首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Between 1930 and 2003 with emphasis on the 1940s maize landraces (Zea mays L. ssp. mays) from all over Switzerland were collected for maintenance and further use in a new Swiss breeding program. The genetic relationship and diversity among these accessions stored in the Swiss gene bank is largely unknown. Our hypothesis was that due to the unique geographic, climatic, and cultural diversity in Switzerland a diverse population of maize landraces had developed over the past three centuries. The aims were to characterize the genetic diversity of the Swiss landraces and their genetic relationship with accessions from neighbouring regions as well as reviewing their history, collection, and maintenance. The characterization and grouping was based on analyses with ten microsatellite markers. Geographic, cultural, and climatic conditions explained a division in two distinct groups of accessions. One group consisted of landraces collected in the southern parts of Switzerland. This group was related to the Italian Orange Flints. The other group contained accessions from northern Switzerland which were related to Northern European Flints in particular German Flints. Historic evidence was found for a frequent exchange of landraces within the country resulting in a lack of region-specific or landrace-specific genetic groups. The relatively large separation between the accessions, indicated by high F ST (0.42), might be explained partly by a bottleneck during the collection and maintenance phase as well as by geographical and cultural separation of north and south of the country. Due to the high genetic diversity, the accessions here are a potential resource for broadening the European flint pool.  相似文献   

2.
Runner bean (Phaseolus coccineus L.) is traditionally cultivated in Poland for dry seeds. The national collection of runner bean maintained in the National Center for Plant Genetic Resources gathers 152 accessions, which are mainly landraces originated in Poland (68%), Ukraine (17%) and Slovakia (10%). The collection contains valuable genetic resources for bean breeders and research. The aim of this study was to describe the level and structure of genetic diversity of three landraces and two commercial cultivars of runner bean from the national collection in order to assess their genetic potential for breeding. Amplified Fragment Length Polymorphism analysis included five combinations of selective primers. Analysis of seven genetic diversity parameters reveled fair amount of genetic variation both in landraces and cultivars. High genetic diversity of commercial cultivars relative those of landraces suggests that the breeding process leading to their release was rather moderate and most likely included domestic gene pool of runner bean. Low gene diversity and low Nei’s genetic distance values as well as intergradations among accessions in the PCoA may indicate reduced variability P. coccineus grown in Poland as a result of its migration pathways.  相似文献   

3.
4.
AFLP markers were used to characterize diversity and asses the genetic structure among 17 accessions of kale landraces, cultivars and wild populations from Europe. The range of average gene diversity in accessions was 0.11–0.27. Several landraces showed higher levels of diversity than the wild populations and one cultivar had the lowest diversity measures. The landraces that were most genetically diverse were from areas where kales are known to be extensively grown, suggesting in situ conservation in these areas as a supplement to storage of seeds in gene banks. An analysis of molecular variance (AMOVA) showed that 62% of the total variation was found within accessions. For most accessions, genetic distance was not related to geographic distance. Similarities among accessions were probably not caused by recent gene flow since they were widely separated geographically; more likely the relationship among them is due to seed dispersal through human interactions. Our results indicate that a kale population found in a natural habitat in Denmark was probably not truly wild but most likely an escape from a cultivated Danish kale that had subsequently become naturalized.  相似文献   

5.
A field experiment was conducted in 2001 at Holetta and Kulumsa, Ethiopia, to study genetic diversity in Ethiopian faba bean (Vicia faba L.) landraces. One hundred sixty random germplasm accessions were grown in an alpha lattice design with two replications. Data on 12 traits were collected and analyzed. Significant differences were observed among the accessions for most of the traits (except number of pods/podding nodes) at each location even though differences pooled over location were mostly non-significant. Cluster analysis distinguished seven diversity classes of different sizes. Accessions from the northern half of the country (North and South Wello, North Gonder and North Shewa) were closely related while those from the southern part of the country (Arsi) were highly diverse. Cumulative effects of a number of characters dictated differentiation of the accessions into clusters. Some overlapping were encountered between accessions from the northern and those from the southern parts of the country. The study revealed that accessions from different regions might have similar genetic background and those from the same origin might also have different genetic background. Therefore, geographic diversity should not necessarily be used as an index of genetic diversity and parental selection should be based on a systematic study of genetic diversity in a specific population. Genetic distances between most of the clusters were significant that crosses between parents selected out of them are expected to generate desirable progenies. Future germplasm collection, conservation and utilization strategies should put more focus not only on inter-regional diversity in the country as a whole but also on intra-regional diversity in Arsi.  相似文献   

6.
At the mountain area close to the city of Madrid, common beans were one of the main food crops present in everyday diet until 1960. This paper describes the morphological diversity, for forty-six phenological and morphological traits, found in forty-three traditional varieties of common beans collected in this area and seven commercial varieties used as reference. That comparison suggests that common bean breeding programs have led to later varieties with a higher production of straight pods. Quantitative traits showed also similar values when compared to the Iberian common bean collection, except for the phenological and seed size characters. The phenological differences could suggest an ecological adaptation of the studied landraces to the regional environmental conditions. The different seed size averages of both collections might correspond to the scarce presence of smaller seed-type common beans in Madrid collection. All the accessions collected in the Sierra Norte of Madrid belong to any of the groups included in the Spanish core collection. Madrilenian collection is also composed by indeterminate growth habit varieties, while the presence of bush accessions is relatively uncommon. Most of the Madrilenian landraces have a remarkable fitness for green-pod consumption (42 %) and their seeds are mainly white (30 %), ovate-shape (49 %) and medium-large (40 %). The study of seed storage protein allowed to classify the landraces according to their domesticated gene pools. Most of them (72 %), with T and C phaseolin type, seem to belong to Andean germplasm, while the remaining (28 %), with S and B phaseolin type, to Mesoamerican one. The remarkable morphological diversity of common beans found in this small area is a symptom of a broad genetic base despite genetic erosion, what indicates a widespread crop in the past. Therefore, it is advisable to design agro-environmental policies to promote the production and commercialization of common bean landraces in Sierra Norte of Madrid.  相似文献   

7.
An experiment was conducted in 2001 at Holetta and Kulumsa, Ethiopia, to study the extent and pattern of genetic diversity in Ethiopian field pea (Pisum sativum L.) landraces. One hundred forty-eight germplasm accessions were grown in an alpha lattice design with 2 replications. Data on 12 traits were collected and analyzed. Differences among the accessions were significant for most of the traits (except number of seeds/ pod) at each location even though differences pooled over location were mostly non-significant. The accessions were grouped into five clusters of different sizes. Accessions from the southern part of the country (Arsi) distributed overall clusters while those from the northern half (North and South Wello, North Gonder and North Shewa) fell into clusters C1 to C3. Cumulative effects of a number of characters dictated differentiation of the accessions into clusters. There was no definite relationship between geographic diversity and genetic diversity as overlapping was encountered in clustering pattern among accessions from different parts of the country. Accessions from different regions might have similar genetic background and those from the same origin might also have different genetic background. Therefore, geographic diversity should not necessarily be used as an index of genetic diversity and parental selection should be based on a systematic study of genetic diversity in a specific population. Genetic distances among most of the clusters were significant that crosses between parents selected out of them are expected to generate desirable genetic recombination. Selection should also consider the special advantages of each cluster and each accession within a cluster. Future germplasm collection, conservation and breeding efforts should focus not only on inter-regional diversity but also on intra-regional diversity.  相似文献   

8.
In Poland oat breeding began at the late nineteenth century. During the World War II almost all of Polish breeding materials were lost, and then were replaced by German cultivars. The main aim of this paper was to show the level of genetic diversity of Polish oat cultivars which were bred before 1939. Simultaneously usefulness and informativeness of molecular and morphological methods were tested and compared. This study involved 23 cultivars, which were described by 25 morphological traits and three types of molecular markers (AFLP, ISSR and RAPD). Based on Dice coefficient, genetic distance between cultivars ranged from 0.17 to 0.44. The degree of morphological differentiation within the collection varied depending on trait. Nei’s genetic diversity for the combined results for the whole collection was equal to 0.202. Neither unweighted pair group method with arithmetic mean nor principal coordinate analysis showed any discrimination of cultivars according to breeding period and morphological trait. Part of morphological diversity has been preserved in the Polish early oat cultivars, do not exist anymore in contemporary cultivars, and also in landraces. The interest of breeders in early cultivars germplasm stored in genebank was and still is negligible. Breeding is confined to a few preferred by market morphotypes. So, it is very probable that the gene pools of early and contemporary cultivars could be separable.  相似文献   

9.
Phenotypic diversity for agronomic characteristics was determined in an experiment with 29 landraces and 14 improved varieties of rye from the Nordic area, Germany and Poland. The accessions were scored for 12 characters. Effects of the location, year, type, and country of origin for landraces were investigated with analysis of variance. Phenotypic variations for the traits were estimated using the Shannon–Weaver diversity index. The genetic variation was high, with an average of H 0 = 0.566. The landraces from Norway, Sweden and Finland showed the highest variation, whereas the improved varieties had the lowest. The German material also had low variation but the status of this material is uncertain. The genetic diversity showed that 70% of the variation was found within the accessions. A cluster analysis was carried out to identify the relationship between the accessions. The material grouped into eight clusters, where clusters I to V included landraces from Sweden, Finland and Norway, except for cluster III, which included one improved variety from Denmark. Cluster VI comprised a single Swedish landrace from Gotland. Most of the improved varieties were in cluster VII and the last cluster contained accessions from Germany and Sweden.  相似文献   

10.
For millennia, wheat (Triticum spp.) has been grown in traditional aflaj-irrigation systems of remote mountain oases in Oman. However, little is known about the diversity of the ancient landraces used. Given recent reports about the occurrence of novel germplasm in such material, the objective of this study was to evaluate the genetic diversity of hexaploid wheat (Triticum aestivum L.) landraces in relation to their geographic origin using microsatellites. The collection covered most of the cultivation areas in northern Oman where wheat landraces are growing. Total genomic DNA was extracted from six pooled plants representing each accession. A total of 161 wheat accessions were assayed using 35 microsatellite loci in which a total of 305 polymorphic bands were recorded for the 35 microsatellites. The polymorphic information content (PIC) across the 35 microsatellite loci ranged from 0.02 to 0.89 with an average of 0.50. A heterozygosity percentage value of 9.09 was determined and the highest level recorded for accessions from the Batinah district. Rare alleles averaged 1.85 with the highest value being from the Dakhilia district. The results indicated a significant correlation between gene diversity and number of alleles across districts. The correlation coefficient between these two variables over the 35 loci was 0.657, whereby correlation coefficients of 0.718, 0.706, 0.657 and 0.651, respectively, were found for the Batinah, Dhahira, Dakhilia and Sharqia materials. Genetic distances indicated that all landraces were closely related. The cluster analysis discriminated most of the landraces accessions. However, it failed to achieve region-specific groupings of landraces. The present study demonstrated the presence of high diversity in Omani landraces and also indicated the effectiveness of microsatellites to describe it.  相似文献   

11.
Phaseolus vulgaris L. is an important species that originated in Mesoamerica. A Mesoamerican and an Andean gene pool are usually distinguished in the domesticated forms. Many bean landraces are still cultivated in Italy and the Department of Applied Biology maintains an ex situ collection of 146 landraces. Although protection schemes are being developed in Italy, most landraces are extinct or at risk of extinction. To facilitate their conservation and use, geographical, morphological, biochemical and molecular (SSR) data were collected and analysed to estimate the diversity and the genetic structure of the collection. Data confirmed that both the Mesoamerican and the Andean gene pools were introduced in Italy and, although a distinction between the two gene pools exists, the Italian landrace diversity is clearly structured in three clusters that are not simply ascribable to the original gene pools. The observed structure appears also to be due to adaptation to the different environmental conditions determined by altitude. This was confirmed by assessing the presence of selective effects for some of the SSR used in this study. Finally, a certain extent of admixture in Italian landrace diversity suggests past (or recurring) hybridisation events among gene pools. The combined use of morphological, biochemical and molecular data clearly distinguished almost all the landraces. The data gathered here can assist landrace in situ protection schemes that are being developed in Italy, be used to register landraces in the European common catalogue of ‘conservation varieties’ for seed commercialisation and contribute to a better use of Italian common bean diversity in breeding for organic and conventional production systems.  相似文献   

12.
Variation of high molecular weight glutenin subunits (HMW-GS) in 28 Iranian Aegilops tauschii (2n = 2x = 14, DD) accessions studied by sodium dodecyl sulphate electrophoresis method (SDS-PAGE). The results showed high variation of HMW-GS in the accessions. The range of frequency in 14 HMW-GS combinations was 3.57–25 % in the accessions. AMOVA showed the molecular variance between the geographic areas was lower than within the geographic areas. According to Nei’s genetic diversity, the highest diversity levels were in Semnan, Golestan and Azarbayjan, on the other hand the lowest levels of diversity were found in Khorasan, Gilan and Mazandaran accessions. Hence, the Caspian Sea South East accessions also Azerbayjan in Iran have more diversity. AMOVA did not show variance between strangulata and tauschii but there was more genetic diversity in ssp. tauschii subspecies in comparison of ssp. strangulata according to Nei’s gene diversity and Shannon information index. It showed Iranian Ae. tauschii have a good potential for bread making quality improvement in bread wheat.  相似文献   

13.
The genetic structure and diversity of eight pairs of rice landraces from in situ (collected in 2007) and ex situ (collected in 1980) conservation programs were studied using 20 pairs of microsatellite markers with high polymorphism. Each pair of rice landraces shares a name and origin and has similar seed and plant traits. The number of alleles detected in the populations from in situ conservation ranged from 43 to 88 with the mean number of alleles per locus ranging from 2.15 to 4.40, while the number of alleles detected in the populations from ex situ conservation ranged from 33 to 65, and the mean of alleles per locus ranged from 1.65 to 3.25. Compared to the ex situ populations, the number of alleles, the number of specific alleles and the genetic diversity index showed a significant increase in the in situ populations. Further, the numbers of specific alleles from in situ populations were 2.1–5.0 times greater than in ex situ populations except for rice landrace ‘Qitougu’. An AMOVA showed that the within-landrace genetic structure differed significantly between in situ and ex situ conservation treatments with differences exceeding 20%. The analysis of genetic similarity reached similar conclusions to those of the AMOVA. Compared with ex situ conservation programs, the rice landraces under in situ conservation programs had more alleles and higher genetic diversity in Yunnan of China.  相似文献   

14.
Pigeonpea is an important pulse crop grown by smallholder farmers in the semi-arid tropics. Most of the pigeonpea cultivars grown to date are selections from the landraces, with a narrow genetic base. With the expansion of the crop to newer areas, problems of local importance are to be addressed. Hence, an economically feasible and faster germplasm evaluation mechanism, such as a core collection, is required. This article describes the development of core collection from 12,153 pigeonpea accessions collected from 56 countries and maintained at ICRISAT, Patancheru, India. The germplasm accessions from 56 countries were placed under 14 clusters based primarily on geographic origin. Data on 14 qualitative morphological traits were used for cluster formation by Ward’s method. From each cluster ≈10% accessions were randomly selected to constitute a core collection comprising 1290 accessions. Mean comparisons using Newman–Keuls test, variances’ comparisons by Levene’s test, and comparison of frequency distribution by χ2-test indicated that the core collection was similar to that of the entire collection for various traits and the genetic variability available in the entire collection is preserved in the core collection. The Shannon–Weaver diversity index for different traits was also similar for both entire and core collection. All the important phenotypic associations between different traits available in the entire collection were preserved in the core collection. The core collection constituted in the present study facilitates identification of useful traits economically and expeditiously for use in pigeonpea improvement.  相似文献   

15.
16.
17.
Ethiopia is known for its wide topographically induced variation that favours a large amount of plant genetic diversity, and determination of the genetic structure of the germplasm is a crucial step towards exploiting this variation. Accordingly, a study was initiated to determine population structure patterns based on spatial and temporal factors and thereby establish group accessions depending on genetic similarity. To achieve this goal, 15 simple sequence repeats (SSRs) were used for 199 barley landraces collected from ten administrative regions of Ethiopia. The analysis of the spatial genetic structure was performed on the entire data set and on two groups created based on the year of collection. The results obtained from the model-based Bayesian clustering revealed 16 unstructured groups. Furthermore, the grouping of the accessions based on SSR markers resulted in hierarchical chain-type clusters with most of the accessions in the first cluster. The spatial correlations between the genetic and geographical distances revealed a weak population structure for the entire data set, and a weak temporal population structure was also observed for the barley populations from the recent collection. In general, the results indicated the absence of a distinct and consistent population structure among the regions, which could be presumed because of high gene flow. These findings will facilitate parent selection in order to broaden the genetic base of modern cultivars via breeding efforts and also provide information for the planning of an efficient germplasm collection strategy.  相似文献   

18.
176 horseradish accessions from the Nordic countries Denmark, Finland, Norway and Sweden were analysed to estimate the level of genetic diversity and to propose conservation strategies for this cultivated plant. Most of the accessions were collected in old gardens of the Nordic countries but selections from European countries and Danish breeding lines were also included in the study. Since horseradish is mainly vegetative propagated the genetic diversity has been assumed to be small. However, using the AFLP method with three primer combinations we revealed a significant genetic diversity among Nordic horseradish. The analysis yielded 65 polymorphic bands and we found an overall diversity index of 0.5 (Shannon–Weaver). The highest diversity was found among the Finnish accessions followed by the Danish accessions. An overall AMOVA analysis indicated that 90 % of the variation could be explained by among accession variation. The AFLP data assigned the different accessions into groups that corresponded with their country of origin. A closer relationship was observed between the Swedish, Danish and some of the Norwegian accessions while the Finnish accessions separated more clearly from the other three countries. A possible explanation for the diversity is that horseradish probably has been introduced to the Nordic countries at many occasions during a long period of time.  相似文献   

19.
We used amplified-fragment-length polymorphism (AFLP) markers to evaluate genetic variation in a set of bread wheat (Triticum aestivum L.) landraces and improved materials. Landraces collected from different geographic and agro-ecological zones in Pakistan in 1987, 1989 and 1991 were separated into two groups based on their geographic origins: northern (Himalaya) and south-western (Balochistan) Pakistan. Six AFLP primer combinations detected 453 AFLP markers in the 43 landrace accessions and four high-yield varieties (HYVs). Of these, 225 (49.67%) were rare (shared with < 5% of all accessions). Among these rare alleles, 23 (10.22%) were common in the Himalaya (shared with > 10% of accessions collected there) but were not found in Balochistan. We conclude that there is a higher probability of collecting rare alleles at overall, but which are in contrast locally common ones in the Himalayan region. Gene diversity was 0.17 in the Himalayan group and 0.15 in the Balochistan group. Considerable genetic variability was found in both groups. Accessions from different agro-ecological zones were indistinguishable by cluster analysis, indicating intensive seed trading within the country. Cluster analysis indicated that the landraces and the HYVs are genetically distinct; suggesting that genetic erosion of wheat landraces has been unlikely taken in place. This study provides an example of how analysis of existing materials and data, can serve as a basis for future collection planning and conservation policies.  相似文献   

20.
Total 65 lotus accessions in genus Nelumbo mainly collected from China, were subjected to random amplified polymorphic DNA (RAPD) markers to estimate the genetic diversity and to test the genetic basis of the relationships between morphotypes and molecular markers. Seventeen primers generated a total of 195 highly reproducible and discernible loci, among which 173 were polymorphic. Percent polymorphism varied from 66.7 to 100 with an average of 88.72, and five primers out of them, OPC05, OPG10, OPN20, OPP09 and OPS17, showed 100% polymorphism. A relatively high genetic diversity was detected among all the samples with the similarity coefficient values ranging from 0.45 to 0.85, and Nei’s gene diversity (h) 0.30, and Shannon index (I) 0.46. The UPGMA dendrogram clustered 65 accessions in four clusters and the clustering pattern showed two groups, N. nucifera ssp. nucifera and those accessions related to the American lotus, and some special cultivars, landraces, hybrids and the American lotus. Principal Coordinate Analysis (PCA) further indicated that the genetic diversity of Nelumbo accessions was not evenly distributed, instead, was presented by a clustered distribution pattern. Similar to the results revealed by the dendrogram, two main groups representing the two subspecies of N. nucifera, as well as some special landraces, cultivars of Chinese lotus, the Japanese lotus and hybrids out of the two groups were obtained. Neither the UPGMA dendrogram nor the PCA analysis exhibited strict relationship with geographic distribution and morphotypes among the accessions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号