, and total score of CSB. Stepwise multiple regression analysis indicated that 89% of variability in total scores of CSB could be predicted from SDSS volume, wet gluten content, and MPT. Contributions of high‐molecular‐weight glutenin subunits 7*+8 and 5+10 to flour characteristics, specific volume, stress relaxation score, and total score of CSB were greater than those of their counterpart allelic variations. Absence of the 1B/1R translocation in SRW wheat varieties was desirable for the production of CSB.  相似文献   

5.
The objectives of this study were to assess how functional properties of proteins in whole meal wheat (Triticum aestivum L.) flour vary across different growth environments. Grain from three commercial Australian Hard milling wheat cultivars was analyzed from four growth locations in 2008 and from two of the corresponding cultivars and locations in 2009. The protein content of the grain, soluble and insoluble extractable protein fractions, swelling index of glutenin (SIG), glutenin‐to‐gliadin ratio (Glu:Gli), percent unextractable polymeric protein (%UPP), and dough properties including force at maximum resistance (Rmax) and extensibility were measured. Based on analysis of variance of aggregated data for the cultivars, growth locations, and seasons, growth environment factors made significant contributions to variability in the total grain protein, Glu:Gli ratio, %UPP, SIG, Rmax, and extensibility of the wheat flour. Variability of protein content of the soluble and insoluble extractable protein fractions was mostly owing to genotype.  相似文献   

6.
Relationships between flour functional properties and protein composition were studied using a set of 138 Argentinean wheat samples. Among different protein groups, the incremental increase of gliadin with increasing grain protein content was highest followed by polymeric protein with albumin‐globulin content much lower. Functional properties could be divided into two groups based on dependence on protein composition. Properties such as dough extensibility and bake test loaf volume correlated highly with the percentage of polymeric protein in the grain. Properties such as mixograph dough development time were best correlated with the percentage of polymeric protein in the protein (PPP). Alveograph tenacity showed no significant dependence on PPP. as found previously for extensigraph maximum resistance, but it was correlated with the percentage of unextractable polymeric protein in the protein. Energy (W) appeared to be a more useful alveograph parameter for predicting flour quality.  相似文献   

7.
Diacetyl tartaric acid ester of monoglycerides (DATEM) is a kind of anionic emulsifier. To date, the positive effect of DATEM on the volume of bread has been reported, but the effects on Chinese steamed bread (CSB) quality and other parameters for bread quality are still unclear. The effects of DATEM on the characteristics of dough and the qualities of CSB and bread were investigated. The results showed that, the effects of DATEM on the rheological properties of dough were complex. Water absorption ratio of CSB dough decreased slightly, while that of bread dough increased slightly. But gas retention and structure improved and gluten strength increased for both CSB and bread doughs after DATEM was added. The studies also showed that structure, elasticity, tenacity, and whiteness of CSB were improved, but specific volume was almost unchanged. The structure, color, and smoothness were significantly improved for bread, and specific volume increased compared with the control. The optimal quantities of DATEM for CSB and bread were both ≈0.10% (on flour mass basis).  相似文献   

8.
Cations of differing chaotropic capacities (LiCl, NaCl, and KCl) were used in small‐scale mixing and extensigraph studies to assess functional changes in dough behavior of wheat cultivars varying in total protein content and HMW glutenin composition. Salt addition, regardless of cationic type, caused an increase in dough strength and stability. The smaller (hydrated) and least chaotrophic cations (Li+<Na+<K+) effected the greatest increase in mixing time (MT) and resistance to extension (Rmax) and produced the most stable resistance breakdown (RBD). The effects of different cations on mixing and extensions indicated strong intercultivar variation; differential responses to salt addition were further shown when the cultivars were grouped according to protein content and Glu‐1D or Glu‐1B genome composition. Increases in dough strength parameters due to the addition of salt were consistently more significant for cultivars showing an overexpression of Bx7 (>12% protein). In the absence of genotypic variation, a significant interactive effect of cultivar type, protein amount, and salt addition was found for all functional dough parameters except extensibility. During mixing, there was a decrease in the amount of apparent unextractable polymeric protein (%UPP) in the dough. This phenomenon was ameliorated by the presence of salt in doughs formed from weaker flours and was most pronounced early on in the mixing process (t = 100–200 sec). Results show the importance of refining 2‐g mixograph studies to include salt in the “flour and water” dough formula.  相似文献   

9.
Two field trials using four New Zealand wheat cultivars were undertaken to observe the effects of nitrogen and sulfur fertilization on protein composition, mixing requirements, and dough strength and to compare the results with that observed with a single cultivar, Otane. The results confirmed that adequate sulfur fertilization was necessary to ensure lower dough mixing requirements. The existence of a nexus between mixing requirements and dough strength was confirmed and genotype has significant effects on it. Variation in the content of HMW‐GS in the protein corresponded to changes in dough mixing requirement of Otane. Across the four cultivars, dough mixing requirements (mechanical dough development work input and mixograph development time) and dough strength (Extensigraph resistance to extension) depended on different aspects of protein composition. As the content of polymeric proteins increased, MDD work input increased, but mixograph development time decreased, while the effect on Rmax was small. Rmax, however, was more affected by either the content of small monomerics in the flour or the ratio between HMW‐GS peak area to total gliadin peak area. The ratio of MDD work input to Rmax was largely explained by the gliadin content of the flour. Thus, depending on the genetic background, it should be possible to adjust dough mixing requirements by modifying overall HMW‐GS, LMW‐GS, or gliadin content while maintaining dough strength.  相似文献   

10.
《Cereal Chemistry》2017,94(3):581-587
Wheat bran is a low‐cost by‐product abundantly produced by the wheat flour industry. As a staple food of China, Chinese steamed bread (CSB) represents about 40% of China's wheat consumption. This study investigated the effects of incorporating wheat bran into the CSB at different levels (5, 10, and 15%). The dough behavior was measured by analyzing rheological properties. Quality of CSB was analyzed from two perspectives: physical properties and nutritional quality. For physical properties, specific volume, loaf height, moisture, and texture were measured by 1 . The predicted glycemic response of the bread was analyzed by using an in vitro digestion method. The results illustrated that the incorporation of wheat bran into wheat flour reduced the extensibility of the dough, decreased specific volume, and increased bread hardness, gumminess, and chewiness. However, this study also showed that addition of wheat bran can decrease the predicted glycemic response of steamed bread by up to 39%.  相似文献   

11.
Measurements of creep‐recovery of flour‐water doughs were made using a dynamic mechanical analyzer (DMA) in a compression mode with an applied probe force of 50 mN. A series of wheat flour and blend samples with various breadmaking potentials were tested at a fixed water absorption of 54% and farinograph optimum water absorption, respectively. The flour‐water doughs exhibited a typical creep‐recovery behavior of a noncross‐linked viscoelastic material varying in some parameters with flour properties. The maximum recovery strain of doughs with a fixed water absorption of 54% was highly correlated (r = 0.939) to bread loaf volume. Wheat flours with a large bread volume exhibited greater dough recovery strain. However, there was no correlation (r = 0.122) between maximum creep strain and baking volume. The maximum recovery strain of flour‐water doughs also was correlated to some of the parameters provided by mixograph, farinograph, and TA‐XT2 extension.  相似文献   

12.
Improvement of food processing quality has become a major breeding objective in China. Nineteen Chinese leading winter wheat cultivars with improved quality and two Australian cultivars with high bread and noodle-making qualities were sown in four locations for two years to investigate dough properties, pan bread, and Chinese white salted noodle (CWSN) qualities, and their association with the quantity of protein fractions. The results indicated that genotype, environment, and genotype-by-environment interaction significantly affected most of quality traits and amount of protein fractions. Genotype mainly determined the quantity of gluten protein fractions and pan bread quality parameters, while environment was the most important source of variation for the noodle quality parameters. Chinese cultivars were characterized by acceptable protein content (11.1–13.4%), medium to strong dough strength (maximum resistance 176.9–746.5 BU), medium to poor dough extensibility (166.5–216.4 mm), fair to very good pan bread qualities, and good to very good CWSN qualities. Gliadin contributed more in quantity to protein content (r = 0.80, P < 0.001), however, glutenin and its subgroups were more important to dough strength. The quantity of glutenin, HMW-GS, and LMW-GS were highly and significantly correlated with dough strength-related traits such as farinograph development time, stability, extensigraph maximum resistance, and extension area (r = 0.70–0.91, 0.65–0.89, and 0.70–0.91, respectively; P < 0.001). The quantity of LMW-GS could explain 82.8% of the total variation of dough maximum resistance. The quantity of gliadin and the ratio of HMW-GS to LMW-GS determined dough extensibility (r = 0.75 and r = –0.59, respectively; P < 0.001 and P < 0.01, respectively). Higher quantity of glutenin and lower ratio of gliadin to glutenin resulted in higher bread score with r = 0.70 (P < 0.001) and r = –0.74 (P < 0.001), respectively. However, protein content and its fractions have a moderate undesirable effect on CWSN parameters such as color, firmness, and taste. Therefore, both allelic variation and quantity of storage protein fractions should be considered in breeding cultivars with improved pan bread making quality.  相似文献   

13.
Introduction of high molecular weight glutenin subunits (HMW‐GS) from the Glu‐D1d locus of wheat into triticale restores the genetic constitution of high molecular weight glutenin loci to that of wheat and subsequently improves the breadmaking quality of triticale. One means of achieving such restoration of the genetic constitution is through the use of translocation lines. The aim of this study was to evaluate and compare the performance of translocations 1A.1D and 1R.1D with HMW‐GS 5+10 and 2+12 in terms of physical dough tests and baking quality using four different sets of triticale lines, GDS7, Trim, Rhino, and Rigel. In general, significantly lower milling quality (flour yield), very low mixing times with lower loaf volume were typical of all the triticales studied except 1A.1D 5+10 lines, when compared to hard wheat flour (Pegaso). Among the lines studied, significantly higher loaf volume, mixograph dough development time (MDDT), and maximum resistance to extension (Rmax) were observed with 1A.1D 5+10 lines indicating that translocation of the Glu‐D1d allele with HMW‐GS 5+10 was beneficial in terms of improving the quality attributes. Although pure triticale flour from these lines did not possess the functional characteristics for good quality bread, the translocation 1A.1D that contains HMW glutenin subunits 5+10 showed significant improvement in quality characteristics, and could reasonably be expected to yield commercially satisfactory bread loaves when combined with bread wheat flour. Significantly higher UPP, Rmax, and MDDT values along with a lower gliadin‐to‐glutenin ratio in 1A.1D 5+10 of GDS7 and Rigel sets indicate that the molecular weight distribution was shifted to higher molecular weights, resulting in greater dough strength associated with 5+10 subunits.  相似文献   

14.
Variation of polymeric proteins affects wheat end‐use quality. This research investigated associations of polymeric proteins with dough mixing strength and breadmaking characteristics in a near‐homogenous population of 139 recombinant inbred lines (RILs) derived from a cross between two hard red spring wheat breeding lines. Flours from the RILs grown at three locations were analyzed for molecular weight (MW) distribution of SDS‐extractable and unextractable proteins using size‐exclusion HPLC protocol. Correlations were calculated between mixing and breadmaking properties and HPLC absorbance data obtained a 0.01‐min retention time interval to identify protein fractions that had a significant effect on the quality traits. Very high MW polymeric proteins in the unextractable fraction had more distinct and positive associations with dough mixing strength and bread loaf volume than did other polymeric protein fractions, whereas extractable polymeric had negative influence. Consequently, the ratio of unextractable very high MW polymeric proteins to extractable polymeric proteins had greater correlations with dough mixing parameters than other HPLC absorbance area data. Covariate‐effect biplots also visually validated positive effects of unextractable very high MW polymeric proteins and negative effects of extractable polymeric proteins on mixing properties and loaf volume across three growing locations.  相似文献   

15.
Twenty‐seven durum wheat genotypes originating from different geographical areas, all expressing LMW‐2 at Glu‐B3, and five bread wheats were evaluated for flour mixing properties, dough physical characteristics, and baking performance. Gluten polymeric composition was studied using size‐exclusion HPLC of unreduced flour protein extracts. As a group, durum wheats had poorer baking quality than bread wheats in spite of higher protein and total polymer concentrations. Durum wheats exhibited weaker gluten characteristics, which could generally be attributed to a reduced proportion of SDS‐unextractable polymer, and produced less extensible doughs than did bread wheats. However, substantial variation in breadmaking quality attributes was observed among durum genotypes. Better baking performance was generally associated with greater dough extensibility and protein content, but not with gluten strength related parameters. Extensibility did not correlate with gluten strength or SEHPLC parameters. Genotypes expressing high molecular weight glutenin subunits (HMW‐GS) 6+8 exhibited better overall breadmaking quality compared with those expressing HMW‐GS 7+8 or 20. Whereas differences between genotypes expressing HMW‐GS 6+8 and those carrying HMW‐GS 7+8 could only be attributed to variations in extensibility, the generally inferior baking performance of the HMW‐GS 20 group relative to the HMW‐GS 6+8 group could be attributed to both weaker and less extensible gluten characteristics.  相似文献   

16.
One commercial bread wheat flour with medium strength (11.3% protein content, 14% mb) was fractionated into starch, gluten, and water solubles by hand‐washing. The starch fraction was separated further into large and small granules by repeated sedimentation. Large (10–40 μm diameter) and small (1–15 μm diameter) starch fractions were examined. Flour fractions were reconstituted to original levels in the flour using composites of varying weight percentages of starch granules: 0% small granules (100% large granules), 30, 60, and 100% (0% large granules). A modified straight‐dough method was used in an experimental baking test. Crumb grain and texture were significantly affected. The bread made from the reconstituted flour with 30% small granules and 70% large granules starch had the highest crumb grain score (4.0, subjective method), the highest peak fineness value (1,029), and the second‐highest elongation ratio (1.55). Inferior crumb grain scores and low fineness and elongation ratios were observed in breads made from flours with starch fractions with 100% small granules or 100% large granules. As the proportion of small granules increased in the reconstituted flour, it yielded bread with softer texture that was better maintained than the bread made from the reconstituted reference flour during storage.  相似文献   

17.
The uniaxial elongational and shear rheology of doughs varying in either the protein content or glutenin‐to‐gliadin ratio were investigated. Increasing the protein content at constant glutenin‐to‐gliadin ratio increased the strain‐hardening properties of the dough, as shown by increasing elongational rupture viscosity and rupture stress. Glutenin and gliadin had a more complex effect on the elongational properties of the dough. Increased levels of glutenin increased the rupture viscosity but lowered the rupture strain, while elevated gliadin levels lowered the rupture viscosity but increased the rupture strain. These observations provide rheological support for the widely inferred role of gliadin and glutenin in shaping bread dough rheology, namely that gliadin contributes the flow properties, and glutenin contributes the elastic or strength properties. The shear and elongational properties of the doughs were quite different, reflecting the dissimilar natures of these two types of flow. Increasing protein content lowered the maximum shear viscosity, while increasing the glutenin‐to‐gliadin ratio increased maximum shear viscosity. Strong correlations between the results of basic and empirical rheology were found. These basic, or fundamental, rheological measurements confirmed prior empirical studies and supported baking industry experience, highlighting the potential of basic rheology for bread and wheat research.  相似文献   

18.
Pyranose oxidase (P2O) improves wheat flour dough stability and bread quality. We related its effect on dough spread behavior to that on dough and bread crumb structure. Increasing P2O addition levels gradually reduced dough flow. High P2O addition levels further increased dough strength, significantly increased dough cell wall thickness, and decreased bread loaf volume. Taken together, affecting dough spread behavior impacts dough and bread (crumb) structure, and dough structure largely determines bread crumb structure.  相似文献   

19.
The effect on physical dough properties of nitrogen and sulfur fertilizer applied during cultivation was observed in two trials using the bread wheat (Triticum aestivum) cultivar Otane. Wheat flours from both trials were evaluated for physical dough properties under laboratory conditions and also under industrial conditions in the second trial. The laboratory and industrial optimum mechanical dough development (MDD) work input (WI) significantly increased when nitrogen (N) fertilizer was applied without sulfur fertilizer (S) during crop cultivation. With combined N and S fertilization, laboratory and industrial WI remained close to levels for grain grown without fertilizer. Reductions in extensigraph resistance to extension (Rmax) and increases in extensigraph extensibility (Ext) due to S fertilization also were observed. None of the observed changes in WI, Rmax, or Ext due to S fertilization significantly affected end‐product quality as measured by loaf volume, crumb grain, and bake score. The nexus between WI and Rmax was weakened by combined N and S fertilization in the first trial, but remained strong in the second trial. Both WI and Rmax increased as N fertilizer and flour nitrogen increased, but at different rates. This observation indicated that by applying N fertilizer to improve dough strength, a disproportionate and disadvantageous increase in WI also resulted, which could be tempered by S fertilization. In this regard, an optimum N:S fertilizer ratio of 3:1 was indicated, although this ratio would be dependent on the balance of available N and S in the soil. Flour N:S ratios <12.5 kept WI to levels desirable in an industrial MDD bakery. Correlations between laboratory WI, mixograph development time (except in the SN1 trial), and farinograph development time were significant. The 125‐g MDD mixers appeared to be more responsive when measuring mixing requirements than the mixograph and farinograph to variations in quality due to environmental and agronomic influences and correlated better with industrial performance.  相似文献   

20.
The effect of different protein sources (soy flour, lupin flour, egg albumin, gelatin powder, protein‐rich beer yeast flour) on wheat dough functionality was tested by determining gluten index, texture properties, and thermomechanical parameters. Transglutaminase (TG) was also added to improve the dough functionality by forming cross‐links. The presence of protein sources had a significant effect on the gluten index, with the exception of lupin flour. Gelatin and the presence of TG resulted in significant single effects on the texture properties of the wheat‐protein dough. All the protein sources significantly modified the mixing characteristics of the dough or the thermal behavior. Capillary electrophoresis studies of the water‐soluble, salt‐soluble, and glutenin proteins indicated that interactions were mainly within proteins, thus homologous polymers. Scanning electron microscopy studies of the doughs made from blends of wheat and protein sources doughs supported the formation of heterologous structures in the wheat‐lupin blends. The combination of TG and lupin would be a promising method to be used on the treatment of insect‐damaged or weak flours, to increase the gluten strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号